
Kernels for Global Constraints

Abstract
Bessière et al. (AAAI’08) showed that several intractable
global constraints can be efficiently propagated when
certain natural problem parameters are small. In particular,
the complete propagation of a global constraint is
fixed-parameter tractable in k – the number of holes
in domains – whenever bound consistency can be
enforced in polynomial time; this applies to the global
constraints ATMOST-NVALUE and EXTENDED GLOBAL
CARDINALITY (EGC).

In this paper we extend this line of research and introduce
the concept of reduction to a problem kernel, a key
concept of parameterized complexity, to the field of global
constraints. In particular, we show that the consistency
problem for ATMOST-NVALUE constraints admits a
linear time reduction to an equivalent instance on O(k2)
variables and domain values. This small kernel can be
used to speed up the complete propagation of NVALUE
constraints. We contrast this result by showing that the
consistency problem for EGC constraints does not admit
a reduction to a polynomial problem kernel unless the
polynomial hierarchy collapses.

Keywords: Fixed-Parameter Tractability, Global
Constraints, Computational Complexity.

1 Introduction
Constraint programming (CP) offers a powerful framework for
efficient modeling and solving of a wide range of hard problems
[Rossi et al., 2006]. At the heart of efficient CP solvers are
so-called global constraints that specify patterns that frequently
occur in real-world problems. Efficient propagation algorithms for
global constraints help speed up the solver significantly [van Hoeve
and Katriel, 2006]. For instance, a frequently occurring pattern is
that we require that certain variables must all take different values
(e.g., activities requiring the same resource must all be assigned
different times). Therefore most constraint solvers provide a global
ALLDIFFERENT constraint and algorithms for its propagation.
Unfortunately, for several important global constraints a complete
propagation is NP-hard, and one switches therefore to incomplete
propagation such as bound consistency [Bessière et al., 2004]. In
their AAAI’08 paper, Bessière et al. [2008] showed that a complete
propagation of several intractable constraints can efficiently be
done as long as certain natural problem parameters are small, i.e.,
the propagation is fixed-parameter tractable [Downey and Fellows,
1999]. Among others, they showed fixed-parameter tractability of
the ATLEAST-NVALUE and EXTENDED GLOBAL CARDINALITY
(EGC) constraints parameterized by the number of “holes” in the
domains of the variables. If there are no holes, then all domains
are intervals and complete propagation is polynomial by classical
results; thus the number of holes provides a way of scaling up
the nice properties of constraints with interval domains.

In this paper we bring this approach a significant step forward,
picking up a long-term research objective suggested by Bessière et

al. [2008] in their concluding remarks: whether intractable global
constraints admit a reduction to a problem kernel or kernelization.

Kernelization is an important algorithmic technique that has
become the subject of a very active field in state-of-the-art com-
binatorial optimization (see, e.g., the references in [Fellows, 2006;
Guo and Niedermeier, 2007; Rosamond, 2010]). Kernelization can
be seen as a preprocessing with performance guarantee that reduces
a problem instance in polynomial time to an equivalent instance,
the kernel, whose size is a function of the parameter [Fellows, 2006;
Guo and Niedermeier, 2007; Fomin, 2010].

Once a kernel is obtained, the time required to solve the instance
is then a function of the parameter only and therefore independent
of the input size. Consequently one aims at kernels that are as
small as possible; the kernel size provides a performance guarantee
for the preprocessing. Some NP-hard combinatorial problems such
as k-VERTEX COVER admit polynomially sized kernels, for others
such as k-PATH an exponential kernel is the best one can hope
for [Bodlaender et al., 2009a].

Kernelization fits perfectly into the context of CP where pre-
processing and data reduction (e.g., in terms of local consistency
algorithms, propagation, and domain filtering [Bessière, 2006;
van Hoeve and Katriel, 2006]) are key methods.

Results Do the global constraints ATMOST-NVALUE and EGC
admit polynomial kernels? We show that the answer is “yes” for
the former and “no” for the latter.

More specifically, we present a linear time preprocessing
algorithm that reduces an ATMOST-NVALUE constraint C with
k holes to a consistency-equivalent ATMOST-NVALUE constraint
Ckernel of size polynomial in k. In fact, we show that Ckernel has
at most O(k2) variables and O(k2) domain values. We also give
an improved branching algorithm checking the consistency of
Ckernel in time O(1.6181k). The combination of kernelization
and branching yields efficient algorithms for the consistency and
propagation of (ATMOST-)NVALUE constraints.

On the other hand, we show that it is very unlikely that a
similar result is possible for the EGC constraint: One cannot
reduce an EGC constraint C with k holes in polynomial time to a
consistency-equivalent EGC constraint Ckernel of size polynomial
in k. This result is subject to the complexity theoretic assumption
that NP 6⊆ coNP/poly whose failure implies the collapse of the
Polynomial Hierarchy to its third level, which is considered highly
unlikely by complexity theorists.

2 Formal Background
Parameterized Complexity A parameterized problem P is
a subset of Σ∗ × N for some finite alphabet Σ. For a problem
instance (x, k) ∈ Σ∗ × N we call x the main part and k the
parameter. A parameterized problem P is fixed-parameter
tractable (FPT) if a given instance (x, k) can be solved in time
O(f(k) · p(|x|)) where f is an arbitrary computable function of
k and p is a polynomial in the input size |x|.

Kernels A kernelization for a parameterized problem
P ⊆ Σ∗ ×N is an algorithm that, given (x, k) ∈ Σ∗ ×N, outputs

in time polynomial in |x|+ k a pair (x′, k′) ∈ Σ∗ × N such that
(i) (x, k) ∈ Q if and only if (x′, k′) ∈ Q and (ii) |x′|+k′ ≤ g(k),
where g is an arbitrary computable function. The function g is
referred to as the size of the kernel. If g is a polynomial then we
say that P admits a polynomial kernel.

Global Constraints An instance of the constraint satisfaction
problem (CSP) consists of a set of variables, each with a finite
domain of values, and a set of constraints specifying allowed
combinations of values for some subset of variables. We denote by
dom(x) the domain of a variable x and by scope(C) the subset
of variables involved in a constraint C. An instantiation is an
assignment α of values to variables such that α(x) ∈ dom(x)
for each variable x ∈ scope(C). A constraint can be specified
extensionally by listing all legal instantiations of its variables or
intensionally, by giving an expression involving the variables in
the constraint scope [Smith, 2006]. Global constraints are certain
extensionally described constraints involving an arbitrary number
of variables [van Hoeve and Katriel, 2006]. For example, an
instantiation is legal for an ALLDIFFERENT global constraint C if
all variables in scope(C) are assigned pair-wise different values.

Consistency A global constraint C is consistent if there is a
legal instantiation of its variables. The constraint C is hyper arc
consistent (HAC) if for each variable x ∈ scope(C) and each
value v ∈ dom(x), there exists a legal instantiation α such that
α(x) = v (in that case we say that C supports v for x). In the
literature, HAC is also called domain consistent or generalized arc
consistent. The constraint C is bound consistent if when a variable
x ∈ scope(C) is assigned the minimum or maximum value of
its domain, there are compatible values between the minimum and
maximum domain value for all the other variables in scope(C).
The main algorithmic problems for a global constraint C are the
following: Consistency, to decide whether C is consistent, and
Enforcing HAC, to remove from all domains the values that are
not supported by the respective variable.

It is clear that if HAC can be enforced in polynomial time for
a constraint C, then also the consistency of C can be decided in
polynomial time (we just need to see if any domain became empty).
The reverse is true for constraints that satisfy a certain closure prop-
erty (see [van Hoeve and Katriel, 2006]), which is the case for most
constraints of practical use, and in particular for all constraints con-
sidered below. A similar correspondence holds with respect to fixed-
parameter tractability. Hence, we will focus mainly on Consistency.

3 NValue Constraints
The NVALUE constraint was introduced by Pachet and Roy [1999].
For a set of variables X = {x1, . . . , xn} and a variable N ,
NVALUE(X,N) is consistent if there is an assignment α such
that exactly α(N) different values are used for the variables in
X . ALLDIFFERENT is the special case where dom(N) = {n}.
Beldiceanu [2001] and Bessière et al. [2006] decompose NVALUE
constraints into two other global constraints: ATMOST-NVALUE
and ATLEAST-NVALUE, which require that the number of values
used for the variables in X is at most N or at least N , respectively.
Checking the consistency of NVALUE and ATMOST-NVALUE
constraints is NP-complete, while the Consistency problem of
ATLEAST-NVALUE constraints can be solved in polynomial time.

For checking the consistency of an ATMOST-NVALUE con-
straint C, we are given an instance I that consists of a set X =
{x1, . . . , xn} of variables, a totally ordered set D of values, a map
dom : X → 2D assigning a non-empty domain dom(x) ⊆ D to
each variable x ∈ X , and an integerN . A hole in a subsetD′ ⊆ D
is a couple (u,w) ∈ D′ × D′, such that there is a v ∈ D \ D′

1 2 3 4 5 6 7 8 9 10 11 12 13 14

N = 6

x1 x3 x6 x9 x′3 x13 x′13

x2 x4 x7 x′2 x12 x15

x8 x10 x11 x′11

x5 x′5 x14

Figure 1: Interval representation of an ATMOST-NVALUE instance
I = (X,D, dom, N), with X = {x1, . . . , x15}, D = {1, . . . , 14},
N = 6, and dom(x1) = {1, 2}, dom(x2) = {2, 3, 10}, etc.

with u < v < w and there is no v′ ∈ D′ with u < v′ < w. For
a variable x ∈ X , we denote the number of holes in its domain by
#holes(x). The parameter of the consistency problem for ATMOST-
NVALUE constraints is k =

∑
x∈X #holes(x). An interval

I = [v1, v2] of a variable x is an inclusion-wise maximal hole-free
subset of its domain. Its left endpoint l(I) and right endpoint r(I)
are the values v1 and v2, respectively. Fig. 1 gives an example of an
instance and its interval representation. We assume that instances
are given by a succinct description, in which the domain of a vari-
able is given by the left and right endpoint of each of its intervals.
As the number of intervals of an instance I = (X,D, dom, N) is
|X|+ k, its size is |I| = O(|X|+ |D|+ k). In case dom is given
by an extensive list of the values in the domain of each variable,
a succinct representation can be computed in linear time.

A greedy algorithm by Beldiceanu [2001] checks the consistency
of an ATMOST-NVALUE constraint in linear time when all domains
are intervals (i.e., k = 0). Further, Bessière et al. [2008] have
shown that the Consistency problem (and the problem of enforcing
HAC) is FPT, parameterized by the number of holes, for all con-
straints for which bound consistency can be enforced in polynomial
time. A simple algorithm for checking the consistency of ATMOST-
NVALUE goes over all instances obtained from restricting the do-
main of each variable to one of its intervals, and executes the algo-
rithm of [Beldiceanu, 2001] for each of these 2k instances. The run-
ning time of this FPT algorithm is clearly bounded by O(2k · |I|).

In the realm of parameterized complexity it is then natural to
ask whether ATMOST-NVALUE has a polynomial kernel. In the
next subsection, we give a linear time kernelization algorithm.
We then prove its correctness and that the size of the produced
instance can be bounded by O(k2). In Subsection 3.3, we give
an FPT algorithm, which uses the kernelization algorithm, for
checking the consistency of an ATMOST-NVALUE constraint in
time O(1.6181kk2 + |I|). HAC can then be enforced by applying
this algorithm O(|D|) times.

3.1 Kernelization Algorithm
Let I = (X,D, dom, N) be an instance for the consistency
problem for ATMOST-NVALUE constraints. The algorithm is
more intuitively described using the interval representation of the
instance. The friends of an interval I are the other intervals of
I’s variable. An interval is optional if it has at least one friend,
and required otherwise. For a value v ∈ D, let ivl(v) denote the
set of intervals containing v.

A solution for I is a subset S ⊆ D of at most N values such
that there exists an instantiation assigning the values in S to the
variables in X . The algorithm may detect for some value v ∈ D,
that, if the problem has a solution, then it has a solution containing
v. In this case, the algorithm selects v, which is to say it removes
all variables whose domain contains v, it removes v from D,
and it decrements N by one. The algorithm may detect for some

4 6 7 8 9 10 11 12 13 14

N = 5

x3 x6 x9 x′3 x13 x′13

x4 x7 x12 x15

x10 x11 x′11

x14

Figure 2: Instance obtained from the instance of Fig. 1 by exhaustively
applying rules Red-⊆, Red-Dom, and Red-Unit.

value v ∈ D, that, if the problem has a solution, then it has a
solution not containing v. In this case, the algorithm discards
v, which is to say it removes v from every domain and from D.
(Note that no new holes are created with respect to D \ {v}.) The
algorithm may detect for some variable x, that every solution for
(X \ {x}, D, dom|X\{x}, N) contains a value from dom(x). In
that case, it removes x.

The algorithm sorts the intervals by increasing right endpoint
(ties are broken arbitrarily). Then, it exhaustively applies the
following three reduction rules.

Red-⊆: If there are two intervals I, I ′ such that I ′ ⊆ I and I ′ is
required, then remove the variable of I .

Red-Dom: If there are two values v, v′ ∈ D such that ivl(v′) ⊆
ivl(v), then discard v′.

Red-Unit: If |dom(x)| = 1 for some variable x, then select the
value in dom(x).

In the example from Fig. 1, Red-⊆ removes the variables x5
and x8 because x10 ⊆ x′5 and x7 ⊆ x8, Red-Dom removes the
values 1 and 5, Red-Unit selects 2, which deletes variables x1
and x2, and Red-Dom removes 3 from D. The resulting instance
is depicted in Fig. 2.

After none of the previous rules apply, the algorithm scans the
remaining intervals from left to right (i.e., by increasing right
endpoint). An interval that has already been scanned is either a
leader, or a follower of a subset of leaders. Informally, for a leader
L, if a solution contains r(L), then there is a solution containing
r(L) and the right endpoint of each of its followers.

The algorithm scans the first intervals up to, and including, the
first required interval. All these intervals become leaders.

The algorithm then continues scanning intervals one by one.
Let I be the interval that is currently scanned and Ip be the last
interval that was scanned. The active intervals are those that have
already been scanned and intersect Ip. A popular leader is a leader
that is either active or has at least one active follower.

• If I is optional, then I becomes a leader, the algorithm
continues scanning intervals until scanning a required interval;
all these intervals become leaders.

• If I is required, then it becomes a follower of all popular lead-
ers that do not intersect I and that have no follower intersecting
I . If all popular leaders have at least two followers, then set
N := N − 1 and merge the second-last follower of each pop-
ular leader with the last follower of the corresponding leader;
i.e., for every popular leader, the right endpoint of its second-
last follower is set to the right endpoint of its last follower, and
then the last follower of every popular leader is removed.

After having scanned all the intervals, the algorithm exhaustively
applies the reduction rules Red-⊆, Red-Dom, and Red-Unit
again.

4 6 9 10 11 12 13 14

N = 4

x3 x6 x′3 x13 x′13

x4 x7 x12 x15

x11 x′11

x14

Figure 3: Kernelized instance.

In the example from Fig. 2, variable x6 is merged with x9, and
x7 with x10. Red-Dom then removes the values 7 and 8, resulting
in the instance depicted in Fig. 3.

3.2 Correctness and Kernel Size
Let I ′ = (X ′, D′, dom ′, N ′) be the instance resulting from
applying one operation of the kernelization algorithm to an instance
I = (X,D, dom, N). An operation is an instruction which
modifies the instance: Red-⊆, Red-Dom, Red-Unit, and merge.
We show that there exists a solution S for I if and only if there
exists a solution S′ for I ′. A solution is nice if each of its elements
is the right endpoint of some interval. Clearly, for every solution,
a nice solution of the same size can be obtained by shifting each
value to the next right endpoint of an interval. Thus, when we
construct S′ from S (or vice-versa), we may assume that S is nice.

Reduction Rule Red-⊆ is sound because a solution for I is a
solution for I ′ and vice-versa, because any solution I ′ contains
a value v of I ⊆ I ′, as I is required. Reduction Rule Red-Dom
is correct because if v′ ∈ S, then S′ := (S \ {v′}) ∪ {v} is a
solution for I ′ and for I . Reduction Rule Red-Unit is obviously
correct (S = S′ ∪ dom(x)).

After having applied these 3 reduction rules, observe that the
first interval is optional and contains only one value. Suppose
the algorithm has started scanning intervals. By construction, the
following observations apply to I ′.
Observation 1. A follower does not intersect any of its leaders.

Observation 2. If I, I ′ are two (distinct) followers of the same
leader, then I and I ′ do not intersect.

Before proving the correctness of the merge operation, let us first
show that the subset of leaders of a follower is not empty.

Claim 1. Every interval that has been scanned is either a leader
or a follower of at least one leader.

Proof. First, note that Red-Dom ensures that each domain value
in D is the left endpoint of some interval and the right endpoint
of some interval. Let I be the interval that is currently scanned
and Ip be the previously scanned interval. If Ip or I is optional,
then I becomes a leader. Suppose I and Ip are required. We
have that l(I) > l(Ip), otherwise I would have been removed
by Red-⊆. Further, there is some interval I` with r(I`) = l(Ip)
by rule Red-Dom. If I` is a leader, I becomes a follower of I`;
otherwise I becomes a follower of I`’s leader.

The following two lemmas prove the correctness of the merge
operation. Recall that I ′ is an instance obtained from I by one
application of the merge operation.

Lemma 1. If S is a nice solution for I, then there exists a
solution S′ for I ′ with S′ ⊆ S.

Proof. Consider the step where the kernelization algorithm applies
the merge operation. At that step, each popular leader has at

least two followers and the algorithm modifies the instance by
merging the second-last follower of each popular leader with
its last follower and by decrementing N by one. The currently
scanned interval is I . Let F2 denote the set of all intervals that
are the second-last follower of a popular leader, and F1 the set
of all intervals that are the last follower of a popular leader before
merging. Let M denote the set of merged intervals. Clearly, every
interval of F1 ∪ F2 ∪M is required as all followers are required.

Claim 2. Every interval in F1 intersects l(I).

Proof. Let I1 ∈ F1. By construction, r(I1) ∈ I , as I becomes
a follower of every popular leader that has no follower intersecting
I , and no follower has a right endpoint larger than r(I). Moreover,
l(I1) ≤ l(I) as no follower is a strict subset of I by Red-⊆ and
the fact that all followers are required.

Let I− be the interval of F2 with the largest right endpoint. Let
L be a leader of I−. By construction and Red-⊆, L is a leader of
I as well and is thus popular. Let t1 ∈ S ∩ I be the smallest value
of S that intersects I and let t2 ∈ S ∩ I− be the largest value of
S that intersects I−. By Observation 2, t2 < t1.

Claim 3. S contains no value t0 such that t2 < t0 < t1.

Proof. Suppose S contained such a value t0. As S is nice, t0 is the
right endpoint of some interval I0. As t2 is the rightmost value inter-
secting S and any interval in F2, I0 is not in F2. As I0 has already
been scanned, and was scanned after every interval in F2, I0 is in
F1. However, by Claim 2, I0 intersects l(I). As no scanned inter-
val has a larger right endpoint than I , t0 ∈ S∩I , which contradicts
the fact that t1 is the smallest value in S ∩ I and that t0 < t1.

Claim 4. Suppose I1 ∈ F1 and I2 ∈ F2 are the last and
second-last follower of a popular leader L′, respectively. Let
M12 ∈M denote the interval obtained from merging I2 with I1.
If t2 ∈ I2, then t1 ∈M12.

Proof. For the sake of contradiction, assume t2 ∈ I2, but
t1 /∈ M12. As t2 < t1, we have that t1 > r(M12) = r(I1). But
then S is not a solution as S ∩ I1 = ∅ by Claim 3 and the fact
that t2 < l(I1).

Claim 5. If I ′ is an interval with t2 ∈ I ′, then I ′ ∈ F2 ∪ F1.

Proof. First, suppose I ′ was a leader. As every leader has at least
two followers when I is scanned, I ′ has two followers whose left
endpoint is larger than r(I ′) ≥ t2 (by Observation 1) and smaller
than l(I) ≤ t1 (by Red-⊆). Thus, at least one of them is included
in the interval (t2, t1) by Observation 2, which contradicts S being
a solution by Claim 3.

Similarly, if I ′ is a follower of a popular leader, but not among
the last and second-last followers of any popular leader, Claim
3 leads to a contradiction as well.

Finally, if I ′ is a follower, but has no popular leader, then it is
to the left of some popular leader, and thus to the left of t2.

Consider the set T2 of intervals that intersect t2. By Claim 5,
T2 ⊆ F2 ∪F1. For every interval I ′ ∈ T2 ∩F2, the corresponding
merged interval of I ′ intersects t1 by Claim 4. For every interval
I ′ ∈ T2 ∩F1, and every interval I ′′ ∈ F2 with which I ′ is merged,
S contains some value x ∈ I ′′ with x < t2. Thus, S′ := S \ {t2}
is a solution for I ′.

Lemma 2. If S′ is a nice solution for I ′, then there exists a
solution S for I with S′ ⊆ S.

Proof. As in the previous proof, consider the step where the
kernelization algorithm applies the merge operation. The currently
scanned interval is I . Let F2 and F1 denote the set of all intervals
that are the second-last and last follower of a popular leader before
merging, respectively. Let M denote the set of merged intervals.

By Claim 2 from the previous proof, every interval of M
intersects l(I). On the other hand, every interval of I ′ whose
right endpoint intersects I is in M , by construction. Thus, S′
contains the right endpoint of some interval of M . Let t1 denote
the smallest such value, and let I1 denote the interval of I with
r(I1) = t1 (due to Red-⊆, there is a unique such interval). Let
I2 denote the interval of I with the smallest right endpoint such
that there is a leader L whose second-last follower is I2 and whose
last follower is I1, and let t2 := r(I2).

Claim 6. Let I ′1 ∈ F1 and I ′2 ∈ F2 be two intervals from I that
are merged into one interval M ′12 of I ′. If t1 ∈M ′12, then t2 ∈ I ′2.

Proof. Suppose t1 ∈M ′12 but that t2 /∈ I ′2. We consider two cases.
In the fist case, I ′2 ⊆ (t2, l(I

′
1)). But then, I ′2 would have become

a follower of L, which contradicts that I1 is the last follower of
L. In the second case, r(I ′2) < t2. But then, I1 is a follower of
the same leader as I ′1, as l(I1) ≤ l(I ′1), and thus I1 = I ′1. By
definition of I2, however, t2 = r(I2) ≤ r(I ′2), a contradiction.

By the previous claim, a solution S for I is obtained from a
solution S′ for I ′ by setting S := S′ ∪ {t2}.
After having scanned all the intervals, Reduction Rules Red-⊆,
Red-Dom, and Red-Unit are applied again, and we have already
proved their correctness.

Thus, the kernelization algorithm returns an equivalent instance.
Let us bound the size of the kernel by a polynomial in k. Let I∗ =
(V ∗, D∗, dom∗, N∗) be the instance resulting from applying the
kernelization algorithm to an instance I = (V,D, dom, N).

Observation 3. I and I∗ have at most 2k optional intervals.

Observation 3 holds for I as every optional interval is adjacent to
at least one hole and each hole is adjacent to two optional intervals.
It holds for I∗ as the kernelization algorithm introduces no holes.

Lemma 3. I∗ has at most 4k leaders.

Proof. Consider the unique step of the algorithm that creates
leaders. An optional interval is scanned, the algorithm continues
scanning intervals until scanning a required interval, and all these
scanned intervals become leaders. As every interval is scanned
only once, for every optional interval, there are at most 2 leaders.
By Observation 3, the number of leaders is thus at most 4k.

Lemma 4. Each leader has at most 4k followers.

Proof. Consider all steps where a newly scanned interval becomes
a follower, but is not merged with another interval. In each of these
steps, the popular leader Lr with the rightmost right endpoint either

(a) has no follower and intersects I , or

(b) has no follower and does not intersect I , or

(c) has one follower and intersects I .

Now, let L be some leader and let us consider a period where
no optional interval is scanned. Let us bound the number of
intervals that become followers of L during this period without
being merged with another interval. If the number of followers
of L increases when Situation (a) occurs, the number of followers
of L does not increase in Situation (a) again during this period, as
no other follower of L may intersect I . After Situation (b) occurs,

Situation (b) does not occur again during this period, as I becomes
a follower of Lr . Moreover, the number of followers of L does not
increase during this period in Situation (c) after Situation (b) has
occurred, as no other follower of L may intersect I . After Situation
(c) occurs, the number of followers of L does not increase in
Situation (c) again during this period, as no other follower of L
may intersect I . Thus, at most 2 followers are added to L in each
period. As the first interval that is scanned is optional, and there
are at most 2k optional intervals by Observation 3, the number of
periods is bounded by 2k. Thus, L has at most 4k followers.

As, by Claim 1, every interval of I∗ is either a leader or a follower
of at least one leader, Lemmas 3 and 4 imply that I∗ has O(k2)
intervals, and thus |X∗| = O(k2). Because of Reduction Rule
Red-Dom, every value in D∗ is the right endpoint and the left
endpoint of some interval, and thus, |D∗| = O(k2).

Using a counting sort algorithm with satellite data (see, e.g.,
[Cormen et al., 2009]), the initial sorting of the |X|+k intervals can
be done in time O(|X|+ |D|+ k). To facilitate the application of
Red-⊆, counting sort is actually used twice to also sort by increas-
ing left endpoint the sets of intervals with coinciding right endpoint.
An optimized implementation applies Red-⊆, Red-Dom and Red-
Unit simultaneously in one pass through the intervals, as one rule
might trigger the other. To guarantee a linear running time for the
scan-and-merge phase of the algorithm, only the first follower of
a leader stores a pointer to the leader; all other followers store a
pointer to the previous follower. Due to space limitations, we omit
the formal details about the implementation and running time anal-
ysis of the kernelization algorithm. We arrive at our main theorem.

Theorem 1. The consistency problem for ATMOST-NVALUE
constraints, parameterized by the number k of holes, admits a
linear time reduction to a problem kernel with O(k2) variables
and O(k2) domain values.

Using the succinct description of the domains, the size of the
kernel can be bounded by O(k2).
Remark: Denoting var(v) = {x ∈ X : v ∈ dom(x)}, Rule
Red-Dom can be generalized to discard any v′ ∈ D for which
there exists a v ∈ D such that var(v′) ⊆ var(v) at the expense
of a higher running time.

3.3 Improved FPT Algorithm and HAC
Using the kernel from Theorem 1 and the simple algorithm
described in the beginning of this section, one arrives at a
O(2kk2 + |I|) time algorithm for checking the consistency
of an ATMOST-NVALUE constraint. Borrowing ideas from
the kernelization algorithm, we now reduce the exponential
dependency on k in the running time. The speed-ups due to this
branching algorithm and the kernelization algorithm lead to a
speed-up for enforcing HAC for ATMOST-NVALUE constraints
(by Corollary 1) and for enforcing HAC for NVALUE constraints
(by the decomposition of [Bessière et al., 2006]).

Theorem 2. There is an algorithm checking the consistency of
an ATMOST-NVALUE constraint in time O(ρkk2 + |I|), where
k is the number of holes in the domains of the input instance I,
and ρ = 1+

√
5

2 < 1.6181.

Proof. The first step of the algorithm is to invoke the kernelization
algorithm and obtain an equivalent instance I ′ with O(k2)
intervals in time O(|I|).

Now, we describe a branching algorithm checking the consis-
tency of I ′. Let I1 denote the first interval of I ′ (in the ordering
by increasing right endpoint). I1 is optional. Let I1 denote the

instance obtained from I ′ by selecting r(I1) and exhaustively
applying Reduction Rules Red-Dom and Red-Unit. Let I2
denote the instance obtained from I ′ by removing I1 (if I1 had
exactly one friend, this friend becomes required) and exhaustively
applying Reduction Rules Red-Dom and Red-Unit. Clearly, I ′
is consistent if and only if I1 or I2 is consistent.

Note that both I1 and I2 have at most k − 1 holes. If either
I1 or I2 has at most k − 2 holes, the algorithm recursively checks
whether at least one of I1 and I2 is consistent. If both I1 and I2
have exactly k − 1 holes, we note that in I ′,
(1) I1 has one friend,
(2) no other optional interval intersects I1, and
(3) the first interval of both I1 and I2 is If , which is the third

optional interval in I ′ if the second optional interval is the
friend of I1, and the second optional interval otherwise.

Thus, the instance obtained from I1 by removing I1’s friend and
applying Red-Dom and Red-Unit may differ from I2 only in
N . Let s1 and s2 denote the number of values smaller than r(If)
that have been selected to obtain I1 and I2 from I ′, respectively.
If s1 ≤ s2, then the non-consistency of I1 implies the non-
consistency of I2. Thus, the algorithm needs only recursively check
whether I1 is consistent. On the other hand, if s1 > s2, then the
non-consistency of I2 implies the non-consistency of I1. Thus, the
algorithm needs only recursively check whether I2 is consistent.

The recursive calls of the algorithm may be represented by a
search tree labeled with the number of holes of the instance. As the
algorithm either branches into only one subproblem with at most
k − 1 holes, or two subproblems with at most k − 1 and at most
k− 2 holes, respectively, the number of leaves of this search tree is

T (k) ≤ T (k − 1) + T (k − 2),

with T (0) = 1 and T (1) = 1. Using standard techniques in the
analysis of exponential time algorithms (see [Fomin and Kratsch,
2010], for example), and by noticing that the number of operations
executed at each node of the search tree is O(k2), the running time
of the branching algorithm can be upper bounded byO(ρkk2).

In the example from Fig. 3, the algorithm would compute the
instances I1 and I2 obtained by selecting the value 4, and remov-
ing the interval x3, respectively. The reduction rules select the
value 9 for I1 and the values 6 and 10 for I2. Both instances start
with the interval x11, and the algorithm recursively solves I1 only,
where the values 12 and 13 are selected, leading to the solution
{4, 9, 12, 13} for the kernelized instance, which corresponds to
the solution {2, 4, 7, 9, 12, 13} for the original instance of Fig. 1.

Corollary 1. HAC for an ATMOST-NVALUE constraint can be
enforced in time O(ρk ·k2 · |D|+ |I| · |D|), where k is the number
of holes in the domains of the input instance I = (X,D, dom, N),
and ρ = 1+

√
5

2 < 1.6181.

Proof. We first remark that if a value v can be filtered from
the domain of a variable x (i.e., v has no support for x), then v
can be filtered from the domain of all variables, as for any legal
instantiation α with α(x′) = v, x′ ∈ X \ {x}, the assignment
obtained from α by setting α(x) := v is a legal instantiation as
well. Also, filtering the value v creates no new holes as the set
of values can be set to D \ {v}.

Now we enforce HAC by applying O(|D|) times the algorithm
from Theorem 2. Assume the instance I = (X,D, dom, N) is
consistent. If (X,D, dom, N − 1) is consistent, then no value
can be filtered. Otherwise, check, for each v ∈ D, whether the
instance obtained from selecting v is consistent and filter v if this
is not the case.

4 Extended Global Cardinality Constraints
An EXTENDED GLOBAL CARDINALITY (EGC) constraint C
is specified by a set of variables scope(C) = {x1, . . . , xn} and
for each value v ∈

⋃n
i=1 dom(xi) a set D(v) of non-negative

integers. The constraint is consistent if we can instantiate each
variable with a value from its domain such that the number of
variables taking a value v belongs to the set D(v).

To check whether an EGC constraint is consistent is NP-hard
[Quimper et al., 2004]. However, if all domains are intervals, then
consistency can be checked in polynomial time using network
flows [Régin, 1996]. By the result of Bessière et al. [2008], the
Consistency problem for EGC constraints is fixed-parameter
tractable, parameterized by the number of holes. Thus Régin’s
result generalizes to instances that are close to the interval case.

We show that it is unlikely that EGC constraints admit a
polynomial kernel.

Theorem 3. The consistency problem for EGC constraints,
parameterized by the number of holes, does not admit a polynomial
kernel unless NP ⊆ coNP/poly.

Proof. We establish this theorem by a combination of results from
Bodlaender et al. [2009b], Fortnow and Santhanam [2008], and
Quimper et al. [2004]. We need the following definitions. To
a parameterized problem P ⊆ Σ∗ × N we associate a classical
problem UP(P) = {x#1k : (x, k) ∈ P } ⊆ (Σ ∪ {#})∗ where
1 denotes an arbitrary symbol from Σ and # is a new symbol not
in Σ. We call UP(P) the unparameterized version of P .

Let P,Q ⊆ Σ∗ × N be parameterized problems. We say that
P is polynomial parameter reducible to Q if there is a polynomial
time computable function f : Σ∗×N→ Σ∗×N and a polynomial
p, such that for all (x, k) ∈ Σ∗ × N we have (i) (x, k) ∈ P if and
only if (x′, k′) = f(x, k) ∈ Q, and (ii) k′ ≤ p(k). The function
f is called a polynomial parameter transformation.

We establish the theorem by combining the following three
known results.
(1) [Bodlaender et al., 2009b] Let P andQ be parameterized prob-

lems such that UP(P) is NP-complete, UP(Q) is in NP, and
there is a polynomial parameter transformation from P to Q.
If Q has a polynomial kernel, then P has a polynomial kernel.

(2) [Fortnow and Santhanam, 2008] The problem of deciding
the satisfiability of a CNF formula (SAT), parameterized by
the number of variables, does not admit a polynomial kernel,
unless NP ⊆ coNP/poly.

(3) [Quimper et al., 2004] Given a CNF formula F on k variables,
one can construct in polynomial time an EGC constraint CF

such that:
(i) each value v of CF has a domain of the form {0, iv} for

an integer iv > 0;
(ii) iv > 1 for at most 2k values v;

(iii) F is satisfiable if and only if CF is consistent.
Thus, the number of holes in CF is at most twice the number
of variables of F .

We observe that (3) gives a polynomial parameter reduction from
SAT (parameterized by the number of variables) to the consistency
problem for EGC constraints (parameterized by the number of
holes). Hence the theorem follows from results (1) and (2).

5 Conclusion
We have introduced the concept of kernelization to the field of con-
straint processing, providing both positive and negative results for
the important global constraints NVALUE and EGC, respectively.

On the positive side, we have developed an efficient linear-time
kernelization algorithm for the consistency problem for ATMOST-
NVALUE constraints, and have shown how it can be used to speed
up the complete propagation of NVALUE and related constraints.
On the negative side, we have established a theoretical result which
indicates that EGC constraints do not admit polynomial kernels.

Our algorithms are efficient and the theoretical worst-case
time bounds do not include large hidden constants. We therefore
believe that the algorithms are practical, but we must leave
an empirical evaluation for future research. We hope that our
results stimulate further research on kernelization algorithms for
constraint processing.

References
[Beldiceanu, 2001] N. Beldiceanu. Pruning for the minimum constraint

family and for the number of distinct values constraint family. In CP
01, pp. 211–224, 2001.

[Bessière et al., 2004] C. Bessière, E. Hebrard, B. Hnich, and T. Walsh.
The complexity of global constraints. In IAAI 04, pp. 112–117, 2004.

[Bessière et al., 2006] C. Bessière, E. Hebrard, B. Hnich, Z. Kiziltan,
and T. Walsh. Filtering algorithms for the NValue constraint.
Constraints, 11(4):271–293, 2006.

[Bessière et al., 2008] C. Bessière, E. Hebrard, B. Hnich, Z. Kiziltan,
C.-G. Quimper, and T. Walsh. The parameterized complexity of global
constraints. In AAAI 08, pp. 235–240, 2008.

[Bessière, 2006] C. Bessière. Constraint propagation. In Handbook of
Constraint Programming, chapter 3. Elsevier, 2006.

[Bodlaender et al., 2009a] H. L. Bodlaender, R. G. Downey, M. R.
Fellows, and D. Hermelin. On problems without polynomial kernels.
Journal of Computer and System Sciences, 75(8):423–434, 2009.

[Bodlaender et al., 2009b] H. L. Bodlaender, S. Thomassé, and A. Yeo.
Kernel bounds for disjoint cycles and disjoint paths. In ESA 09, vol.
5757 of LNCS, pp. 635–646. Springer, 2009.

[Cormen et al., 2009] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C.
Stein. Introduction to Algorithms, Third Edition. The MIT Press, 2009.

[Downey and Fellows, 1999] R. G. Downey and M. R. Fellows.
Parameterized Complexity. Springer, 1999.

[Fellows, 2006] M. R. Fellows. The lost continent of polynomial time:
Preprocessing and kernelization. In IWPEC 06, vol. 4169 of LNCS,
pp. 276–277. Springer, 2006.

[Fomin and Kratsch, 2010] F. V. Fomin and D. Kratsch. Exact
Exponential Algorithms. Springer, 2010.

[Fomin, 2010] F. V. Fomin. Kernelization. In CSR 10, vol. 6072 of
LNCS, pp. 107–108. Springer, 2010.

[Fortnow and Santhanam, 2008] L. Fortnow and R. Santhanam. Infea-
sibility of instance compression and succinct PCPs for NP. In STOC
08, pp. 133–142, 2008.

[Guo and Niedermeier, 2007] J. Guo and R. Niedermeier. Invitation
to data reduction and problem kernelization. ACM SIGACT News,
38(2):31–45, March 2007.

[Pachet and Roy, 1999] F. Pachet and P. Roy. Automatic generation of
music programs. In CP 99, pp. 331–345. Springer, 1999.

[Quimper et al., 2004] C.-G. Quimper, A. López-Ortiz, P. van Beek, and
A. Golynski. Improved algorithms for the global cardinality constraint.
In CP 04, vol. 3258 of LNCS, pp. 542–556. Springer, 2004.

[Régin, 1996] J.-C. Régin. Generalized arc consistency for global
cardinality constraint. In AAAI 96, vol. 1, pp. 209–215, 1996.

[Rosamond, 2010] F. Rosamond. Table of races. In Parameterized
Complexity Newsletter, pp. 4–5. 2010. http://fpt.wikidot.com/.

[Rossi et al., 2006] F. Rossi, P. van Beek, and T. Walsh, editors.
Handbook of Constraint Programming. Elsevier, 2006.

[Smith, 2006] B. M. Smith. Modelling. In Handbook of Constraint
Programming, chapter 11. Elsevier, 2006.

[van Hoeve and Katriel, 2006] W.-J. van Hoeve and I. Katriel. Global
constraints. In Handbook of Constraint Programming, chapter 6.
Elsevier, 2006.

