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Boolean Satisfiability

X y ‘ J_Z /\2 @2 \/2 _|2 —|—2

0 0| O 0 0 0 1 1

0 1|0 0 1 1 0 1

1 0] 0 0 1 1 1 1

1 1] 0 1 0 1 0 1
Instance A term t(xq, ..., x,) on signature (A, ).

Question ({0,1},A2, =2, T2) = Iy ... xy(t =T)?

Computationally tractable (in P) or intractable (NP-complete)?
Intractable, it is necessary to check all {0, 1}{*1--¥1},
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Boolean Satisfiability

Xy ‘ 12 A2 g2 v 2 T2
o 0j0 O O O 1 1
0110 0 1 1 0 1
10,0 0 1 1 1 1
11,0 1 0 1 0 1

Instance A term t(xq, ..., x,) on signature (L, A,V, T).
Question ({0,1},{12,A%, V3 T2}) = 3xg... 3x,(t = T)?

Tractable or intractable?
Tractable, it is sufficient to check {1} ¥},
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Clones Lattice

A nonemptyset, 0 <n <w. O, = A4 n-ary operations on A.
O =0, =, Oy, the finitary operations on A.

Definition

A clone on A is a subset of O containing the projection

operations and closed under compositions.
Cl(A) = {C | Cclone on A}. C,, n-ary operations in C € CI(A).

Fact
Cl(A) = (CI(A), C) is a bounded algebraic lattice.
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Coclones Lattice

Anonemptyset, 1 <n <w. R, = 24" n-ary relations on A.
R = |J, Ry, the finitary relations on A.

Definition
A coclone on A is a subset of R containing the diagonal relation
and closed under Cartesian products, identification of

coordinates, and projection of coordinates.
Co(A) = {S | S coclone on A}.

Fact
Co(A) = (Co(A), C) is a bounded algebraic lattice.
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Lattice Antiisomorphism

Definition

R € Ry, f € O. f preserves R if R is a subuniverse of (4, f)*.

S C R. Pol(S), the set of all operations on A that preserve each
relation in S (the polymorphisms of S).

F C O. Inv(F), the set of all relations on A that are preserved by
each operation in F (the invariants of F).

Theorem (Lattice Antiisomorphism)
Cl(A) and Co(A) are lattice antiisomorphic via Pol (or Inv).



Lattice Antiisomorphism | Boolean Case

Boolean coclones.

Boolean clones (Post lattice).
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Relational Presentation of Clones

Notation

F C O. [F] is the (clone) closure of F, the smallest clone on A
containing F. S C R. [S] is the (coclone) closure of S, the smallest
coclone on A containing S.

Corollary

Let F C O. Then, there exists S C R, unique up to coclone closure,
such that [F] = Pol(S).

Example (Monotone Boolean Operations)

F = {J_Z, /\2, \/2, TZ} - 0{0,1}. [F] = M = Pol < (1)

—_ =

0
0
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Lattice Antiisomorphism

Lemma (Geiger, Bodnarchuk et al. [L06])

C,C" € Cl(A),S,S" € Co(A). FC O,S CR. Then:
1. CCC = Inv(C') CInv(C),S C S = Pol(S") C Pol(S).
2. Inv(F) = Inv([F]) = [Inv(F)], Pol(S) = Pol([S]) = [Pol(5)].
3. Pol(Inv(F)) = [F], Inv(Pol(S)) = [S].

Proof of Lattice Antiisomorphism.
By (2), Inv: CI(A) — Co(A) and Pol: Co(A) — CI(A). By (1) and (3), Inv and
Pol are antitone bijections. O

Proof of Corollary.

Let S C R such that [S] = Inv(F). Then,
[F] =@y Pol(Inv(F)) = Pol([S]) =2y Pol(S). O
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Parameterized Boolean Satisfiability

A = ({0,1},F) algebra (signature o).
Problem SAT(A)

Instance A term t(x1,...,X,) ono.

Question Does there exist (ay, ..., a,) € {0, 1} ¥}

such that tA(ay, . .. ,a,) = 1?
Theorem (Lewis Dichotomy)
SAT(A) is NP-complete if Sy C [F|, that is, if

b0 1
(xA-y)* = 0|0 0 €[F,
1/1 0

and in P otherwise.

REFERENCES
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Parameterized Boolean Satisfiability

Corollary

SAT(A) is in P iff F is contained in either

Pol

M = Pol

D = Pol

L = Pol

/N /N T

ocoocooo PO OO

) € Og0,13},

? i)go{o,l},
(1)>§0{01},01’

0 01 01 11
L0011 01 |SOm
1 11 0 1 0 1
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Parameterized Boolean Satisfiability

Theorem (Lewis Dichotomy)
SAT(A) is NP-complete if (x A —y)* € [F], and in P otherwise.

Proof.

For hardness, inspection of Post lattice shows

{(x Ay T2 = LV S = [{A%, =2}, Let A” = ({0,1}, {(x A ), T2}), 50
SAT(A’) is NP-complete. Reduction SAT(A") <, SAT(A): Given tonx A —y, T,
return z A t[T /z] with z fresh (note S1 C [F] implies A* € [F]). So, SAT(A) is
NP-complete.

For tractability, inspection of Post lattice yields the following cases:

F C Ry (1-reproducing) implies t “Yes”instance (t*(1,...,1) = 1).

F C M (monotone) implies t “Yes"instance iﬁtA(l, ..., 1) =1 (evaluation, in P).
F C D (selfdual) implies t “Yes”instance (t*(0,...,0) = Lor t*(1,...,1) = 1).

F C L (affine) implies t “Yes”instance iff (w.l.o.g. ton ®, T as [{&*, T*}] = L)
either T or some x; have an odd number of occurrences in t (counting, in P). O
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Lewis Dichotomies in Many-Valued Logics

A = (A, F) algebra (signature o) such that:
1. {0,1} C A;
2. F' = {f' | f restrictionof f € Fto {0,1}} CPol( 0 1).

[F], is the universe of Fysp(a)(1), the free n-generated algebra in
the variety generated by A (roughly, the truthtables of the
n-variable fragment of a many-valued expansion of a Boolean

language).

Problem Give a Lewis dichotomy for “SAT(A)”.
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Lewis Dichotomies in Many-Valued Logics

A = (A, F) algebra (signature o) such that:
1. {0,1} C A;
2. F' = {f' | f restrictionof f € Fto {0,1}} CPol( 0 1).

[F], is the universe of Fysp(a)(1), the free n-generated algebra in
the variety generated by A (roughly, the truthtables of the
n-variable fragment of a many-valued expansion of a Boolean

language).

Problem Give a Lewis dichotomy for “SAT(A)”.
Idea Exploit Post lattice.
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Kleene Operations

3 = ({0,2,1},K) with K = {A% = T%} where: T> = 1;

Fact (Kleene Operations)

02122
1. [K]:Pol(O 1,021 0 1>:P01(IC),

2. [K],, universe of Fygp(s) (1), the free n-generated Kleene algebra.

Remark

Propositional semantics: 1, 0 for “true”, “false”; 2 for “undetermined”.
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Satisfiability Problem

o algebraic signature, A = (A, F) algebra on o with:
1. A={0,2,1};
2. F={f: A*) - A|feco}CIK].

Problem KLEENE-SAT(A)
Instance A term t(x1,...,X,) ono.
Question Does there exist (ay, ... ,a,) € At¥u-n}
such that tA(ay, ... ,a,) = 1?

Remark
2-KLEENE-SAT(A) is in P: By preservation, there exists (ai, . .., a,) € AL}
such that t*(ay, . .. ,a,) = 2iff t*(2,...,2) = 2.
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Theorem
KLEENE-SAT(A) is NP-complete if

and in P otherwise.

Remark
[ki], [k2] incomparable in the lattice of clones on {0,2,1}.

REFERENCES
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Dichotomy Theorem

Corollary
KLEENE-SAT(A) tractable iff F is contained in either

K(Ry) = POI( 1 JC) C Oyg0,.2,13,

00 1

K(M) = POI ( 0 1 1 7’C) g 0{0,2,1}/
01

K(D) = Pol ( 1 0 ,’C) - 0{0,2,1}, or
00010111
00101011

KB)=Poll o 1 0 0 1 1 0 1°%|SO02r
01110101
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Dichotomy Theorem

Proof of Kleene Dichotomy, Lower Bound.

For the lower bound, suppose ki € [F]; the case k; € [F] is similar. f € F C [K]
implies f € Pol({0,1}), then A" = ({0, 1}, F’) with

F' = {f'|f restriction of f € F to {0,1}} is an algebra (display A and A’ over
the same signature). k; € [F] implies b € [F'], so by Lewis dichotomy,
SAT(A’) is NP-complete.

Reduction SAT(A’) <; KLEENE-SAT(A): Return the input term #(x1, ..., Xn).
Let (ai,...,as) € {0,2,1}" such that t*(ay, . ..,a,) = 1. Pick

(ay,...,a,) € {0,1}" such thata = a; if a; € {0,1}. Note t*(ay,...,a,) = 1
implies t*(a], . ..,a,) = 1, by preservation of K. But,

A, a) =), ..

The converse follows as the restriction of #* to {0, 1} is equal to A O
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Dichotomy Theorem

Proof of Kleene Dichotomy, Upper Bound.

For the upper bound, suppose that neither k; nor k; are in [F]. By direct
computation, there are exactly 4 binary operations in [K] whose restriction to
{0, 1} is the operation b in Lewis dichotomy; in addition to k; and k,

and

- N oS
»—ANOg
NN OIN
o O O
- N ol
»—lI\JOg
NN NN
O O O

Neither k3 nor k; are in [F), in fact

ka(x, y) = ka(x, ks (x, ks (x, y)))r
ka (x, y) = ka(ka(x, ]/)7 k4(y7 X)).
Then, there is no binary operation in [F] whose restriction to {0, 1} is b. Thus,

if A’ = ({0,1},F') is as above, b & [F'], and SAT(A’) is in P. The trivial
reduction KLEENE-SAT(A) <; SAT(A’) is correct. O
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Gadel Operations

G = ([0,1],G) with G = {A®, =G, =G 16} where: L¢ = 0;
Lorsy ;- Sx=x-060.
y otherwise

m>1.Gy,=({0,1/m,2/m,... 1}, G,) subalgebra of G (easy).

x ASy =min{x,y}; x =Gy =

Theorem (Godel Operations)

1. [G] = Pol ({S | S subuniverse of G, or sz})m21 = Pol(G).

2. [GJy, universe of Fysp(g)(n), the free n-generated Godel algebra
(commutative bounded integral divisible prelinear idempotent
residuated lattices).
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Gadel Operations

Proof of Part 1.

If f € [G], thenf is a term operation over G, thus f preserves G.

Suppose f: [0,1]" — [0,1] & [G]. C [G]. Write [0, 1], for {0,1/m,...,1}. Let
h: [Gusaln — [Glusth(g) = ¢'iff, foralla € [0,1],,, and a € [0,1]",ifaand a'
“have the same ordered partition”, then: g(a) = 0iff ¢’(a’) = 0, g(a) = 1 iff
¢'(@)=1,and, g(a1,...,as) = a; iff ¢'(ay, ..., a,) = aj. his an isomorphism of
[Gl» and [Gy+1]n with op’s defined pointwise [AG08]. Note k(f|1,.,) = f,
thenf'[oal]n+l Z [Gnsaln, oW f € [Glu.

Claim
flio,., & Pol ({S | S subuniverse of Gy11 0r Gy 11 }) = Pol(Guy1) C Pol(G).
By the claim, f ¢ Pol(G). O
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Gadel Operations

Proof of Claim.

We use the combinatorial characterization of [Gp1], in [AGO08]. If

flay, ... an) & {a1,...,a,} U{0,1} for some (a1, ...,a,) € [0,1], 4, then

f & Pol(Gut1). Ow, there exist a,b € [0,1];,; “having the same first i blocks”,
say (A1,...,Ai,...,Aj)and (B1,...,B;, ..., By) withi <j, k. Let v; be equal to
the numerical value of the g;’s in A; for 1 <t < j, and let w; be equal to the
numerical value of the b;’s in B; for 1 < t < k. We have f(a) € A, and

f(b) € B; witheither r # s <iorr <i <s. Inboth cases, f does not preserve

the subuniverse of G2, given by

{(0, 0), (Ul,uh), RPN (vi,wi)} U {7},‘+1, ey Ui, 1} X {wi+1, vy Wi—1, 1}
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Satisfiability Problem

o algebraic signature, A = (A, F) algebra on o with:
1. A=[0,1};
2. F={f: A*) = A|feco}CIG.

Problem GODEL-SAT(A)

Instance A term t(x1,...,X,) ono.

Question Does there exist (a1, ...,a,) € Al
such that tA(ay, . .. ,a,) = 1?

Remark

€ > 0. e-GODEL-SAT(A) =, GODEL-SAT(A): By preservation,
there exists (ai, ..., a,) € AP0} such that t*(ar, . .. a,) = € iff
there exists (ai, . .., a,) € A0} sych that t*(ay,. .. a,) = 1.
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Dichotomy Theorem

Theorem
GODEL-SAT(A) is NP-complete if

(x A=y)© € [Flor (~(x — 1))€ € [F]

and in P otherwise.

Remark
[(x A =) €], [(=(x — y))€] incomparable in the lattice of clones on [0, 1].
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Dichotomy Theorem

Corollary
GODEL-SAT(A) tractable iff F is contained in either

POI 1 ,Q) - 0[011],

00 1

POI(Q 1 17g>go[0,1]/
0 1

P01<1 07g>go[ﬂ,1
00010111
00101011

=Poll v 1 0011 019|500
0111010 1
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Dichotomy Theorem

A = ([0,1]3,F) with F C [G3]. GODEL-SAT(A) similarly.

Lemma
GODEL-SAT(A) is NP-complete if

@1 | 0 1/3 2/31 g |0 1/3 2/3 1
0]0 0 0 0 00 0 0 O
1/3[1/3 0 0 0 €[Flor 1/3|/1 0 0 0 €[F,
2/312/3 0 0 0 2/3/1 0 0 0
11 0 0 0 1|1 0 0 0

and in P otherwise.

Remark
[g1], [g2] incomparable in the lattice of clones on [0, 1]s.
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Dichotomy Theorem

Proof of Lemma.

Lower Bound, Case g1 € [F]: Let A’ = ({0,1}, F') with F' = F|(0,1}, correct as
F C [G] implies F preserves the subuniverse {0,1}. Then, b € [F'], so that
SAT(A’) is NP-complete. Reduction SAT(A’) <; GODEL-SAT(A): return the
given term ¢t. If A (a) = 1, then t*(a) = 1 by the definition of F’. Conversely,
let (a1,...,a,) € [0,1)4 st t*(ay,...,a,) = 1. Let (ay,...,a,) € {0,1}" sta, =0
ifa;=0anda; =1ow. AsR = {(0,0),(1/3,1),(2/3,1),(1,1)} isa
subuniverse of G3, t* preserves R and t*(aj, ... ,a,) = 1. Then,

tA(a}, ... ,a}) = 1. Case g € [F]: Similar.

Upper Bound: g1,¢> ¢ [F] imply no operation in [F]; restricted to {0, 1}
equals b, as g1 and g» are the only such operations in [Gs]2 D [F]2. Then,

b & [F'], and SAT(A’) is in P. As above GODEL-SAT(A) <, SAT(A’). O
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Dichotomy Theorem

Proof of Godel Dichotomny.

Lower Bound. Case (x A )€ € [F]: Let A’ = ([0, 1], F’) with

F' = {f'" | f restriction to [0,1]s of f € F}. As g1 € [F'], by the lemma,
GODEL-SAT(A") is NP-complete. Reduction

GODEL-SAT(A’) <, GODEL-SAT(A): return the given term ¢. If ' (a) =1,
then t*(a) = 1 as t*{jp ), = A Conversely, leta = (a1,...,a,) € [0,1]" st
t*(a) =1.Leta’ = (a},...,a,) € {0,1}" C [0,1]4 sta = a;ifa; =0 and a] = 1
ow. t* € [G] implies that t* preserves the subuniverse

R ={(0,0),(a,1) | 0 < a} of G*. Also, (1,a) ¢ Rifa # 1, then t*(a) = 1
implies t*(a’) = 1. But t* |{o13= t*', then t' (a’) = 1. Case

(=(x — y))© € [F]: Similar.

Upper Bound. (x A —y)€, (=(x — y))€ ¢ [F] implies that no operation in [FJ,
restricted to {0,1} equals b, then A’ = ({0,1}, F') with F' = F|; 1} is st
SAT(A’) is in P. Reduction GODEL-SAT(A) <; SAT(A’): return the given
term t. As above. O
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DeMorgan Operations

4= ({0,2,3,1}, M) with M = {A* =4 T*} where: T* = 1;

Ao 2 31
00000
-40) =1,-%(2) =2,-4(3) =3,-4(1)=0; 2 |0 2 0 2
310 0 3 3
1102 31

Fact (DeMorgan Operations)

1.[M]:Pol<023 023122201)

1
0321023101333
2. [M],, universe of Fysp(ay (1), the free n-generated DeMorgan algebra.

Remark
1, 0 for “true”, “false”; 2, 3 for “undetermined”, “overdetermined”.
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Satisfiability Problem

o algebraic signature, A = (A, F) algebra on o with:
1. A={0,2,3,1};
2. F={f: A*) S A|feo}CM].

Problem DEMORGAN-SAT(A)
Instance A term t(xq,...,x,) ono.
Question Does there exist (ay, . .., a,) € At¥-¥n}
such that tA(ay, ... ,a,) = 1?

Remark
Complexity of 2-DEMORGAN-SAT(A), 3-DEMORGAN-SAT(A)?

REFERENCES
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Hard and Easy Cases

Proposition
DEMORGAN-SAT(A) is NP-complete if

di |0 2 31 d |0 2 31
00000 0/0 230
21222 2 €lFlor 2|2 2 2 2 €[,
313333 313333
111230 1/1230

and in P @f[F|{0,1}] - Rl, D.

Remark
Complexity of DEMORGAN-SAT(A) if Iy C [F]?
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m-Valued Lukasiewicz Operations

L = ([0,1],L) with L = {&t, =L, 11} where: LT =0;
x Oy =max{0,x+y—1};x =Ly =min{l,y +1 —x}.

m>1.L, = ({0,1/m,2/m,...,1},Ly) subalgebra of L (easy).

Theorem (m-Valued Lukasiewicz Operations)
1. [Ly) = Pol({R | R subuniverse of Ly, })
= Pol({dk/m | 0 < k < m/d})1<am-

2. [Lw]n universe of Frysp(v,,)(n), the free n-generated algebra in the
variety generated by Ly, (m-valued Lukasiewicz algebras).
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Satisfiability Problem

m > 1, o algebraic signature, A = (A, F) algebra on ¢ with:

1. AC|[0,1];
2. F={f: A — A|fco}C Ly

Problem LUKASIEWICZ-SAT(A)
Instance A term t(xq,...,x,) ono.
Question Does there exist (ay, . .., a,) € At¥-¥n}
such that tA(aq, . ..,a,) = 1?

Remark
0 < I < m. Complexity of L-LUKASIEWICZ-SAT(A)?

REFERENCES
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Hard and Easy Cases

Proposition

LUKASIEWICZ-SAT(A) is NP-complete if

I 10 1/m 1

0 |0 O 0
1/m|0 0 0 e1r,

1 |1 0 0

and in P lf[F|{0,1}] - Rl, D.

Remark

Complexity of LUKASIEWICZ-SAT(A) if Iy C [F]?

REFERENCES
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