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MOTIVATION BACKGROUND CONTRIBUTION OPEN REFERENCES

Boolean Satisfiability

x y ⊥2 ∧2 ⊕2 ∨2 ¬2 >2

0 0 0 0 0 0 1 1
0 1 0 0 1 1 0 1
1 0 0 0 1 1 1 1
1 1 0 1 0 1 0 1

Instance A term t(x1, . . . , xn) on signature (∧,¬).
Question ({0, 1},∧2,¬2,>2) |= ∃x1 . . . ∃xn(t = >)?

Computationally tractable (in P) or intractable (NP-complete)?
Intractable, it is necessary to check all {0, 1}{x1,...,xn}.
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Boolean Satisfiability

x y ⊥2 ∧2 ⊕2 ∨2 ¬2 >2

0 0 0 0 0 0 1 1
0 1 0 0 1 1 0 1
1 0 0 0 1 1 1 1
1 1 0 1 0 1 0 1

Instance A term t(x1, . . . , xn) on signature (⊥,∧,∨,>).
Question ({0, 1}, {⊥2,∧2,∨2,>2}) |= ∃x1 . . . ∃xn(t = >)?

Tractable or intractable?
Tractable, it is sufficient to check {1}{x1,...,xn}.
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Clones Lattice

A nonempty set, 0 ≤ n < ω. On = AAn
, n-ary operations on A.

O = OA =
⋃

n On, the finitary operations on A.

Definition
A clone on A is a subset of O containing the projection
operations and closed under compositions.
Cl(A) = {C | C clone on A}. Cn, n-ary operations in C ∈ Cl(A).

Fact
Cl(A) = (Cl(A),⊆) is a bounded algebraic lattice.
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Clones Lattice | Boolean Case
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Coclones Lattice

A nonempty set, 1 ≤ n < ω. Rn = 2An
, n-ary relations on A.

R =
⋃

n Rn, the finitary relations on A.

Definition
A coclone on A is a subset of R containing the diagonal relation
and closed under Cartesian products, identification of
coordinates, and projection of coordinates.
Co(A) = {S | S coclone on A}.

Fact
Co(A) = (Co(A),⊆) is a bounded algebraic lattice.
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Lattice Antiisomorphism

Definition
R ∈ Rk, f ∈ O. f preserves R if R is a subuniverse of (A, f )k.
S ⊆ R. Pol(S), the set of all operations on A that preserve each
relation in S (the polymorphisms of S).
F ⊆ O. Inv(F), the set of all relations on A that are preserved by
each operation in F (the invariants of F).

Theorem (Lattice Antiisomorphism)
Cl(A) and Co(A) are lattice antiisomorphic via Pol (or Inv).
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Lattice Antiisomorphism | Boolean Case
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Boolean clones (Post lattice). Boolean coclones.
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Relational Presentation of Clones

Notation
F ⊆ O. [F] is the (clone) closure of F, the smallest clone on A
containing F. S ⊆ R. [S] is the (coclone) closure of S, the smallest
coclone on A containing S.

Corollary
Let F ⊆ O. Then, there exists S ⊆ R, unique up to coclone closure,
such that [F] = Pol(S).

Example (Monotone Boolean Operations)

F = {⊥2,∧2,∨2,>2} ⊆ O{0,1}. [F] = M = Pol
(

0 0 1
0 1 1

)
.
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Lattice Antiisomorphism

Lemma (Geiger, Bodnarchuk et al. [L06])
C,C′ ∈ Cl(A), S, S′ ∈ Co(A). F ⊆ O, S ⊆ R. Then:

1. C ⊆ C′ ⇒ Inv(C′) ⊆ Inv(C), S ⊆ S′ ⇒ Pol(S′) ⊆ Pol(S).

2. Inv(F) = Inv([F]) = [Inv(F)], Pol(S) = Pol([S]) = [Pol(S)].

3. Pol(Inv(F)) = [F], Inv(Pol(S)) = [S].

Proof of Lattice Antiisomorphism.
By (2), Inv : Cl(A)→ Co(A) and Pol : Co(A)→ Cl(A). By (1) and (3), Inv and
Pol are antitone bijections.

Proof of Corollary.
Let S ⊆ R such that [S] = Inv(F). Then,
[F] =(3) Pol(Inv(F)) = Pol([S]) =(2) Pol(S).
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Parameterized Boolean Satisfiability

A = ({0, 1},F) algebra (signature σ).

Problem SAT(A)
Instance A term t(x1, . . . , xn) on σ.

Question Does there exist (a1, . . . , an) ∈ {0, 1}{x1,...,xn}

such that tA(a1, . . . , an) = 1?

Theorem (Lewis Dichotomy)
SAT(A) is NP-complete if S1 ⊆ [F], that is, if

(x ∧ ¬y)2 =
b 0 1
0 0 0
1 1 0

∈ [F],

and in P otherwise.
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Parameterized Boolean Satisfiability

Corollary
SAT(A) is in P iff F is contained in either

R1 = Pol
`

1
´
⊆ O{0,1},

M = Pol
„

0 0 1
0 1 1

«
⊆ O{0,1},

D = Pol
„

0 1
1 0

«
⊆ O{0,1}, or

L = Pol

0BB@
0 0 0 1 0 1 1 1
0 0 1 0 1 0 1 1
0 1 0 0 1 1 0 1
0 1 1 1 0 1 0 1

1CCA ⊆ O{0,1}.
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Parameterized Boolean Satisfiability

Theorem (Lewis Dichotomy)
SAT(A) is NP-complete if (x ∧ ¬y)2 ∈ [F], and in P otherwise.

Proof.
For hardness, inspection of Post lattice shows
[{(x ∧ ¬y)2,>2}] = I1 ∨ S1 = [{∧2,¬2}]. Let A′ = ({0, 1}, {(x ∧ ¬y)2,>2}), so
SAT(A′) is NP-complete. Reduction SAT(A′) ≤L SAT(A): Given t on x ∧ ¬y,>,
return z ∧ t[>/z] with z fresh (note S1 ⊆ [F] implies ∧2 ∈ [F]). So, SAT(A) is
NP-complete.
For tractability, inspection of Post lattice yields the following cases:
F ⊆ R1 (1-reproducing) implies t “Yes”instance (tA(1, . . . , 1) = 1).
F ⊆ M (monotone) implies t “Yes”instance iff tA(1, . . . , 1) = 1 (evaluation, in P).
F ⊆ D (selfdual) implies t “Yes”instance (tA(0, . . . , 0) = 1 or tA(1, . . . , 1) = 1).
F ⊆ L (affine) implies t “Yes”instance iff (w.l.o.g. t on ⊕, > as [{⊕2,>2}] = L)
either > or some xi have an odd number of occurrences in t (counting, in P).
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Lewis Dichotomies in Many-Valued Logics

A = (A,F) algebra (signature σ) such that:
1. {0, 1} ⊂ A;
2. F′ = {f ′ | f ′ restriction of f ∈ F to {0, 1}} ⊆ Pol

(
0 1

)
.

[F]n is the universe of FHSP(A)(n), the free n-generated algebra in
the variety generated by A (roughly, the truthtables of the
n-variable fragment of a many-valued expansion of a Boolean
language).

Problem Give a Lewis dichotomy for “SAT(A)”.

Idea Exploit Post lattice.
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Lewis Dichotomies in Many-Valued Logics

A = (A,F) algebra (signature σ) such that:
1. {0, 1} ⊂ A;
2. F′ = {f ′ | f ′ restriction of f ∈ F to {0, 1}} ⊆ Pol

(
0 1

)
.

[F]n is the universe of FHSP(A)(n), the free n-generated algebra in
the variety generated by A (roughly, the truthtables of the
n-variable fragment of a many-valued expansion of a Boolean
language).

Problem Give a Lewis dichotomy for “SAT(A)”.
Idea Exploit Post lattice.
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Kleene Operations

3 = ({0, 2, 1},K) with K = {∧3,¬3,>3}where: >3 = 1;

¬3(0) = 1,¬3(2) = 2,¬3(1) = 0; and,

∧3 0 2 1
0 0 0 0
2 0 2 2
1 0 2 1

.

Fact (Kleene Operations)

1. [K] = Pol
(

0 1 , 0 2 1 2 2
0 2 1 0 1

)
= Pol(K);

2. [K]n universe of FHSP(3)(n), the free n-generated Kleene algebra.

Remark
Propositional semantics: 1, 0 for “true”, “false”; 2 for “undetermined”.
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Satisfiability Problem

σ algebraic signature, A = (A,F) algebra on σ with:
1. A = {0, 2, 1};
2. F = {f : Aar(f ) → A | f ∈ σ} ⊆ [K].

Problem KLEENE-SAT(A)
Instance A term t(x1, . . . , xn) on σ.

Question Does there exist (a1, . . . , an) ∈ A{x1,...,xn}

such that tA(a1, . . . , an) = 1?

Remark
2-KLEENE-SAT(A) is in P: By preservation, there exists (a1, . . . , an) ∈ A{x1,...,xn}

such that tA(a1, . . . , an) = 2 iff tA(2, . . . , 2) = 2.
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Dichotomy Theorem

Theorem
KLEENE-SAT(A) is NP-complete if

k1 0 2 1
0 0 0 0
2 2 2 2
1 1 2 0

∈ [F] or

k2 0 2 1
0 0 2 0
2 2 2 2
1 1 2 0

∈ [F],

and in P otherwise.

Remark
[k1], [k2] incomparable in the lattice of clones on {0, 2, 1}.
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Dichotomy Theorem

Corollary
KLEENE-SAT(A) tractable iff F is contained in either

K(R1) = Pol
`

1 ,K
´
⊆ O{0,2,1},

K(M) = Pol
„

0 0 1
0 1 1 ,K

«
⊆ O{0,2,1},

K(D) = Pol
„

0 1
1 0 ,K

«
⊆ O{0,2,1}, or

K(L) = Pol

0BB@
0 0 0 1 0 1 1 1
0 0 1 0 1 0 1 1
0 1 0 0 1 1 0 1
0 1 1 1 0 1 0 1

,K

1CCA ⊆ O{0,2,1}.
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Dichotomy Theorem

Proof of Kleene Dichotomy, Lower Bound.
For the lower bound, suppose k1 ∈ [F]; the case k2 ∈ [F] is similar. f ∈ F ⊆ [K]
implies f ∈ Pol({0, 1}), then A′ = ({0, 1}, F′) with
F′ = {f ′|f ′ restriction of f ∈ F to {0, 1}} is an algebra (display A and A′ over
the same signature). k1 ∈ [F] implies b ∈ [F′], so by Lewis dichotomy,
SAT(A′) is NP-complete.
Reduction SAT(A′) ≤L KLEENE-SAT(A): Return the input term t(x1, . . . , xn).
Let (a1, . . . , an) ∈ {0, 2, 1}n such that tA(a1, . . . , an) = 1. Pick
(a′1, . . . , a

′
n) ∈ {0, 1}n such that a′i = ai if ai ∈ {0, 1}. Note tA(a1, . . . , an) = 1

implies tA(a′1, . . . , a
′
n) = 1, by preservation of K. But,

tA′
(a′1, . . . , a

′
n) = tA(a′1, . . . , a

′
n).

The converse follows as the restriction of tA to {0, 1} is equal to tA′
.
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Dichotomy Theorem

Proof of Kleene Dichotomy, Upper Bound.
For the upper bound, suppose that neither k1 nor k2 are in [F]. By direct
computation, there are exactly 4 binary operations in [K] whose restriction to
{0, 1} is the operation b in Lewis dichotomy; in addition to k1 and k2,

k3 0 2 1
0 0 0 0
2 2 2 0
1 1 2 0

and

k4 0 2 1
0 0 2 0
2 2 2 0
1 1 2 0

.

Neither k3 nor k4 are in [F], in fact

k1(x, y) = k3(x, k3(x, k3(x, y))),

k2(x, y) = k4(k4(x, y), k4(y, x)).

Then, there is no binary operation in [F] whose restriction to {0, 1} is b. Thus,
if A′ = ({0, 1}, F′) is as above, b 6∈ [F′], and SAT(A′) is in P. The trivial
reduction KLEENE-SAT(A) ≤L SAT(A′) is correct.
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Gödel Operations

G = ([0, 1],G) with G = {∧G,→G,¬G,⊥G}where: ⊥G = 0;

x ∧G y = min{x, y}; x→G y =

{
1 x ≤ y
y otherwise

; ¬Gx = x→G 0.

m ≥ 1. Gm = ({0, 1/m, 2/m, . . . , 1},Gm) subalgebra of G (easy).

Theorem (Gödel Operations)

1. [G] = Pol
(
{S | S subuniverse of Gm or G2

m}
)

m≥1 = Pol(G).
2. [G]n universe of FHSP(G)(n), the free n-generated Gödel algebra

(commutative bounded integral divisible prelinear idempotent
residuated lattices).
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Gödel Operations

Proof of Part 1.
If f ∈ [G], then f is a term operation over G, thus f preserves G.
Suppose f : [0, 1]n → [0, 1] 6∈ [G]n ⊆ [G]. Write [0, 1]m for {0, 1/m, . . . , 1}. Let
h : [Gn+1]n → [G]n st h(g) = g′ iff, for all a ∈ [0, 1]nn+1 and a ∈ [0, 1]n, if a and a′

“have the same ordered partition”, then: g(a) = 0 iff g′(a′) = 0, g(a) = 1 iff
g′(a′) = 1, and, g(a1, . . . , an) = ai iff g′(a′1, . . . , a

′
n) = a′i . h is an isomorphism of

[G]n and [Gn+1]n with op’s defined pointwise [AG08]. Note h(f |[0,1]n+1) = f ,
then f |[0,1]n+1 6∈ [Gn+1]n, ow f ∈ [G]n.

Claim
f |[0,1]n+1 6∈ Pol

`
{S | S subuniverse of Gn+1 or G2

n+1}
´

= Pol(Gn+1) ⊆ Pol(G).
By the claim, f 6∈ Pol(G).
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Gödel Operations

Proof of Claim.
We use the combinatorial characterization of [Gn+1]n in [AG08]. If
f (a1, . . . , an) 6∈ {a1, . . . , an} ∪ {0, 1} for some (a1, . . . , an) ∈ [0, 1]nn+1, then
f 6∈ Pol(Gn+1). Ow, there exist a,b ∈ [0, 1]nn+1 “having the same first i blocks”,
say (A1, . . . ,Ai, . . . ,Aj) and (B1, . . . ,Bi, . . . ,Bk) with i ≤ j, k. Let vt be equal to
the numerical value of the ai’s in At for 1 ≤ t ≤ j, and let wt be equal to the
numerical value of the bi’s in Bt for 1 ≤ t ≤ k. We have f (a) ∈ Ar and
f (b) ∈ Bs with either r 6= s ≤ i or r ≤ i < s. In both cases, f does not preserve
the subuniverse of G2

n+1 given by

{(0, 0), (v1,w1), . . . , (vi,wi)} ∪ {vi+1, . . . , vj−1, 1} × {wi+1, . . . ,wk−1, 1}.
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Satisfiability Problem

σ algebraic signature, A = (A,F) algebra on σ with:
1. A = [0, 1];
2. F = {f : Aar(f ) → A | f ∈ σ} ⊆ [G].

Problem GÖDEL-SAT(A)
Instance A term t(x1, . . . , xn) on σ.

Question Does there exist (a1, . . . , an) ∈ A{x1,...,xn}

such that tA(a1, . . . , an) = 1?

Remark
ε > 0. ε-GÖDEL-SAT(A) ≡L GÖDEL-SAT(A): By preservation,
there exists (a1, . . . , an) ∈ A{x1,...,xn} such that tA(a1, . . . , an) = ε iff
there exists (a1, . . . , an) ∈ A{x1,...,xn} such that tA(a1, . . . , an) = 1.
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Dichotomy Theorem

Theorem
GÖDEL-SAT(A) is NP-complete if

(x ∧ ¬y)G ∈ [F] or (¬(x→ y))G ∈ [F]

and in P otherwise.

Remark
[(x ∧ ¬y)G], [(¬(x→ y))G] incomparable in the lattice of clones on [0, 1].
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Dichotomy Theorem

Corollary
GÖDEL-SAT(A) tractable iff F is contained in either

G(R1) = Pol
`

1 ,G
´
⊆ O[0,1],

G(M) = Pol
„

0 0 1
0 1 1 ,G

«
⊆ O[0,1],

G(D) = Pol
„

0 1
1 0 ,G

«
⊆ O[0,1], or

G(L) = Pol

0BB@
0 0 0 1 0 1 1 1
0 0 1 0 1 0 1 1
0 1 0 0 1 1 0 1
0 1 1 1 0 1 0 1

,G

1CCA ⊆ O[0,1].
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Dichotomy Theorem

A = ([0, 1]3,F) with F ⊆ [G3]. GÖDEL-SAT(A) similarly.

Lemma
GÖDEL-SAT(A) is NP-complete if

g1 0 1/3 2/3 1
0 0 0 0 0

1/3 1/3 0 0 0
2/3 2/3 0 0 0
1 1 0 0 0

∈ [F] or

g2 0 1/3 2/3 1
0 0 0 0 0

1/3 1 0 0 0
2/3 1 0 0 0
1 1 0 0 0

∈ [F],

and in P otherwise.

Remark
[g1], [g2] incomparable in the lattice of clones on [0, 1]3.
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Dichotomy Theorem

Proof of Lemma.
Lower Bound, Case g1 ∈ [F]: Let A′ = ({0, 1}, F′) with F′ = F|{0,1}, correct as
F ⊆ [G] implies F preserves the subuniverse {0, 1}. Then, b ∈ [F′], so that
SAT(A′) is NP-complete. Reduction SAT(A′) ≤L GÖDEL-SAT(A): return the
given term t. If tA′

(a) = 1, then tA(a) = 1 by the definition of F′. Conversely,
let (a1, . . . , an) ∈ [0, 1]n3 st tA(a1, . . . , an) = 1. Let (a′1, . . . , a

′
n) ∈ {0, 1}n st a′i = 0

if ai = 0 and a′i = 1 ow. As R = {(0, 0), (1/3, 1), (2/3, 1), (1, 1)} is a
subuniverse of G2

3, tA preserves R and tA(a′1, . . . , a
′
n) = 1. Then,

tA′
(a′1, . . . , a

′
n) = 1. Case g2 ∈ [F]: Similar.

Upper Bound: g1, g2 6∈ [F] imply no operation in [F]2 restricted to {0, 1}
equals b, as g1 and g2 are the only such operations in [G3]2 ⊇ [F]2. Then,
b 6∈ [F′], and SAT(A′) is in P. As above GÖDEL-SAT(A) ≤L SAT(A′).
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Dichotomy Theorem

Proof of Gödel Dichotomy.
Lower Bound. Case (x ∧ ¬y)G ∈ [F]: Let A′ = ([0, 1], F′) with
F′ = {f ′ | f ′ restriction to [0, 1]3 of f ∈ F}. As g1 ∈ [F′], by the lemma,
GÖDEL-SAT(A′) is NP-complete. Reduction
GÖDEL-SAT(A′) ≤L GÖDEL-SAT(A): return the given term t. If tA′

(a) = 1,
then tA(a) = 1 as tA|[0,1]3 = tA′

. Conversely, let a = (a1, . . . , an) ∈ [0, 1]n st
tA(a) = 1. Let a′ = (a′1, . . . , a

′
n) ∈ {0, 1}n ⊆ [0, 1]n3 st a′i = ai if ai = 0 and a′i = 1

ow. tA ∈ [G] implies that tA preserves the subuniverse
R = {(0, 0), (a, 1) | 0 < a} of G2. Also, (1, a) /∈ R if a 6= 1, then tA(a) = 1
implies tA(a′) = 1. But tA |{0,1}= tA′

, then tA′
(a′) = 1. Case

(¬(x→ y))G ∈ [F]: Similar.
Upper Bound. (x ∧ ¬y)G, (¬(x→ y))G 6∈ [F] implies that no operation in [F]2
restricted to {0, 1} equals b, then A′ = ({0, 1}, F′) with F′ = F|{0,1} is st
SAT(A′) is in P. Reduction GÖDEL-SAT(A) ≤L SAT(A′): return the given
term t. As above.



MOTIVATION BACKGROUND CONTRIBUTION OPEN REFERENCES

Outline

Background
Clone Theory
Lewis Dichotomy

Contribution
Many-Valued Logics
Kleene Operations
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DeMorgan Operations

4 = ({0, 2, 3, 1},M) with M = {∧4,¬4,>4}where: >4 = 1;

¬4(0) = 1,¬4(2) = 2,¬4(3) = 3,¬4(1) = 0;

∧3 0 2 3 1
0 0 0 0 0
2 0 2 0 2
3 0 0 3 3
1 0 2 3 1

.

Fact (DeMorgan Operations)

1. [M] = Pol
(

0 2 3 1
0 3 2 1 ,

0 2 3 1 2 2 2 0 1
0 2 3 1 0 1 3 3 3

)
.

2. [M]n universe of FHSP(4)(n), the free n-generated DeMorgan algebra.

Remark
1, 0 for “true”, “false”; 2, 3 for “undetermined”, “overdetermined”.



MOTIVATION BACKGROUND CONTRIBUTION OPEN REFERENCES

Satisfiability Problem

σ algebraic signature, A = (A,F) algebra on σ with:
1. A = {0, 2, 3, 1};
2. F = {f : Aar(f ) → A | f ∈ σ} ⊆ [M].

Problem DEMORGAN-SAT(A)
Instance A term t(x1, . . . , xn) on σ.

Question Does there exist (a1, . . . , an) ∈ A{x1,...,xn}

such that tA(a1, . . . , an) = 1?

Remark
Complexity of 2-DEMORGAN-SAT(A), 3-DEMORGAN-SAT(A)?
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Hard and Easy Cases

Proposition
DEMORGAN-SAT(A) is NP-complete if

d1 0 2 3 1
0 0 0 0 0
2 2 2 2 2
3 3 3 3 3
1 1 2 3 0

∈ [F] or

d2 0 2 3 1
0 0 2 3 0
2 2 2 2 2
3 3 3 3 3
1 1 2 3 0

∈ [F],

and in P if [F|{0,1}] ⊆ R1,D.

Remark
Complexity of DEMORGAN-SAT(A) if I0 ⊆ [F]?
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m-Valued Łukasiewicz Operations

L = ([0, 1],L) with L = {�L,→L,⊥L}where: ⊥L = 0;
x�L y = max{0, x + y− 1}; x→L y = min{1, y + 1− x}.

m ≥ 1. Lm = ({0, 1/m, 2/m, . . . , 1},Lm) subalgebra of L (easy).

Theorem (m-Valued Łukasiewicz Operations)

1. [Lm] = Pol({R | R subuniverse of Lm})
= Pol({dk/m | 0 ≤ k ≤ m/d})1≤d|m.

2. [Lm]n universe of FHSP(Lm)(n), the free n-generated algebra in the
variety generated by Lm (m-valued Łukasiewicz algebras).
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Satisfiability Problem

m ≥ 1, σ algebraic signature, A = (A,F) algebra on σ with:
1. A ⊆ [0, 1];
2. F = {f : Aar(f ) → A | f ∈ σ} ⊆ [Lm].

Problem ŁUKASIEWICZ-SAT(A)
Instance A term t(x1, . . . , xn) on σ.

Question Does there exist (a1, . . . , an) ∈ A{x1,...,xn}

such that tA(a1, . . . , an) = 1?

Remark
0 < l < m. Complexity of l

m -ŁUKASIEWICZ-SAT(A)?
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Hard and Easy Cases

Proposition
ŁUKASIEWICZ-SAT(A) is NP-complete if

l 0 1/m · · · 1
0 0 0 · · · 0

1/m 0 0 · · · 0
...

...
...

. . .
...

1 1 0 · · · 0

∈ [F],

and in P if [F|{0,1}] ⊆ R1,D.

Remark
Complexity of ŁUKASIEWICZ-SAT(A) if I0 ⊆ [F]?
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