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Parameterized Above Tight Bounds: Max-Sat

Max-Sat ( ’Standard’ parameterization)
Instance: A CNF formula F with n variables, m clauses.
Parameter: k .
Question: Can we satisfy ≥ k clauses?

Known bound: can satisfy at least m/2 clauses. Why?

This is a lower bound on the average number of satisfied clauses in
a random assignment.

So it is trivially FPT. Why?

If k ≤ m/2 return Yes; otherwise m < 2k which is a kernel.

So what does this mean?

Such a kernel is not very useful: There is no reductions and k
(> m/2) is large for all non trivial cases!
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Parameterized Above Tight Bounds: Max-Sat

A better parameterization:

Max-Sat parameterized above m/2

Instance: A CNF formula F with n variables, m clauses.

Parameter: k .

Question: Can we satisfy ≥ m/2 + k clauses?

In this case k is smaller!

And the problem becomes more interesting!
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Parameterized Above Tight Bounds: Max-Sat

The above problem was solved by Mahajan and Raman, who
gave a linear kernel.

It is still relatively easy due to the following:

Reduce an instance by removing any two clauses of the form
(x) and (x̄).
Repeatadly doing this creates an instance of 2-satisfiable-SAT
and does not change the problem.
However φ̂m becomes a tight lower bound on the number of
satisfied clausses, where φ̂ = (

√
5− 1)/2 ≈ 0.618.

Therefore there is a kernel.
Proof: If k < (φ̂− 1

2 )m answer YES.

Otherwise m ≤ k/(φ̂− 1
2 ).

This gives rise to a new problem.....
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Parameterized Above Tight Bounds: Max-Sat

Max-2-satisfiable-SAT parameterized above φ̂m

Instance: A CNF formula F with n variables, m clauses and any two
clauses can be simultaniously satisfied.

Parameter: k .

Question: Can we satisfy ≥ φ̂m + k clauses?

The above problem was shown to have a kernel with at most
O(k) variables, by Crowston, Gutin, Jones and AY.

This approach does not seem to be eaily extendable.
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Parameterized Above Tight Bounds: In general

In problems parameterized above (below) tight bounds,
we take a maximization (minimization) problem with a tight
lower (upper) bound, and ask if we can get k above (below)
this bound.

Ensures the parameter is small in interesting cases.

First introduced in a paper by Mahajan and Raman published
in 1999.

We say “above average” when the tight lower bound is the
expectation of a random assignment.
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Max-Lin Above Average

Max-Lin problem: given a system I of m linear equations in
n variables over F2.

F2 is the Galois field with 2 elements (1 + 1 = 0).

Each equation is assigned a positive integer weight.

We wish to find an assignment of values to the variables in
order to maximize the total weight of satisfied equations.

z1 = 1
z1 + z2 = 0
z2 + z3 = 1
z1 + z2 + z3 = 1

Known bound: can satisfy at least W /2, where W = total
weight of equations.
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Tightness of W /2 bound

W /2 is a tight lower bound on max(I).
e.g.

z1 = 0
z1 = 1
z2 + z3 = 0
z2 + z3 = 1
. . .

Theorem (Håstad, 2001)

For any ǫ > 0, it is impossible to decide in polynomial time
between instances of Max-Lin in which max(I) ≤ (1/2 + ǫ)m,
and instances in which max(I) ≥ (1− ǫ)m, unless P = NP.
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Max-Lin Above Average

Let max(I) denote the maximum possible weight of satisfied
equations in I.

Max-Lin above Average (Max-Lin-AA)

Instance: A system I of m linear equations in n variables over F2,
with total weight W .

Parameter: k .

Question: Is max(I) ≥ W /2 + k?

Mahajan, Raman & Sikdar (2006) asked if Max-Lin-AA is
FPT.
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Motivation

Max-r-Lin is equivalent to Max-Lin except all equations have
at most r variables.
Max-Lin and Max-r-Lin are important problems, for many
reasons....

Håstad said they were as basic as satisfiability.

They are important tools for constraint satisfaction problems
(such as MaxSat or Max-r-Sat).

So Max-Lin and Max-r-Lin have attracted significant
interest in algorithmics.

A number of papers made progress on Max-r-Lin-AA

before Max-Lin-AA was shown to be FPT.
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Håstad said they were as basic as satisfiability.

They are important tools for constraint satisfaction problems
(such as MaxSat or Max-r-Sat).

So Max-Lin and Max-r-Lin have attracted significant
interest in algorithmics.

A number of papers made progress on Max-r-Lin-AA

before Max-Lin-AA was shown to be FPT.

Anders Yeo Max-Lin Parameterized Above Average



Parameterizing above tight bounds: Example Max-Sat
Max-Lin-AA
FPT Results

Related Results

Motivation

Max-r-Lin is equivalent to Max-Lin except all equations have
at most r variables.
Max-Lin and Max-r-Lin are important problems, for many
reasons....
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Notation

For a given assignment, the excess = total weight of satisfied
equations − total weight of falsified equations.

Max-Lin-AA is equivalent to asking if the max excess is at
least 2k .

Example:

z1 = 1
z2 = 1
z1 + z2 = 1
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Reduction Rules

Reduction Rule (LHS rule)

Suppose we have two equations,
∑

i∈S zi = b1 (weight w1) and
∑

i∈S zi = b2 (weight w2), where w1 ≥ w2.

If b1 = b2, replace with one equation
∑

i∈S zi = b1 (weight w1 + w2).

If b1 6= b2, replace with one equation
∑

i∈S zi = b1 (weight w1 − w2).

z1 + z2 = 1 (w = 1) ⇒ z1 + z2 = 1 (w = 3)
z1 + z2 = 1 (w = 2)

z2 + z3 + z4 = 0 (w = 3) ⇒ z2 + z3 + z4 = 0 (w = 1)
z2 + z3 + z4 = 1 (w = 2)

Allows us to assume no two equations have the same
left-hand side.
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Reduction Rules

Reduction Rule (Rank rule)

Let A be the matrix over F2 corresponding to the set of equations
in I, such that aji = 1 if zi appears in equation j, and 0 otherwise.
Let t = rankA and suppose columns ai1, . . . , ait of A are linearly
independent. Then delete all variables not in {zi1, . . . , zit} from the
equations of S.

z1 + z3 + z4 = 1
z2 + z3 + z4 = 0 ⇒
z2 + z3 = 0
z1 + z2 = 1









1 0 1 1
0 1 1 1
0 1 1 0
1 1 0 0









z1 + z4 = 1
⇒ z2 + z4 = 0

z2 = 0
z1 + z2 = 1
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Reduction Rules

Why does the Rank Rule work?

I
z1 + z3 + z4 = 1
z2 + z3 + z4 = 0 ⇒
z2 + z3 = 0
z1 + z2 = 1









1 0 1 1
0 1 1 1
0 1 1 0
1 1 0 0









I ′

z1 + z4 = 1
⇒ z2 + z4 = 0

z2 = 0
z1 + z2 = 1

Set z3 = 0 and add a solution for I ′ to get a solution of equal
weight for I.
Consider a solution for I.
If z3 = 1, then change the values of z1, z2, z3 to get an
equivalent solution with z3 = 0. Why does this work?
So z3 = 0, and we have a solution for I ′ of equal weight.
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Reduction rule

What we would like to show: For reduced instances, if m is
large enough the answer is Yes.

Sadly this is not true...

Consider a ’complete’ system on n variables with all RHS = 1.
x1 = 1
x2 = 1
x1 + x2 = 1
x3 = 1
x1 + x3 = 1
x2 + x3 = 1
x1 + x2 + x3 = 1
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Reduction rule

What we would like to show: For reduced instances, if m is
large enough the answer is Yes.

Sadly this is not true...

Consider a ’complete’ system on n variables with all RHS = 1.
x1 = 1

x2 = 1
x2 = 0
x3 = 1
x3 = 0
x2 + x3 = 1
x2 + x3 = 0

The maximum excess is 1 but m = 2n − 1.
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Main Results

Theorem A: [Crowston, Fellows, Gutin, Jones, Rosamond,
Thomasse, Yeo, 2011] Max-Lin-AA can be solved in time
O∗(n2k).

Theorem B: [Crowston, Gutin, Jones, Kim, Ruzsa, 2010] If I
is reduced and 2k ≤ m < 2n/2k , then I is a Yes-instance.

The above results can be combined to show the following

Theorem (Crowston, Fellows, Gutin, Jones, Rosamond,
Thomasse, Yeo, 2011)

Max-Lin-AA is fixed-parameter tractable, and has a kernel with
O(k2 log k) variables.
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Proof of Theorem A (Algorithm H)

Algorithm H (More detail)

1 Choose an equation e, which can be written as
∑

i∈S zi = b,
with weight w(e).

2 Choose some j ∈ S.
3 Simplify the system under the assumption that e is true:

1 Remove equation e.
2 Perform the substitution zj =

∑

(i∈ S\ j) zi + b for all
equations containing zj .

3 Reduce the system by LHS Rule.

4 Reduce k by w(e)/2.
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Example

z1 + z3 + z5 = 1 ⇒ z1= z3 + z5 + 1

z2 + z3 = 1 ⇒ z2 + z3 = 1
z1 + z2 = 0 ⇒ z3 + z5 + 1 + z2 = 0 ⇒ z2 + z3 + z5 = 1
z3 + z4 + z5 = 1 ⇒ z3 + z4 + z5 = 1
z1 + z4 = 0 ⇒ z3 + z5 + 1 + z4 = 0 ⇒ z3 + z4 + z5 = 1
z1 + z2 + z5 = 1 ⇒ z3 + z5 + 1 + z2 + z5 = 1 ⇒ z2 + z3 = 0

Now we simplify......
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Example

(z1 + z3 + z5 = 1)

z2 + z3 + z5 = 1
z3 + z4 + z5 = 1 (w = 2)

So under the assumption that e = ”z1 + z3 + z5 = 1” is true we
have reduced I to a smaller problem I ′ such that we can do
w(e)/2 more above average in I than in I ′. Why?

Answer: For any solution of I ′, set z1 = z3 + z5 + 1.....
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So what does Algorithm H give us

Assume our instance is reduced.

If we can mark equations of total weight R then the maximum
excess is at least R (we can get at least R/2 above the
average).

If the maximum excess is R then if we keep choosing
equations which are true in a given optimal solution, we will
mark equations of total weight R .

How can this be used to prove Theorem A......
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Proof of Theorem A

Theorem A [Crowston, Fellows, Gutin, Jones, Rosamond,
Thomasse, Yeo, 2011] There exists an O∗(n2k)-time algorithm for
Max-Lin-AA.

Proof (sketch): Let e1, . . . en be a set of equations in I
which are ’independent’.
(LHSs correspond to independent rows in matrix A.)

Check unique assignment in which e1, . . . en all false. If this
assignment achieves excess 2k , return Yes.

Otherwise, one of e1, . . . ek must be true.

Branch n ways. In branch i mark equation ei in Algorithm H
and solve resulting system.

Since we can stop after 2k iterations of H, search tree has n2k

leaves.
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Proof of Theorem B

Theorem B: [Crowston, Gutin, Jones, Kim, Ruzsa, 2010] If I is
reduced and 2k ≤ m < 2n/2k , then I is a Yes-instance.

If we can run algorithm H for 2k iterations, we can get an
excess of at least 2k .

Problem: After running H a few times all the remaining
equations may ’cancel out’ under LHS Rule.

One solution: M-sum-free vectors.

Let K and M be sets of vectors in F
n
2 such that K ⊆ M.

K is M-sum-free if no sum of two or more vectors in K is
equal to a vector in M.
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reduced and 2k ≤ m < 2n/2k , then I is a Yes-instance.

If we can run algorithm H for 2k iterations, we can get an
excess of at least 2k .

Problem: After running H a few times all the remaining
equations may ’cancel out’ under LHS Rule.

One solution: M-sum-free vectors.

Let K and M be sets of vectors in F
n
2 such that K ⊆ M.

K is M-sum-free if no sum of two or more vectors in K is
equal to a vector in M.
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Proof of Theorem B

Lemma View the LHSs of equations in I as a set M of vectors in
F
n
2. Let e1, . . . et be a set of equations in I that correspond to an

M-sum-free set of vectors. Then we can run algorithm H for t
iterations, choosing equations e1, . . . et in turn, and get an excess
of at least t.

Why? Assume for the sake of contradiction ei gets cancelled out.

Then by picking e1, . . . , ei−1 in Algorithm H we have created
a different equation, say fi , with the same LHS as ei .

So considering LHSs we get: ei = fi = ej1 + ej2 + · · ·+ eja + e′

for some {j1, . . . , ja} ⊆ {1, . . . , i − 1} and e′ is any equation.

However this implies that e′ = ej1 + ej2 + · · · + eja + ei , a
contradiction.
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Proof of Theorem B

Lemma C [Crowston, Gutin, Jones, Kim and Ruzsa (2010)] Let M
be a proper subset in F

n
2 such that span(M) = F

n
2. If k is a

positive integer and t ≤ |M| ≤ 2n/t then, in time |M|O(1), we can
find an M-sum-free subset K of M s.t. |K | = t.

Theorem B: If 2k ≤ m < 2n/2k , then I is a Yes-instance.

Suppose I is reduced and 2k ≤ m ≤ 2n/2k .

Let M be the set of vectors in F
n
2 corresponding to LHSs of

equations in I
Find an M-sum-free subset K of M s.t. |K | = 2k .

Let e1, . . . e2k be the equations corresponding to K , and run
algorithm H marking e1, . . . e2k in turn.

Then we get excess 2k , so the answer is Yes.
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Recall Theorem A and Theorem B

Theorem A: [Crowston, Fellows, Gutin, Jones, Rosamond,
Thomasse, Yeo, 2011] Max-Lin-AA can be solved in time
O∗(n2k).

Theorem B: [Crowston, Gutin, Jones, Kim, Ruzsa, 2010] If I is
reduced and 2k ≤ m < 2n/2k , then I is a Yes-instance.
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Proof of our main result

Theorem (Crowston, Fellows, Gutin, Jones, Rosamond,
Thomasse, Yeo, 2011)

Max-Lin-AA has a kernel with at most O(k2 log k) variables.

Proof: Let I be a reduced system.

Case 1: m ≥ n2k . Then using O∗(n2k) algorithm, can solve in
polynomial time.

Case 2: 2k ≤ m ≤ 2n/2k . By earlier Theorem return yes.

Case 3: m < 2k . Since I reduced by Rank Rule, n ≤ m so
n = O(k2 log k).

Only remaining case is 2n/2k < m < n2k .
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Proof of our main result (continued)

Suppose 2n/2k < m < n2k . Then n/2k < 2k log n.

So n < 4k2 log n.

In order to bound log n we note that
√
n < n/ log n < 4k2.

Therefore n < (2k)4 and log n < 4 log(2k)

So n < 4k2 log n < 16k2(log k + 1)

So n = O(k2 log k).
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Our Main Result!

Recall our main result.

Theorem (Crowston, Fellows, Gutin, Jones, Rosamond,
Thomasse, Yeo, 2011)

Max-Lin-AA has a kernel with at most O(k2 log k) variables.

This kernel has a polynomial number of variables, but it is not
a polynomial kernel!

Number of equations may be O(2n).

Open question: Does Max-Lin-AA have a polynomial
kernel?
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Application of our Main Result

Theorem (Crowston, Fellows, Gutin, Jones, Rosamond,
Thomasse, Yeo, 2011)

Max-Lin-AA can be solved in time O∗(2O(k log k)).

Proof: Assume I is an irreducible system with m equations
and n variables.

In polynomial time, we either solve Max-Lin-AA or get a
kernel with O(k2 log k) variables.

If we have a kernel, apply the O∗(n2k)-time algorithm.

Since n = O(k2 log k), we have running time
O∗((O(k2 log k))2k) = O∗(2O(2k log(k2 log k))) = O∗(2O(k log k)).
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Related Results (Max-r -Lin-AA)

I will not say much about Max-r-Lin-AA(where equations have
at most r variables) as this will be covered in the next talk!

Gutin, Kim, Szeider, Yeo (2009) - kernel with
m < (2k − 1)264r .

Crowston, Gutin, Kim, Jones, Rusza (2010) - kernel with
n = O(k log k).

Kim, Williams (2011) - kernel with n < kr(r + 1)

Crowston et.al (2011) - kernel with n ≤ (2k − 1)r .
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Related Results

Pseudo-boolean function: a function f : {−1,+1}n → R

Suppose we know the Fourier expansion of f (x)

f (x) =
∑

S⊆[n]

cS
∏

i∈S

xi

Lemma

For any pseudo-boolean function f with integer coefficients and
c∅ = 0, there exists an instance I of Max-Lin-AA such that
max(f (x)) = max excess of I.
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Related Results

Lemma

For any pseudo-boolean function f with integer coefficients and
c∅ = 0, there exists an instance I of Max-Lin-AA such that
max(f (x)) = max excess of I.

Proof: For every ∅ 6= S ⊆ [n] with cS 6= 0, construct
equation

∑

i∈S zi = bS with weight |cS |, where bS = 0 if cS is
positive and bS = 1 if cS is negative.

z1 = 0 (w = 5)
5x1 − 3x2x3 + x1x2x3 ⇒ z2 + z3 = 1 (w = 3)

z1 + z2 + z3 = 0 (w = 1)

Let zi = 0 if xi = 1 and zi = 1 if xi = −1.

f (x) = weight of positive terms − weight of negative terms =
weight of satisfied equations − weight of falsified equations
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Consider the following problem.

Max-r-Sat parameterized above average (Max-r-Sat-AA)

Instance: A CNF formula F with n variables, m clauses, such that
each clause has r variables.

Parameter: k .

Question: Can we satisfy ≥ (1− 1/2r )m + k clauses?

(1− 1/2r )m is the expected number of clauses satisfied by a
random assignment.
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Can represent Max-r-Sat-AA as a pseudo-boolean function,
f .

We can then transform f into an equivalent instance I of
Max-Lin-AA in time O∗(2r ) with required excess k ′ = 2rk .

f (x) is of degree r .

Therefore I is an instance of Max-r-Lin-AA.

Max-r-Lin-AA has a kernel with (k ′ − 1)r variables
⇒ we can solve Max-r-Sat-AA in time O∗(2(2

r k−1)r )
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This approach can be extended to any boolean CSP where
each constraint is on at most r variables.

Max-r-CSP parameterized above average (Max-r-
CSP-AA)

Instance: A set V of n boolean variables, and a set C
of m constraints, where each constraint C is a boolean
function acting on at most r variables of V .

Parameter: k .

Question: Can we satisfy E + k constraints, where E is
the expected number of constraints satisfied by a random
assignment?

Theorem (Alon, Gutin, Kim, Szeider, Yeo (2010))

Max-r-CSP-AA is FPT for fixed r .
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More applications...

In Permutation-Max-c-CSP, we are to find an ordering
on a set of elements, and each constraint is a set of
acceptable orderings for some subset of size ≤ r .

Gutin, van Iersel, Mnich, Yeo (2010) showed
Permutation-Max-3-CSP-AA is FPT; Kim, Williams
(2011) improve this to a linear kernel.

Theorem (Kim, Williams, 2011)

Permutation-Max-3-CSP-AA has a kernel with less than 15k
variables.
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Open Problem

Open questions: Does Max-Lin-AA have kernel with
polynomial number of equations?
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Thank you!

The End
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