Simultaneously Satisfying Linear Equations Over \mathbb{F}_2 : Parameterized Above Average

Anders Yeo

anders@cs.rhul.ac.uk Department of Computer Science Royal Holloway, University of London

Co-authors: Robert Crowston, Mike Fellows, Gregory Gutin, Mark Jones, Frances Rosamond and Stéphan Thomassé

マロト イヨト イヨト

Outline

1 Parameterizing above tight bounds: Example Max-Sat

Max-Lin-AA

イロト イポト イヨト イヨト

Parameterized Above Tight Bounds: Max-Sat

MAX-SAT ('Standard' parameterization) Instance: A CNF formula F with n variables, m clauses. Parameter: k. Question: Can we satisfy $\geq k$ clauses?

- Known bound: can satisfy at least *m*/2 clauses. Why? This is a lower bound on the average number of satisfied clauses in a random assignment.
- So it is trivially FPT. Why?
 If k ≤ m/2 return YES; otherwise m < 2k which is a kernel.
- So what does this mean?

Such a kernel is not very useful: There is no reductions and k (> m/2) is large for all non trivial cases!

<ロ> (四) (四) (三) (三)

Parameterized Above Tight Bounds: Max-Sat

MAX-SAT ('Standard' parameterization) Instance: A CNF formula F with n variables, m clauses. Parameter: k. Question: Can we satisfy $\geq k$ clauses?

• Known bound: can satisfy at least m/2 clauses. Why?

This is a lower bound on the average number of satisfied clauses in a random assignment.

- So it is trivially FPT. Why? If $k \le m/2$ return YES: otherwise m < 2k which
- So what does this mean?

Such a kernel is not very useful: There is no reductions and k (> m/2) is large for all non trivial cases!

<ロ> (四) (四) (三) (三)

Parameterized Above Tight Bounds: Max-Sat

MAX-SAT ('Standard' parameterization) Instance: A CNF formula F with n variables, m clauses. Parameter: k. Question: Can we satisfy $\geq k$ clauses?

- Known bound: can satisfy at least *m*/2 clauses. Why? This is a lower bound on the average number of satisfied clauses in a random assignment.
- So it is trivially FPT. Why?
 If k ≤ m/2 return YES; otherwise m < 2k which is a k
- So what does this mean?

Such a kernel is not very useful: There is no reductions and k (> m/2) is large for all non trivial cases!

イロト イポト イヨト イヨト

Parameterized Above Tight Bounds: Max-Sat

MAX-SAT ('Standard' parameterization) Instance: A CNF formula F with n variables, m clauses. Parameter: k. Question: Can we satisfy $\geq k$ clauses?

- Known bound: can satisfy at least *m*/2 clauses. Why? This is a lower bound on the average number of satisfied clauses in a random assignment.
- So it is trivially FPT. Why?

If $k \le m/2$ return YES; otherwise m < 2k which is a kernel.

• So what does this mean?

Such a kernel is not very useful: There is no reductions and k (> m/2) is large for all non trivial cases!

・ロト ・同ト ・ヨト ・ヨト

Parameterized Above Tight Bounds: Max-Sat

MAX-SAT ('Standard' parameterization) Instance: A CNF formula F with n variables, m clauses. Parameter: k. Question: Can we satisfy $\geq k$ clauses?

- Known bound: can satisfy at least *m*/2 clauses. Why? This is a lower bound on the average number of satisfied clauses in a random assignment.
- So it is trivially FPT. Why? If $k \le m/2$ return YES; otherwise m < 2k which is a kernel.
- So what does this mean?

Such a kernel is not very useful: There is no reductions and k (> m/2) is large for all non trivial cases!

イロト イポト イヨト イヨト

Parameterized Above Tight Bounds: Max-Sat

MAX-SAT ('Standard' parameterization) Instance: A CNF formula F with n variables, m clauses. Parameter: k. Question: Can we satisfy $\geq k$ clauses?

- Known bound: can satisfy at least *m*/2 clauses. Why? This is a lower bound on the average number of satisfied clauses in a random assignment.
- So it is trivially FPT. Why? If $k \le m/2$ return YES; otherwise m < 2k which is a kernel.
- So what does this mean?

Such a kernel is not very useful: There is no reductions and k (> m/2) is large for all non trivial cases!

イロン イヨン イヨン

Parameterized Above Tight Bounds: Max-Sat

MAX-SAT ('Standard' parameterization) Instance: A CNF formula F with n variables, m clauses. Parameter: k. Question: Can we satisfy $\geq k$ clauses?

- Known bound: can satisfy at least *m*/2 clauses. Why? This is a lower bound on the average number of satisfied clauses in a random assignment.
- So it is trivially FPT. Why? If $k \le m/2$ return YES; otherwise m < 2k which is a kernel.
- So what does this mean? Such a kernel is not very useful: There is no reductions and k (> m/2) is large for all non trivial cases!

(人間) とうり くうり

Parameterized Above Tight Bounds: Max-Sat

• A better parameterization:

MAX-SAT parameterized above m/2Instance: A CNF formula F with n variables, m clauses. Parameter: k. Question: Can we satisfy $\geq m/2 + k$ clauses?

• In this case k is smaller!

• And the problem becomes more interesting!

・ 戸 ・ ・ ヨ ・ ・

Parameterized Above Tight Bounds: Max-Sat

• A better parameterization:

MAX-SAT parameterized above m/2Instance: A CNF formula F with n variables, m clauses. Parameter: k. Question: Can we satisfy $\geq m/2 + k$ clauses?

• In this case k is smaller!

• And the problem becomes more interesting!

Parameterized Above Tight Bounds: Max-Sat

• A better parameterization:

MAX-SAT parameterized above m/2Instance: A CNF formula F with n variables, m clauses. Parameter: k. Question: Can we satisfy $\geq m/2 + k$ clauses?

- In this case k is smaller!
- And the problem becomes more interesting!

Parameterized Above Tight Bounds: Max-Sat

- The above problem was solved by Mahajan and Raman, who gave a linear kernel.
- It is still relatively easy due to the following:
 - Reduce an instance by removing any two clauses of the form (x) and (\bar{x}) .
 - Repeatadly doing this creates an instance of 2-satisfiable-SAT and does not change the problem.
 - However $\hat{\phi}m$ becomes a tight lower bound on the number of satisfied clausses, where $\hat{\phi} = (\sqrt{5}-1)/2 \approx 0.618$.
 - Therefore there is a kernel. **Proof**: If $k < (\hat{\phi} - \frac{1}{2})m$ answer YES Otherwise $m \le k/(\hat{\phi} - \frac{1}{2})$.
 - This gives rise to a new problem.....

- 4 回 ト 4 ヨ ト 4 ヨ ト

Parameterized Above Tight Bounds: Max-Sat

- The above problem was solved by Mahajan and Raman, who gave a linear kernel.
- It is still relatively easy due to the following:
 - Reduce an instance by removing any two clauses of the form (x) and (\bar{x}) .
 - Repeatadly doing this creates an instance of 2-satisfiable-SAT and does not change the problem.
 - However $\hat{\phi}m$ becomes a tight lower bound on the number of satisfied clausses, where $\hat{\phi} = (\sqrt{5} 1)/2 \approx 0.618$.
 - Therefore there is a kernel. **Proof**: If $k < (\hat{\phi} - \frac{1}{2})m$ answer YES Otherwise $m \le k/(\hat{\phi} - \frac{1}{2})$.
 - This gives rise to a new problem.....

- 4 回 ト 4 ヨ ト 4 ヨ ト

Parameterized Above Tight Bounds: Max-Sat

- The above problem was solved by Mahajan and Raman, who gave a linear kernel.
- It is still relatively easy due to the following:
 - Reduce an instance by removing any two clauses of the form (x) and (\bar{x}) .
 - Repeatadly doing this creates an instance of 2-satisfiable-SAT and does not change the problem.
 - However $\hat{\phi}m$ becomes a tight lower bound on the number of satisfied clausses, where $\hat{\phi} = (\sqrt{5} 1)/2 \approx 0.618$.
 - Therefore there is a kernel. **Proof**: If $k < (\hat{\phi} - \frac{1}{2})m$ answer YES Otherwise $m \le k/(\hat{\phi} - \frac{1}{2})$.
 - This gives rise to a new problem.....

・ 同 ト ・ ヨ ト ・ ヨ ト

Parameterized Above Tight Bounds: Max-Sat

- The above problem was solved by Mahajan and Raman, who gave a linear kernel.
- It is still relatively easy due to the following:
 - Reduce an instance by removing any two clauses of the form (x) and (\bar{x}) .
 - Repeatadly doing this creates an instance of 2-satisfiable-SAT and does not change the problem.
 - However $\hat{\phi}m$ becomes a tight lower bound on the number of satisfied clausses, where $\hat{\phi} = (\sqrt{5}-1)/2 \approx 0.618$.
 - Therefore there is a kernel. **Proof**: If $k < (\hat{\phi} - \frac{1}{2})m$ answer YES. Otherwise $m \le k/(\hat{\phi} - \frac{1}{2})$.
 - This gives rise to a new problem.....

(4月) (4日) (4日)

Parameterized Above Tight Bounds: Max-Sat

- The above problem was solved by Mahajan and Raman, who gave a linear kernel.
- It is still relatively easy due to the following:
 - Reduce an instance by removing any two clauses of the form (x) and (\bar{x}) .
 - Repeatadly doing this creates an instance of 2-satisfiable-SAT and does not change the problem.
 - However $\hat{\phi}m$ becomes a tight lower bound on the number of satisfied clausses, where $\hat{\phi} = (\sqrt{5}-1)/2 \approx 0.618$.
 - Therefore there is a kernel. **Proof**: If $k < (\hat{\phi} - \frac{1}{2})m$ answer YES.

Otherwise $m \leq k/(\phi - \frac{1}{2})$

• This gives rise to a new problem.....

(4月) (4日) (4日)

Parameterized Above Tight Bounds: Max-Sat

- The above problem was solved by Mahajan and Raman, who gave a linear kernel.
- It is still relatively easy due to the following:
 - Reduce an instance by removing any two clauses of the form (x) and (\bar{x}) .
 - Repeatadly doing this creates an instance of 2-satisfiable-SAT and does not change the problem.
 - However $\hat{\phi}m$ becomes a tight lower bound on the number of satisfied clausses, where $\hat{\phi} = (\sqrt{5}-1)/2 \approx 0.618$.
 - Therefore there is a kernel. **Proof**: If $k < (\hat{\phi} - \frac{1}{2})m$ answer YES. Otherwise $m \le k/(\hat{\phi} - \frac{1}{2})$.
 - This gives rise to a new problem.....

A (10) A (10) A (10) A

Parameterized Above Tight Bounds: Max-Sat

- The above problem was solved by Mahajan and Raman, who gave a linear kernel.
- It is still relatively easy due to the following:
 - Reduce an instance by removing any two clauses of the form (x) and (\bar{x}) .
 - Repeatadly doing this creates an instance of 2-satisfiable-SAT and does not change the problem.
 - However $\hat{\phi}m$ becomes a tight lower bound on the number of satisfied clausses, where $\hat{\phi} = (\sqrt{5}-1)/2 \approx 0.618$.
 - Therefore there is a kernel. **Proof**: If $k < (\hat{\phi} - \frac{1}{2})m$ answer YES. Otherwise $m \le k/(\hat{\phi} - \frac{1}{2})$.
 - This gives rise to a new problem.....

向下 イヨト イヨト

Parameterized Above Tight Bounds: Max-Sat

MAX-2-SATISFIABLE-SAT parameterized above $\hat{\phi}m$

Instance: A CNF formula F with n variables, m clauses and any two clauses can be simultaniously satisfied.

Parameter: k.

Question: Can we satisfy $\geq \hat{\phi}m + k$ clauses?

- The above problem was shown to have a kernel with at most O(k) variables, by Crowston, Gutin, Jones and AY.
- This approach does not seem to be eaily extendable.

Parameterized Above Tight Bounds: Max-Sat

MAX-2-SATISFIABLE-SAT parameterized above $\hat{\phi} m$

Instance: A CNF formula F with n variables, m clauses and any two clauses can be simultaniously satisfied.

Parameter: k.

Question: Can we satisfy $\geq \hat{\phi}m + k$ clauses?

- The above problem was shown to have a kernel with at most O(k) variables, by Crowston, Gutin, Jones and AY.
- This approach does not seem to be eaily extendable.

Parameterized Above Tight Bounds: Max-Sat

MAX-2-SATISFIABLE-SAT parameterized above ϕm

Instance: A CNF formula F with n variables, m clauses and any two clauses can be simultaniously satisfied.

Parameter: k.

Question: Can we satisfy $\geq \hat{\phi}m + k$ clauses?

- The above problem was shown to have a kernel with at most O(k) variables, by Crowston, Gutin, Jones and AY.
- This approach does not seem to be eaily extendable.

Parameterized Above Tight Bounds: In general

- In problems parameterized above (below) tight bounds, we take a maximization (minimization) problem with a tight lower (upper) bound, and ask if we can get k above (below) this bound.
- Ensures the parameter is small in interesting cases.
- First introduced in a paper by Mahajan and Raman published in 1999.
- We say "above average" when the tight lower bound is the expectation of a random assignment.

・ロト ・同ト ・ヨト ・ヨト

Parameterized Above Tight Bounds: In general

- In problems parameterized above (below) tight bounds, we take a maximization (minimization) problem with a tight lower (upper) bound, and ask if we can get k above (below) this bound.
- Ensures the parameter is small in interesting cases.
- First introduced in a paper by Mahajan and Raman published in 1999.
- We say "above average" when the tight lower bound is the expectation of a random assignment.

イロト イポト イヨト イヨト

Parameterized Above Tight Bounds: In general

- In problems parameterized above (below) tight bounds, we take a maximization (minimization) problem with a tight lower (upper) bound, and ask if we can get k above (below) this bound.
- Ensures the parameter is small in interesting cases.
- First introduced in a paper by Mahajan and Raman published in 1999.
- We say "above average" when the tight lower bound is the expectation of a random assignment.

- * 同 * * ミ * * ミ *

Parameterized Above Tight Bounds: In general

- In problems parameterized above (below) tight bounds, we take a maximization (minimization) problem with a tight lower (upper) bound, and ask if we can get k above (below) this bound.
- Ensures the parameter is small in interesting cases.
- First introduced in a paper by Mahajan and Raman published in 1999.
- We say "above average" when the tight lower bound is the expectation of a random assignment.

(人間) とうり くうり

Outline

Parameterizing above tight bounds: Example Max-Sat

Anders Yeo Max-Lin Parameterized Above Average

イロン イヨン イヨン

Max-Lin Above Average

- MAX-LIN problem: given a system \mathcal{I} of m linear equations in n variables over \mathbb{F}_2 .
- \mathbb{F}_2 is the Galois field with 2 elements (1 + 1 = 0).
- Each equation is assigned a positive integer weight.
- We wish to find an assignment of values to the variables in order to maximize the total weight of satisfied equations.

$$z_{1} = 1$$

$$z_{1} + z_{2} = 0$$

$$z_{2} + z_{3} = 1$$

$$z_{1} + z_{2} + z_{3} = 1$$

Max-Lin Above Average

- MAX-LIN problem: given a system \mathcal{I} of *m* linear equations in *n* variables over \mathbb{F}_2 .
- \mathbb{F}_2 is the Galois field with 2 elements (1+1=0).
- Each equation is assigned a positive integer weight.
- We wish to find an assignment of values to the variables in order to maximize the total weight of satisfied equations.

$$z_{1} = 1$$

$$z_{1} + z_{2} = 0$$

$$z_{2} + z_{3} = 1$$

$$z_{1} + z_{2} + z_{3} = 1$$

Max-Lin Above Average

- MAX-LIN problem: given a system \mathcal{I} of m linear equations in n variables over \mathbb{F}_2 .
- \mathbb{F}_2 is the Galois field with 2 elements (1 + 1 = 0).
- Each equation is assigned a positive integer weight.
- We wish to find an assignment of values to the variables in order to maximize the total weight of satisfied equations.

$$z_1 = 1 z_1 + z_2 = 0 z_2 + z_3 = 1 z_1 + z_2 + z_3 = 1$$

Max-Lin Above Average

- MAX-LIN problem: given a system \mathcal{I} of m linear equations in n variables over \mathbb{F}_2 .
- \mathbb{F}_2 is the Galois field with 2 elements (1 + 1 = 0).
- Each equation is assigned a positive integer weight.
- We wish to find an assignment of values to the variables in order to maximize the total weight of satisfied equations.

$$z_{1} = 1$$

$$z_{1} + z_{2} = 0$$

$$z_{2} + z_{3} = 1$$

$$z_{1} + z_{2} + z_{3} = 1$$

Max-Lin Above Average

- MAX-LIN problem: given a system \mathcal{I} of m linear equations in n variables over \mathbb{F}_2 .
- \mathbb{F}_2 is the Galois field with 2 elements (1 + 1 = 0).
- Each equation is assigned a positive integer weight.
- We wish to find an assignment of values to the variables in order to maximize the total weight of satisfied equations.

$$z_1 = 1$$

$$z_1 + z_2 = 0$$

$$z_2 + z_3 = 1$$

$$z_1 + z_2 + z_3 = 1$$

Tightness of W/2 bound

• W/2 is a **tight** lower bound on max(\mathcal{I}).

• e.g.

 $z_1 = 0$ $z_1 = 1$ $z_2 + z_3 = 0$ $z_2 + z_3 = 1$

Theorem (Håstad, 2001)

For any $\epsilon > 0$, it is impossible to decide in polynomial time between instances of MAX-LIN in which max $(\mathcal{I}) \leq (1/2 + \epsilon)m$, and instances in which max $(\mathcal{I}) \geq (1 - \epsilon)m$, unless P = NP.

・ロト ・回ト ・ヨト ・ヨト

Tightness of W/2 bound

• W/2 is a **tight** lower bound on max(\mathcal{I}).

• e.g.

 $z_{1} = 0$ $z_{1} = 1$ $z_{2} + z_{3} = 0$ $z_{2} + z_{3} = 1$

Theorem (Håstad, 2001)

For any $\epsilon > 0$, it is impossible to decide in polynomial time between instances of MAX-LIN in which $\max(\mathcal{I}) \leq (1/2 + \epsilon)m$, and instances in which $\max(\mathcal{I}) \geq (1 - \epsilon)m$, unless P = NP.

. . .

イロト イポト イヨト イヨト

Max-Lin Above Average

• Let $max(\mathcal{I})$ denote the maximum possible weight of satisfied equations in \mathcal{I} .

MAX-LIN ABOVE AVERAGE (MAX-LIN-AA)

Instance: A system \mathcal{I} of m linear equations in n variables over \mathbb{F}_2 , with total weight W.

Parameter: k.

Question: Is $max(\mathcal{I}) \geq W/2 + k$?

• Mahajan, Raman & Sikdar (2006) asked if MAX-LIN-AA is FPT.

- 4 回 2 - 4 □ 2 - 4 □

Max-Lin Above Average

• Let $max(\mathcal{I})$ denote the maximum possible weight of satisfied equations in \mathcal{I} .

MAX-LIN ABOVE AVERAGE (MAX-LIN-AA)

Instance: A system \mathcal{I} of m linear equations in n variables over \mathbb{F}_2 , with total weight W.

Parameter: k.

Question: Is $max(\mathcal{I}) \geq W/2 + k$?

• Mahajan, Raman & Sikdar (2006) asked if MAX-LIN-AA is FPT.

< 同 > < 三 > < 三 >

Motivation

MAX-r-LIN is equivalent to MAX-LIN except all equations have at most r variables. MAX-LIN and MAX-r-LIN are important problems, for many reasons....

- Håstad said they were as basic as satisfiability.
- They are important tools for constraint satisfaction problems (such as MAXSAT or MAX-*r*-SAT).
- So MAX-LIN and MAX-*r*-LIN have attracted significant interest in algorithmics.
- A number of papers made progress on MAX-*r*-LIN-AA before MAX-LIN-AA was shown to be FPT.

Motivation

 ${\rm MAX}\mathchar`-r\mathchar`-Lin$ is equivalent to ${\rm MAX}\mathchar`-Lin$ except all equations have at most r variables.

MAX-LIN and MAX-r-LIN are important problems, for many reasons....

- Håstad said they were as basic as satisfiability.
- They are important tools for constraint satisfaction problems (such as MAXSAT or MAX-*r*-SAT).
- So MAX-LIN and MAX-*r*-LIN have attracted significant interest in algorithmics.
- A number of papers made progress on MAX-*r*-LIN-AA before MAX-LIN-AA was shown to be FPT.

Motivation

MAX-r-LIN is equivalent to MAX-LIN except all equations have at most r variables.

 $MAx\mathchar`LIN$ and $MAx\mathchar`r\mathchar`r\mathchar`n\math$

- Håstad said they were as basic as satisfiability.
- They are important tools for constraint satisfaction problems (such as MAXSAT or MAX-*r*-SAT).
- So MAX-LIN and MAX-*r*-LIN have attracted significant interest in algorithmics.
- A number of papers made progress on MAX-*r*-LIN-AA before MAX-LIN-AA was shown to be FPT.

Motivation

MAX-r-LIN is equivalent to MAX-LIN except all equations have at most r variables.

MAx-Lin and MAx-r-Lin are important problems, for many reasons....

- Håstad said they were as basic as satisfiability.
- They are important tools for constraint satisfaction problems (such as MAXSAT or MAX-*r*-SAT).
- So MAX-LIN and MAX-*r*-LIN have attracted significant interest in algorithmics.
- A number of papers made progress on MAX-*r*-LIN-AA before MAX-LIN-AA was shown to be FPT.

Motivation

MAX-r-LIN is equivalent to MAX-LIN except all equations have at most r variables.

MAx-Lin and MAx-r-Lin are important problems, for many reasons....

- Håstad said they were as basic as satisfiability.
- They are important tools for constraint satisfaction problems (such as MAXSAT or MAX-*r*-SAT).
- So MAX-LIN and MAX-*r*-LIN have attracted significant interest in algorithmics.
- A number of papers made progress on MAX-*r*-LIN-AA before MAX-LIN-AA was shown to be FPT.

- 4 周 ト 4 ヨ ト 4 ヨ ト

Outline

Parameterizing above tight bounds: Example Max-Sat

2 Max-Lin-AA

イロン 不同と 不同と 不同と

Overview

- Notation
- Reduction Rules
- Main Results
- Proof of the Main Results

イロト イポト イヨト イヨト

3

Notation

- For a given assignment, the **excess** = total weight of satisfied equations total weight of falsified equations.
- MAX-LIN-AA is equivalent to asking if the max excess is at least 2k.

Example:

$$z_1 = 1$$

 $z_2 = 1$
 $z_1 + z_2 = 1$

Notation

- For a given assignment, the **excess** = total weight of satisfied equations total weight of falsified equations.
- MAX-LIN-AA is equivalent to asking if the max excess is at least 2k.

Example:

$$z_1 = 1$$

 $z_2 = 1$
 $z_1 + z_2 = 1$

→ Ξ →

Reduction Rules

Reduction Rule (LHS rule)

Suppose we have two equations, $\sum_{i \in S} z_i = b_1$ (weight w_1) and $\sum_{i \in S} z_i = b_2$ (weight w_2), where $w_1 \ge w_2$.

If $b_1 = b_2$, replace with one equation $\sum_{i \in S} z_i = b_1$ (weight $w_1 + w_2$). If $b_1 \neq b_2$, replace with one equation $\sum_{i \in S} z_i = b_1$ (weight $w_1 - w_2$).

 $z_1 + z_2 = 1$ (w = 1) \Rightarrow $z_1 + z_2 = 1$ (w = 3) $z_1 + z_2 = 1$ (w = 2)

 $z_2 + z_3 + z_4 = 0 \quad (w = 3) \quad \Rightarrow \quad z_2 + z_3 + z_4 = 0 \quad (w = 1)$ $z_2 + z_3 + z_4 = 1 \quad (w = 2)$

 Allows us to assume no two equations have the same left-hand side.

Reduction Rules

Reduction Rule (LHS rule)

Suppose we have two equations, $\sum_{i \in S} z_i = b_1$ (weight w_1) and $\sum_{i \in S} z_i = b_2$ (weight w_2), where $w_1 \ge w_2$.

If $b_1 = b_2$, replace with one equation $\sum_{i \in S} z_i = b_1$ (weight $w_1 + w_2$). If $b_1 \neq b_2$, replace with one equation $\sum_{i \in S} z_i = b_1$ (weight $w_1 - w_2$).

 $z_1 + z_2 = 1$ (w = 1) \Rightarrow $z_1 + z_2 = 1$ (w = 3) $z_1 + z_2 = 1$ (w = 2)

 $z_2 + z_3 + z_4 = 0 \quad (w = 3) \quad \Rightarrow \quad z_2 + z_3 + z_4 = 0 \quad (w = 1)$ $z_2 + z_3 + z_4 = 1 \quad (w = 2)$

 Allows us to assume no two equations have the same left-hand side.

Reduction Rules

Reduction Rule (LHS rule)

Suppose we have two equations, $\sum_{i \in S} z_i = b_1$ (weight w_1) and $\sum_{i \in S} z_i = b_2$ (weight w_2), where $w_1 \ge w_2$.

If $b_1 = b_2$, replace with one equation $\sum_{i \in S} z_i = b_1$ (weight $w_1 + w_2$). If $b_1 \neq b_2$, replace with one equation $\sum_{i \in S} z_i = b_1$ (weight $w_1 - w_2$).

 $z_1 + z_2 = 1$ (w = 1) \Rightarrow $z_1 + z_2 = 1$ (w = 3) $z_1 + z_2 = 1$ (w = 2)

 $z_2 + z_3 + z_4 = 0 \quad (w = 3) \quad \Rightarrow \quad z_2 + z_3 + z_4 = 0 \quad (w = 1) \\ z_2 + z_3 + z_4 = 1 \quad (w = 2)$

 Allows us to assume no two equations have the same left-hand side.

Reduction Rules

Reduction Rule (LHS rule)

Suppose we have two equations, $\sum_{i \in S} z_i = b_1$ (weight w_1) and $\sum_{i \in S} z_i = b_2$ (weight w_2), where $w_1 \ge w_2$.

If $b_1 = b_2$, replace with one equation $\sum_{i \in S} z_i = b_1$ (weight $w_1 + w_2$). If $b_1 \neq b_2$, replace with one equation $\sum_{i \in S} z_i = b_1$ (weight $w_1 - w_2$).

 $z_1 + z_2 = 1$ (w = 1) \Rightarrow $z_1 + z_2 = 1$ (w = 3) $z_1 + z_2 = 1$ (w = 2)

 $z_2 + z_3 + z_4 = 0$ (w = 3) \Rightarrow $z_2 + z_3 + z_4 = 0$ (w = 1) $z_2 + z_3 + z_4 = 1$ (w = 2)

• Allows us to assume no two equations have the same left-hand side.

Reduction Rules

Reduction Rule (Rank rule)

Let A be the matrix over \mathbb{F}_2 corresponding to the set of equations in \mathcal{I} , such that $a_{ji} = 1$ if z_i appears in equation j, and 0 otherwise. Let $t = \operatorname{rank} A$ and suppose columns a^{i_1}, \ldots, a^{i_t} of A are linearly independent. Then delete all variables not in $\{z_{i_1}, \ldots, z_{i_t}\}$ from the equations of S.

$$\begin{array}{c} z_1 + z_3 + z_4 = 1 \\ z_2 + z_3 + z_4 = 0 \\ z_2 + z_3 = 0 \\ z_1 + z_2 = 1 \end{array} \qquad \left(\begin{array}{cccc} 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 1 & 1 & 0 \\ 1 & 1 & 0 & 0 \end{array} \right) \qquad \begin{array}{c} z_1 + z_4 = 1 \\ \Rightarrow & z_2 + z_4 = 0 \\ z_2 = 0 \\ z_1 + z_2 = 1 \end{array}$$

Reduction Rules

Reduction Rule (Rank rule)

Let A be the matrix over \mathbb{F}_2 corresponding to the set of equations in \mathcal{I} , such that $a_{ji} = 1$ if z_i appears in equation j, and 0 otherwise. Let $t = \operatorname{rank} A$ and suppose columns a^{i_1}, \ldots, a^{i_t} of A are linearly independent. Then delete all variables not in $\{z_{i_1}, \ldots, z_{i_t}\}$ from the equations of S.

$$\begin{array}{c} z_1 + z_3 + z_4 = 1 \\ z_2 + z_3 + z_4 = 0 \\ z_2 + z_3 = 0 \\ z_1 + z_2 = 1 \end{array} \qquad \left(\begin{array}{cccc} 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 1 & 1 & 0 \\ 1 & 1 & 0 & 0 \end{array} \right) \qquad \begin{array}{c} z_1 + z_4 = 1 \\ \Rightarrow & z_2 + z_4 = 0 \\ z_2 = 0 \\ z_1 + z_2 = 1 \end{array}$$

Reduction Rules

Reduction Rule (Rank rule)

Let A be the matrix over \mathbb{F}_2 corresponding to the set of equations in \mathcal{I} , such that $a_{ji} = 1$ if z_i appears in equation j, and 0 otherwise. Let $t = \operatorname{rank} A$ and suppose columns a^{i_1}, \ldots, a^{i_t} of A are linearly independent. Then delete all variables not in $\{z_{i_1}, \ldots, z_{i_t}\}$ from the equations of S.

$$\begin{array}{c} z_1 + z_3 + z_4 = 1 \\ z_2 + z_3 + z_4 = 0 \\ z_2 + z_3 = 0 \\ z_1 + z_2 = 1 \end{array} \qquad \left(\begin{array}{cccc} 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 1 & 1 & 0 \\ 1 & 1 & 0 & 0 \end{array} \right) \qquad \begin{array}{c} z_1 + z_4 = 1 \\ \Rightarrow & z_2 + z_4 = 0 \\ z_2 = 0 \\ z_1 + z_2 = 1 \end{array}$$

Reduction Rules

Why does the Rank Rule work?

$$\begin{array}{cccc} \mathcal{I} & & \mathcal{I}' \\ z_1 + z_3 + z_4 = 1 \\ z_2 + z_3 + z_4 = 0 & \Rightarrow \\ z_2 + z_3 = 0 \\ z_1 + z_2 = 1 \end{array} \begin{pmatrix} 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 1 & 1 & 0 \\ 1 & 1 & 0 & 0 \end{pmatrix} & \begin{array}{c} z_1 + z_4 = 1 \\ \Rightarrow & z_2 + z_4 = 0 \\ z_2 + z_4 = 0 \\ z_2 = 0 \\ z_1 + z_2 = 1 \end{array}$$

- Set z₃ = 0 and add a solution for I' to get a solution of equal weight for I.
- Consider a solution for \mathcal{I} .

If $z_3 = 1$, then change the values of z_1, z_2, z_3 to get an equivalent solution with $z_3 = 0$. Why does this work? So $z_3 = 0$, and we have a solution for \mathcal{I}' of equal weight

Reduction Rules

Why does the Rank Rule work?

$$\begin{array}{cccc} \mathcal{I} & & \mathcal{I}' \\ z_1 + z_3 + z_4 = 1 \\ z_2 + z_3 + z_4 = 0 & \Rightarrow \\ z_2 + z_3 = 0 \\ z_1 + z_2 = 1 \end{array} \begin{pmatrix} 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 1 & 1 & 0 \\ 1 & 1 & 0 & 0 \end{pmatrix} \begin{array}{c} z_1 + z_4 = 1 \\ \Rightarrow & z_2 + z_4 = 0 \\ z_2 = 0 \\ z_1 + z_2 = 1 \end{array}$$

- Set z₃ = 0 and add a solution for I' to get a solution of equal weight for I.
- Consider a solution for \mathcal{I} .

If $z_3 = 1$, then change the values of z_1, z_2, z_3 to get an equivalent solution with $z_3 = 0$. Why does this work? So $z_3 = 0$, and we have a solution for \mathcal{I}' of equal weight

Reduction Rules

Why does the Rank Rule work?

$$\begin{array}{cccc} \mathcal{I} & & \mathcal{I}' \\ z_1 + z_3 + z_4 = 1 \\ z_2 + z_3 + z_4 = 0 & \Rightarrow \\ z_2 + z_3 = 0 \\ z_1 + z_2 = 1 \end{array} \begin{array}{c} \begin{pmatrix} 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 1 & 1 & 0 \\ 1 & 1 & 0 & 0 \end{pmatrix} & \Rightarrow \begin{array}{c} z_1 + z_4 = 1 \\ \Rightarrow & z_2 + z_4 = 0 \\ z_2 = 0 \\ z_1 + z_2 = 1 \end{array}$$

- Set z₃ = 0 and add a solution for I' to get a solution of equal weight for I.
- Consider a solution for \mathcal{I} .

If $z_3 = 1$, then change the values of z_1, z_2, z_3 to get an equivalent solution with $z_3 = 0$. Why does this work?

So $z_3 = 0$, and we have a solution for \mathcal{I}' of equal weight.

Reduction Rules

Why does the Rank Rule work?

$$\begin{array}{cccc} \mathcal{I} & & \mathcal{I}' \\ z_1 + z_3 + z_4 = 1 \\ z_2 + z_3 + z_4 = 0 & \Rightarrow \\ z_2 + z_3 = 0 \\ z_1 + z_2 = 1 \end{array} \begin{array}{c} \begin{pmatrix} 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 1 & 1 & 0 \\ 1 & 1 & 0 & 0 \end{pmatrix} & \Rightarrow \begin{array}{c} z_1 + z_4 = 1 \\ \Rightarrow & z_2 + z_4 = 0 \\ z_2 = 0 \\ z_1 + z_2 = 1 \end{array}$$

- Set z₃ = 0 and add a solution for I' to get a solution of equal weight for I.
- Consider a solution for \mathcal{I} .

If $z_3 = 1$, then change the values of z_1, z_2, z_3 to get an equivalent solution with $z_3 = 0$. Why does this work?

Reduction Rules

Why does the Rank Rule work?

$$\begin{array}{cccc} \mathcal{I} & & \mathcal{I}' \\ z_1 + z_3 + z_4 = 1 \\ z_2 + z_3 + z_4 = 0 & \Rightarrow \\ z_2 + z_3 = 0 \\ z_1 + z_2 = 1 \end{array} \begin{array}{c} \begin{pmatrix} 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 1 & 1 & 0 \\ 1 & 1 & 0 & 0 \end{pmatrix} & \Rightarrow \begin{array}{c} z_1 + z_4 = 1 \\ \Rightarrow & z_2 + z_4 = 0 \\ z_2 = 0 \\ z_1 + z_2 = 1 \end{array}$$

- Set z₃ = 0 and add a solution for I' to get a solution of equal weight for I.
- Consider a solution for \mathcal{I} .

If $z_3 = 1$, then change the values of z_1, z_2, z_3 to get an equivalent solution with $z_3 = 0$. Why does this work? So $z_3 = 0$, and we have a solution for \mathcal{I}' of equal weight.

(4月) (4日) (4日)

Reduction rule

- What we would like to show: For reduced instances, if *m* is large enough the answer is YES.
- Sadly this is not true...
- Consider a 'complete' system on *n* variables with all RHS = 1. $x_1 = 1$ $x_2 = 1$ $x_1 + x_2 = 1$ $x_2 = 1$
 - $\begin{aligned} x_1 + x_3 &= 1 \\ x_2 + x_3 &= 1 \\ x_1 + x_2 + x_3 &= 1 \end{aligned}$

・ 母 と ・ ヨ と ・ ヨ と

Reduction rule

- What we would like to show: For reduced instances, if *m* is large enough the answer is YES.
- Sadly this is not true...
- Consider a 'complete' system on n variables with all RHS = 1.

伺 と く ヨ と く ヨ と

Reduction rule

- What we would like to show: For reduced instances, if *m* is large enough the answer is YES.
- Sadly this is not true...
- Consider a 'complete' system on n variables with all RHS = 1.

・同・ ・ヨ・ ・ヨ・

Reduction rule

- What we would like to show: For reduced instances, if *m* is large enough the answer is YES.
- Sadly this is not true...
- Consider a 'complete' system on n variables with all RHS = 1.

<i>x</i> ₁	= 1
<i>x</i> ₂	= 1
<i>x</i> ₂	= 0
<i>x</i> 3	= 1
<i>x</i> 3	= 0
$x_2 + x_3$	= 1
$x_2 + x_3$	= 0

- 4 回 ト 4 ヨ ト 4 ヨ ト

Reduction rule

- What we would like to show: For reduced instances, if *m* is large enough the answer is YES.
- Sadly this is not true...
- Consider a 'complete' system on n variables with all RHS = 1.

 $\begin{array}{rcl}
\mathbf{x_1} &= \mathbf{1} \\
x_2 &= 1 \\
x_2 &= 0 \\
x_3 &= 1 \\
x_3 &= 0 \\
x_2 + x_3 &= 1 \\
x_2 + x_3 &= 0
\end{array}$

• The maximum excess is 1 but $m = 2^n - 1$.

・ 同 ト ・ ヨ ト ・ ヨ ト

Main Results

- Theorem A: [Crowston, Fellows, Gutin, Jones, Rosamond, Thomasse, Yeo, 2011] MAX-LIN-AA can be solved in time $O^*(n^{2k})$.
- Theorem B: [Crowston, Gutin, Jones, Kim, Ruzsa, 2010] If \mathcal{I} is reduced and $2k \leq m < 2^{n/2k}$, then \mathcal{I} is a YES-instance.

The above results can be combined to show the following

Theorem (Crowston, Fellows, Gutin, Jones, Rosamond, Thomasse, Yeo, 2011)

MAX-LIN-AA is fixed-parameter tractable, and has a kernel with $O(k^2 \log k)$ variables.

Proof of Theorem A (Algorithm \mathcal{H})

Algorithm \mathcal{H} (More detail)

- Choose an equation e, which can be written as $\sum_{i \in S} z_i = b$, with weight w(e).
- **2** Choose some $j \in S$.
- Simplify the system under the assumption that e is true:
 - Remove equation e.
 - Perform the substitution z_j = ∑_(i∈ S\ j) z_i + b for all equations containing z_j.
 - **③** *Reduce the system by LHS Rule.*

Reduce k by w(e)/2.

Example

$z_1 + z_3 + z_5 = 1$		
$z_{2} + z_{3} = 1$ $z_{1} + z_{2} = 0$ $z_{3} + z_{4} + z_{5} = 1$	$z_3 + z_5 + 1 + z_2 = 0$	$z_{2} + z_{3} = 1$ $z_{2} + z_{3} + z_{5} = 1$ $z_{3} + z_{4} + z_{5} = 1$
$z_1 + z_4 = 0 z_1 + z_2 + z_5 = 1$	$z_3 + z_5 + 1 + z_4 = 0$ $z_3 + z_5 + 1 + z_2 + z_5 = 1$	$z_3 + z_4 + z_5 = 1$

Now we simplify.....

Example

$z_1 + z_3 + z_5 = 1$	\Rightarrow	$z_1 = z_3 + z_5 + 1$	
$z_{2} + z_{3} = 1$ $z_{1} + z_{2} = 0$ $z_{3} + z_{4} + z_{5} = 1$		$z_3 + z_5 + 1 + z_2 = 0$	$z_{2} + z_{3} = 1$ $z_{2} + z_{3} + z_{5} = 1$ $z_{3} + z_{4} + z_{5} = 1$
$z_1 + z_4 = 0 z_1 + z_2 + z_5 = 1$		$z_3 + z_5 + 1 + z_4 = 0$ $z_3 + z_5 + 1 + z_2 + z_5 = 1$	$z_3 + z_4 + z_5 = 1$ $z_2 + z_3 = 0$

Now we simplify.....

Example

Now we simplify.....

Example

$$\begin{array}{rcl} z_1 + z_3 + z_5 = 1 & \Rightarrow & z_1 = z_3 + z_5 + 1 \\ z_2 + z_3 = 1 & & \Rightarrow & z_2 + z_3 = 1 \\ z_1 + z_2 = 0 & \Rightarrow & z_3 + z_5 + 1 + z_2 = 0 & \Rightarrow & z_2 + z_3 + z_5 = 1 \\ z_3 + z_4 + z_5 = 1 & & \Rightarrow & z_3 + z_5 + 1 + z_4 = 0 & \Rightarrow & z_3 + z_4 + z_5 = 1 \\ z_1 + z_2 + z_5 = 1 & \Rightarrow & z_3 + z_5 + 1 + z_2 + z_5 = 1 & \Rightarrow & z_2 + z_3 = 0 \end{array}$$

Now we simplify.....

・ロ・ ・ 日・ ・ 日・ ・ 日・

Example

 $(z_1 + z_3 + z_5 = 1)$ $z_2 + z_3 + z_5 = 1$ $z_3 + z_4 + z_5 = 1$ (w = 2)

So under the assumption that $e = "z_1 + z_3 + z_5 = 1"$ is true we have reduced \mathcal{I} to a smaller problem \mathcal{I}' such that we can do w(e)/2 more above average in \mathcal{I} than in \mathcal{I}' . Why? Answer: For any solution of \mathcal{I}' , set $z_1 = z_3 + z_5 + 1....$

- 4 回 ト 4 ヨ ト 4 ヨ ト

Example

 $(z_1+z_3+z_5=1)$

 $z_2 + z_3 + z_5 = 1$ $z_3 + z_4 + z_5 = 1 \qquad (w = 2)$

So under the assumption that $e = "z_1 + z_3 + z_5 = 1"$ is true we have reduced \mathcal{I} to a smaller problem \mathcal{I}' such that we can do w(e)/2 more above average in \mathcal{I} than in \mathcal{I}' . Why?

Answer: For any solution of \mathcal{I}' , set $z_1 = z_3 + z_5 + 1$

(人間) とうり くうり

Example

 $(z_1+z_3+z_5=1)$

 $z_2 + z_3 + z_5 = 1$ $z_3 + z_4 + z_5 = 1 \qquad (w = 2)$

So under the assumption that $e = "z_1 + z_3 + z_5 = 1"$ is true we have reduced \mathcal{I} to a smaller problem \mathcal{I}' such that we can do w(e)/2 more above average in \mathcal{I} than in \mathcal{I}' . Why? Answer: For any solution of \mathcal{I}' set $z_1 = z_2 + z_5 + 1$

(人間) とうり くうり

Example

 $(z_1 + z_3 + z_5 = 1)$

 $z_2 + z_3 + z_5 = 1$ $z_3 + z_4 + z_5 = 1 \qquad (w = 2)$

So under the assumption that $e = "z_1 + z_3 + z_5 = 1"$ is true we have reduced \mathcal{I} to a smaller problem \mathcal{I}' such that we can do w(e)/2 more above average in \mathcal{I} than in \mathcal{I}' . Why? Answer: For any solution of \mathcal{I}' , set $z_1 = z_3 + z_5 + 1....$

・ 同下 ・ ヨト ・ ヨト

So what does Algorithm ${\mathcal H}$ give us

Assume our instance is reduced.

- If we can mark equations of total weight *R* then the maximum excess is at least *R* (we can get at least *R*/2 above the average).
- If the maximum excess is *R* then if we keep choosing equations which are true in a given optimal solution, we will mark equations of total weight *R*.

How can this be used to prove Theorem A.....

- 4 周 ト 4 ヨ ト 4 ヨ ト

So what does Algorithm ${\mathcal H}$ give us

Assume our instance is reduced.

- If we can mark equations of total weight *R* then the maximum excess is at least *R* (we can get at least *R*/2 above the average).
- If the maximum excess is *R* then if we keep choosing equations which are true in a given optimal solution, we will mark equations of total weight *R*.

How can this be used to prove Theorem A.....

- 4 周 ト 4 ヨ ト 4 ヨ ト

So what does Algorithm ${\mathcal H}$ give us

Assume our instance is reduced.

- If we can mark equations of total weight *R* then the maximum excess is at least *R* (we can get at least *R*/2 above the average).
- If the maximum excess is *R* then if we keep choosing equations which are true in a given optimal solution, we will mark equations of total weight *R*.

How can this be used to prove Theorem A.....

A (1) > A (2) > A

So what does Algorithm ${\mathcal H}$ give us

Assume our instance is reduced.

- If we can mark equations of total weight *R* then the maximum excess is at least *R* (we can get at least *R*/2 above the average).
- If the maximum excess is *R* then if we keep choosing equations which are true in a given optimal solution, we will mark equations of total weight *R*.

How can this be used to prove Theorem A.....

Proof of Theorem A

Theorem A [Crowston, Fellows, Gutin, Jones, Rosamond, Thomasse, Yeo, 2011] There exists an $O^*(n^{2k})$ -time algorithm for MAX-LIN-AA.

- Proof (sketch): Let e₁,... e_n be a set of equations in I which are 'independent'.
 (LHSs correspond to independent rows in matrix A.)
- Check unique assignment in which $e_1, \ldots e_n$ all false. If this assignment achieves excess 2k, return YES.
- Otherwise, one of $e_1, \ldots e_k$ must be true.
- Branch *n* ways. In branch *i* mark equation *e_i* in Algorithm *H* and solve resulting system.
- Since we can stop after 2k iterations of \mathcal{H} , search tree has n^{2k} leaves.

・ロト ・回ト ・ヨト ・ヨト

Proof of Theorem A

Theorem A [Crowston, Fellows, Gutin, Jones, Rosamond, Thomasse, Yeo, 2011] There exists an $O^*(n^{2k})$ -time algorithm for MAX-LIN-AA.

- Proof (sketch): Let e₁,... e_n be a set of equations in *I* which are 'independent'.
 (LHSs correspond to independent rows in matrix A.)
- Check unique assignment in which $e_1, \ldots e_n$ all false. If this assignment achieves excess 2k, return YES.
- Otherwise, one of $e_1, \ldots e_k$ must be true.
- Branch *n* ways. In branch *i* mark equation *e_i* in Algorithm *H* and solve resulting system.
- Since we can stop after 2k iterations of \mathcal{H} , search tree has n^{2k} leaves.

・ロト ・回ト ・ヨト ・ヨト

Proof of Theorem A

Theorem A [Crowston, Fellows, Gutin, Jones, Rosamond, Thomasse, Yeo, 2011] There exists an $O^*(n^{2k})$ -time algorithm for MAX-LIN-AA.

- Proof (sketch): Let e₁,... e_n be a set of equations in I which are 'independent'.
 (LHSs correspond to independent rows in matrix A.)
- Check unique assignment in which $e_1, \ldots e_n$ all false. If this assignment achieves excess 2k, return YES.
- Otherwise, one of $e_1, \ldots e_k$ must be true.
- Branch *n* ways. In branch *i* mark equation *e_i* in Algorithm *H* and solve resulting system.
- Since we can stop after 2k iterations of H, search tree has n^{2k} leaves.

Proof of Theorem A

Theorem A [Crowston, Fellows, Gutin, Jones, Rosamond, Thomasse, Yeo, 2011] There exists an $O^*(n^{2k})$ -time algorithm for MAX-LIN-AA.

- Proof (sketch): Let e₁,... e_n be a set of equations in I which are 'independent'.
 (LHSs correspond to independent rows in matrix A.)
- Check unique assignment in which $e_1, \ldots e_n$ all false. If this assignment achieves excess 2k, return YES.
- Otherwise, one of $e_1, \ldots e_k$ must be true.
- Branch *n* ways. In branch *i* mark equation *e_i* in Algorithm *H* and solve resulting system.
- Since we can stop after 2k iterations of H, search tree has n^{2k} leaves.

Proof of Theorem A

Theorem A [Crowston, Fellows, Gutin, Jones, Rosamond, Thomasse, Yeo, 2011] There exists an $O^*(n^{2k})$ -time algorithm for MAX-LIN-AA.

- Proof (sketch): Let e₁,... e_n be a set of equations in I which are 'independent'.
 (LHSs correspond to independent rows in matrix A.)
- Check unique assignment in which $e_1, \ldots e_n$ all false. If this assignment achieves excess 2k, return YES.
- Otherwise, one of $e_1, \ldots e_k$ must be true.
- Branch *n* ways. In branch *i* mark equation *e_i* in Algorithm *H* and solve resulting system.
- Since we can stop after 2k iterations of \mathcal{H} , search tree has n^{2k} leaves.

・ロト ・回ト ・ヨト ・ヨト

Proof of Theorem B

Theorem B: [Crowston, Gutin, Jones, Kim, Ruzsa, 2010] If \mathcal{I} is reduced and $2k \leq m < 2^{n/2k}$, then \mathcal{I} is a YES-instance.

- If we can run algorithm \mathcal{H} for 2k iterations, we can get an excess of at least 2k.
- Problem: After running \mathcal{H} a few times all the remaining equations may 'cancel out' under LHS Rule.
- One solution: *M*-sum-free vectors.
- Let K and M be sets of vectors in \mathbb{F}_2^n such that $K \subseteq M$.
- *K* is *M*-sum-free if no sum of two or more vectors in *K* is equal to a vector in *M*.

() < </p>

Proof of Theorem B

Theorem B: [Crowston, Gutin, Jones, Kim, Ruzsa, 2010] If \mathcal{I} is reduced and $2k \leq m < 2^{n/2k}$, then \mathcal{I} is a YES-instance.

- If we can run algorithm \mathcal{H} for 2k iterations, we can get an excess of at least 2k.
- Problem: After running \mathcal{H} a few times all the remaining equations may 'cancel out' under LHS Rule.
- One solution: *M*-sum-free vectors.
- Let K and M be sets of vectors in \mathbb{F}_2^n such that $K \subseteq M$.
- *K* is *M*-**sum-free** if no sum of two or more vectors in *K* is equal to a vector in *M*.

() < </p>

Proof of Theorem B

Theorem B: [Crowston, Gutin, Jones, Kim, Ruzsa, 2010] If \mathcal{I} is reduced and $2k \leq m < 2^{n/2k}$, then \mathcal{I} is a YES-instance.

- If we can run algorithm \mathcal{H} for 2k iterations, we can get an excess of at least 2k.
- Problem: After running \mathcal{H} a few times all the remaining equations may 'cancel out' under LHS Rule.
- One solution: *M*-sum-free vectors.
- Let K and M be sets of vectors in \mathbb{F}_2^n such that $K \subseteq M$.
- *K* is *M*-**sum-free** if no sum of two or more vectors in *K* is equal to a vector in *M*.

イロト イポト イヨト イヨト

Proof of Theorem B

Theorem B: [Crowston, Gutin, Jones, Kim, Ruzsa, 2010] If \mathcal{I} is reduced and $2k \leq m < 2^{n/2k}$, then \mathcal{I} is a YES-instance.

- If we can run algorithm \mathcal{H} for 2k iterations, we can get an excess of at least 2k.
- Problem: After running \mathcal{H} a few times all the remaining equations may 'cancel out' under LHS Rule.
- One solution: *M*-sum-free vectors.
- Let K and M be sets of vectors in \mathbb{F}_2^n such that $K \subseteq M$.
- *K* is *M*-sum-free if no sum of two or more vectors in *K* is equal to a vector in *M*.

イロト イポト イヨト イヨト

Proof of Theorem B

Theorem B: [Crowston, Gutin, Jones, Kim, Ruzsa, 2010] If \mathcal{I} is reduced and $2k \leq m < 2^{n/2k}$, then \mathcal{I} is a YES-instance.

- If we can run algorithm \mathcal{H} for 2k iterations, we can get an excess of at least 2k.
- Problem: After running \mathcal{H} a few times all the remaining equations may 'cancel out' under LHS Rule.
- One solution: *M*-sum-free vectors.
- Let K and M be sets of vectors in \mathbb{F}_2^n such that $K \subseteq M$.
- *K* is *M*-**sum-free** if no sum of two or more vectors in *K* is equal to a vector in *M*.

イロト イポト イヨト イヨト

Proof of Theorem B

Lemma View the LHSs of equations in \mathcal{I} as a set M of vectors in \mathbb{F}_2^n . Let $e_1, \ldots e_t$ be a set of equations in \mathcal{I} that correspond to an M-sum-free set of vectors. Then we can run algorithm \mathcal{H} for t iterations, choosing equations $e_1, \ldots e_t$ in turn, and get an excess of at least t.

Why? Assume for the sake of contradiction e_i gets cancelled out.

- Then by picking e_1, \ldots, e_{i-1} in Algorithm \mathcal{H} we have created a different equation, say f_i , with the same LHS as e_i .
- So considering LHSs we get: $e_i = f_i = e_{j_1} + e_{j_2} + \dots + e_{j_a} + e'$ for some $\{j_1, \dots, j_a\} \subseteq \{1, \dots, i-1\}$ and e' is any equation.
- However this implies that e' = e_{j1} + e_{j2} + · · · + e_{ja} + e_i, a contradiction.

・ロト ・回ト ・ヨト ・ヨト

Proof of Theorem B

Lemma View the LHSs of equations in \mathcal{I} as a set M of vectors in \mathbb{F}_2^n . Let $e_1, \ldots e_t$ be a set of equations in \mathcal{I} that correspond to an M-sum-free set of vectors. Then we can run algorithm \mathcal{H} for t iterations, choosing equations $e_1, \ldots e_t$ in turn, and get an excess of at least t.

Why? Assume for the sake of contradiction e_i gets cancelled out.

- Then by picking e_1, \ldots, e_{i-1} in Algorithm \mathcal{H} we have created a different equation, say f_i , with the same LHS as e_i .
- So considering LHSs we get: $e_i = f_i = e_{j_1} + e_{j_2} + \dots + e_{j_a} + e'$ for some $\{j_1, \dots, j_a\} \subseteq \{1, \dots, i-1\}$ and e' is any equation.
- However this implies that e' = e_{j1} + e_{j2} + · · · + e_{ja} + e_i, a contradiction.

ヘロン 人間 とくほど くほとう

Proof of Theorem B

Lemma View the LHSs of equations in \mathcal{I} as a set M of vectors in \mathbb{F}_2^n . Let $e_1, \ldots e_t$ be a set of equations in \mathcal{I} that correspond to an M-sum-free set of vectors. Then we can run algorithm \mathcal{H} for t iterations, choosing equations $e_1, \ldots e_t$ in turn, and get an excess of at least t.

Why? Assume for the sake of contradiction e_i gets cancelled out.

- Then by picking e_1, \ldots, e_{i-1} in Algorithm \mathcal{H} we have created a different equation, say f_i , with the same LHS as e_i .
- So considering LHSs we get: $e_i = f_i = e_{j_1} + e_{j_2} + \dots + e_{j_a} + e'$ for some $\{j_1, \dots, j_a\} \subseteq \{1, \dots, i-1\}$ and e' is any equation.
- However this implies that e' = e_{j1} + e_{j2} + · · · + e_{ja} + e_i, a contradiction.

・ロト ・ 日 ・ ・ ヨ ・ ・ 日 ・

Proof of Theorem B

Lemma View the LHSs of equations in \mathcal{I} as a set M of vectors in \mathbb{F}_2^n . Let $e_1, \ldots e_t$ be a set of equations in \mathcal{I} that correspond to an M-sum-free set of vectors. Then we can run algorithm \mathcal{H} for t iterations, choosing equations $e_1, \ldots e_t$ in turn, and get an excess of at least t.

Why? Assume for the sake of contradiction e_i gets cancelled out.

- Then by picking e_1, \ldots, e_{i-1} in Algorithm \mathcal{H} we have created a different equation, say f_i , with the same LHS as e_i .
- So considering LHSs we get: $e_i = f_i = e_{j_1} + e_{j_2} + \dots + e_{j_a} + e'$ for some $\{j_1, \dots, j_a\} \subseteq \{1, \dots, i-1\}$ and e' is any equation.
- However this implies that e' = e_{j1} + e_{j2} + · · · + e_{ja} + e_i, a contradiction.

・ロト ・ 日 ・ ・ ヨ ・ ・ 日 ・

Proof of Theorem B

Lemma View the LHSs of equations in \mathcal{I} as a set M of vectors in \mathbb{F}_2^n . Let $e_1, \ldots e_t$ be a set of equations in \mathcal{I} that correspond to an M-sum-free set of vectors. Then we can run algorithm \mathcal{H} for t iterations, choosing equations $e_1, \ldots e_t$ in turn, and get an excess of at least t.

Why? Assume for the sake of contradiction e_i gets cancelled out.

- Then by picking e_1, \ldots, e_{i-1} in Algorithm \mathcal{H} we have created a different equation, say f_i , with the same LHS as e_i .
- So considering LHSs we get: $e_i = f_i = e_{j_1} + e_{j_2} + \dots + e_{j_a} + e'$ for some $\{j_1, \dots, j_a\} \subseteq \{1, \dots, i-1\}$ and e' is any equation.
- However this implies that $e' = e_{j_1} + e_{j_2} + \cdots + e_{j_a} + e_i$, a contradiction.

ヘロン 人間 とくほど くほとう

Proof of Theorem B

Lemma C [Crowston, Gutin, Jones, Kim and Ruzsa (2010)] Let M be a proper subset in \mathbb{F}_2^n such that $\operatorname{span}(M) = \mathbb{F}_2^n$. If k is a positive integer and $t \leq |M| \leq 2^{n/t}$ then, in time $|M|^{O(1)}$, we can find an M-sum-free subset K of M s.t. |K| = t.

Theorem B: If $2k \leq m < 2^{n/2k}$, then \mathcal{I} is a YES-instance.

- Suppose \mathcal{I} is reduced and $2k \leq m \leq 2^{n/2k}$.
- Let M be the set of vectors in \mathbb{F}_2^n corresponding to LHSs of equations in \mathcal{I}
- Find an *M*-sum-free subset *K* of *M* s.t. |K| = 2k.
- Let $e_1, \ldots e_{2k}$ be the equations corresponding to K, and run algorithm \mathcal{H} marking $e_1, \ldots e_{2k}$ in turn.
- Then we get excess 2k, so the answer is YES.

イロト イヨト イヨト イヨト

Proof of Theorem B

Lemma C [Crowston, Gutin, Jones, Kim and Ruzsa (2010)] Let M be a proper subset in \mathbb{F}_2^n such that $\operatorname{span}(M) = \mathbb{F}_2^n$. If k is a positive integer and $t \leq |M| \leq 2^{n/t}$ then, in time $|M|^{O(1)}$, we can find an M-sum-free subset K of M s.t. |K| = t.

Theorem B: If $2k \leq m < 2^{n/2k}$, then \mathcal{I} is a YES-instance.

- Suppose \mathcal{I} is reduced and $2k \leq m \leq 2^{n/2k}$.
- Let M be the set of vectors in \mathbb{F}_2^n corresponding to LHSs of equations in \mathcal{I}
- Find an *M*-sum-free subset *K* of *M* s.t. |K| = 2k.
- Let $e_1, \ldots e_{2k}$ be the equations corresponding to K, and run algorithm \mathcal{H} marking $e_1, \ldots e_{2k}$ in turn.
- Then we get excess 2k, so the answer is YES.

イロン イ部 とくほど くほとう ほ

Proof of Theorem B

Lemma C [Crowston, Gutin, Jones, Kim and Ruzsa (2010)] Let M be a proper subset in \mathbb{F}_2^n such that $\operatorname{span}(M) = \mathbb{F}_2^n$. If k is a positive integer and $t \leq |M| \leq 2^{n/t}$ then, in time $|M|^{O(1)}$, we can find an M-sum-free subset K of M s.t. |K| = t.

Theorem B: If $2k \leq m < 2^{n/2k}$, then \mathcal{I} is a YES-instance.

- Suppose \mathcal{I} is reduced and $2k \leq m \leq 2^{n/2k}$.
- Let M be the set of vectors in \mathbb{F}_2^n corresponding to LHSs of equations in $\mathcal I$
- Find an *M*-sum-free subset *K* of *M* s.t. |K| = 2k.
- Let $e_1, \ldots e_{2k}$ be the equations corresponding to K, and run algorithm \mathcal{H} marking $e_1, \ldots e_{2k}$ in turn.
- Then we get excess 2k, so the answer is YES.

(ロ) (同) (E) (E) (E)

Proof of Theorem B

Lemma C [Crowston, Gutin, Jones, Kim and Ruzsa (2010)] Let M be a proper subset in \mathbb{F}_2^n such that $\operatorname{span}(M) = \mathbb{F}_2^n$. If k is a positive integer and $t \leq |M| \leq 2^{n/t}$ then, in time $|M|^{O(1)}$, we can find an M-sum-free subset K of M s.t. |K| = t.

Theorem B: If $2k \leq m < 2^{n/2k}$, then \mathcal{I} is a YES-instance.

- Suppose \mathcal{I} is reduced and $2k \leq m \leq 2^{n/2k}$.
- Let M be the set of vectors in \mathbb{F}_2^n corresponding to LHSs of equations in $\mathcal I$
- Find an *M*-sum-free subset *K* of *M* s.t. |K| = 2k.
- Let $e_1, \ldots e_{2k}$ be the equations corresponding to K, and run algorithm \mathcal{H} marking $e_1, \ldots e_{2k}$ in turn.
- Then we get excess 2k, so the answer is YES.

(ロ) (同) (E) (E) (E)

Proof of Theorem B

Lemma C [Crowston, Gutin, Jones, Kim and Ruzsa (2010)] Let M be a proper subset in \mathbb{F}_2^n such that $\operatorname{span}(M) = \mathbb{F}_2^n$. If k is a positive integer and $t \leq |M| \leq 2^{n/t}$ then, in time $|M|^{O(1)}$, we can find an M-sum-free subset K of M s.t. |K| = t.

Theorem B: If $2k \leq m < 2^{n/2k}$, then \mathcal{I} is a YES-instance.

- Suppose \mathcal{I} is reduced and $2k \leq m \leq 2^{n/2k}$.
- Let M be the set of vectors in \mathbb{F}_2^n corresponding to LHSs of equations in $\mathcal I$
- Find an *M*-sum-free subset *K* of *M* s.t. |K| = 2k.
- Let $e_1, \ldots e_{2k}$ be the equations corresponding to K, and run algorithm \mathcal{H} marking $e_1, \ldots e_{2k}$ in turn.
- Then we get excess 2k, so the answer is YES.

イロン イ部 とくほど くほとう ほ

Proof of Theorem B

Lemma C [Crowston, Gutin, Jones, Kim and Ruzsa (2010)] Let M be a proper subset in \mathbb{F}_2^n such that $\operatorname{span}(M) = \mathbb{F}_2^n$. If k is a positive integer and $t \leq |M| \leq 2^{n/t}$ then, in time $|M|^{O(1)}$, we can find an M-sum-free subset K of M s.t. |K| = t.

Theorem B: If $2k \leq m < 2^{n/2k}$, then \mathcal{I} is a YES-instance.

- Suppose \mathcal{I} is reduced and $2k \leq m \leq 2^{n/2k}$.
- Let M be the set of vectors in \mathbb{F}_2^n corresponding to LHSs of equations in $\mathcal I$
- Find an *M*-sum-free subset *K* of *M* s.t. |K| = 2k.
- Let $e_1, \ldots e_{2k}$ be the equations corresponding to K, and run algorithm \mathcal{H} marking $e_1, \ldots e_{2k}$ in turn.
- Then we get excess 2k, so the answer is YES.

イロン イ部 とくほど くほとう ほ

Recall Theorem A and Theorem B

Theorem A: [Crowston, Fellows, Gutin, Jones, Rosamond, Thomasse, Yeo, 2011] MAX-LIN-AA can be solved in time $O^*(n^{2k})$.

Theorem B: [Crowston, Gutin, Jones, Kim, Ruzsa, 2010] If \mathcal{I} is reduced and $2k \leq m < 2^{n/2k}$, then \mathcal{I} is a YES-instance.

・ 同 ト ・ ヨ ト ・ ヨ ト

Proof of our main result

Theorem (Crowston, Fellows, Gutin, Jones, Rosamond, Thomasse, Yeo, 2011)

MAX-LIN-AA has a kernel with at most $O(k^2 \log k)$ variables.

- **Proof:** Let \mathcal{I} be a reduced system.
- Case 1: $m \ge n^{2k}$. Then using $O^*(n^{2k})$ algorithm, can solve in polynomial time.
- Case 2: $2k \le m \le 2^{n/2k}$. By earlier Theorem return YES.
- Case 3: m < 2k. Since I reduced by Rank Rule, n ≤ m so n = O(k² log k).
- Only remaining case is $2^{n/2k} < m < n^{2k}$.

<ロ> (四) (四) (三) (三) (三) 三

Proof of our main result

Theorem (Crowston, Fellows, Gutin, Jones, Rosamond, Thomasse, Yeo, 2011)

MAX-LIN-AA has a kernel with at most $O(k^2 \log k)$ variables.

- **Proof:** Let \mathcal{I} be a reduced system.
- Case 1: $m \ge n^{2k}$. Then using $O^*(n^{2k})$ algorithm, can solve in polynomial time.
- Case 2: $2k \le m \le 2^{n/2k}$. By earlier Theorem return YES.
- Case 3: m < 2k. Since I reduced by Rank Rule, n ≤ m so n = O(k² log k).
- Only remaining case is $2^{n/2k} < m < n^{2k}$.

Proof of our main result

Theorem (Crowston, Fellows, Gutin, Jones, Rosamond, Thomasse, Yeo, 2011)

MAX-LIN-AA has a kernel with at most $O(k^2 \log k)$ variables.

- **Proof:** Let \mathcal{I} be a reduced system.
- Case 1: $m \ge n^{2k}$. Then using $O^*(n^{2k})$ algorithm, can solve in polynomial time.
- Case 2: $2k \le m \le 2^{n/2k}$. By earlier Theorem return YES.
- Case 3: m < 2k. Since I reduced by Rank Rule, n ≤ m so n = O(k² log k).
- Only remaining case is $2^{n/2k} < m < n^{2k}$.

・ロト ・ 日 ・ ・ ヨ ・ ・ 日 ・

Proof of our main result

Theorem (Crowston, Fellows, Gutin, Jones, Rosamond, Thomasse, Yeo, 2011)

MAX-LIN-AA has a kernel with at most $O(k^2 \log k)$ variables.

- **Proof:** Let \mathcal{I} be a reduced system.
- Case 1: $m \ge n^{2k}$. Then using $O^*(n^{2k})$ algorithm, can solve in polynomial time.
- Case 2: $2k \le m \le 2^{n/2k}$. By earlier Theorem return YES.
- Case 3: m < 2k. Since I reduced by Rank Rule, n ≤ m so n = O(k² log k).
- Only remaining case is $2^{n/2k} < m < n^{2k}$.

・ロット (四) ・ (日) ・ (日)

Proof of our main result

Theorem (Crowston, Fellows, Gutin, Jones, Rosamond, Thomasse, Yeo, 2011)

MAX-LIN-AA has a kernel with at most $O(k^2 \log k)$ variables.

- **Proof:** Let \mathcal{I} be a reduced system.
- Case 1: $m \ge n^{2k}$. Then using $O^*(n^{2k})$ algorithm, can solve in polynomial time.
- Case 2: $2k \le m \le 2^{n/2k}$. By earlier Theorem return YES.
- Case 3: m < 2k. Since \mathcal{I} reduced by Rank Rule, $n \le m$ so $n = O(k^2 \log k)$.
- Only remaining case is $2^{n/2k} < m < n^{2k}$.

Proof of our main result

Theorem (Crowston, Fellows, Gutin, Jones, Rosamond, Thomasse, Yeo, 2011)

MAX-LIN-AA has a kernel with at most $O(k^2 \log k)$ variables.

- **Proof:** Let \mathcal{I} be a reduced system.
- Case 1: $m \ge n^{2k}$. Then using $O^*(n^{2k})$ algorithm, can solve in polynomial time.
- Case 2: $2k \le m \le 2^{n/2k}$. By earlier Theorem return YES.
- Case 3: m < 2k. Since \mathcal{I} reduced by Rank Rule, $n \le m$ so $n = O(k^2 \log k)$.
- Only remaining case is $2^{n/2k} < m < n^{2k}$.

・ロッ ・回 ・ ・ ヨッ ・ ヨッ

Proof of our main result (continued)

- Suppose $2^{n/2k} < m < n^{2k}$. Then $n/2k < 2k \log n$.
- So $n < 4k^2 \log n$.
- In order to bound log *n* we note that $\sqrt{n} < n/\log n < 4k^2$.
- Therefore $n < (2k)^4$ and $\log n < 4\log(2k)$
- So $n < 4k^2 \log n < 16k^2 (\log k + 1)$
- So $n = O(k^2 \log k)$.

▲□→ ▲ □→ ▲ □→

Proof of our main result (continued)

- Suppose 2^{n/2k} < m < n^{2k}. Then n/2k < 2k log n.
 So n < 4k² log n.
- In order to bound log *n* we note that $\sqrt{n} < n/\log n < 4k^2$.
- Therefore $n < (2k)^4$ and $\log n < 4\log(2k)$
- So $n < 4k^2 \log n < 16k^2 (\log k + 1)$
- So $n = O(k^2 \log k)$.

▲祠▶ ▲注▶ ▲注▶

Proof of our main result (continued)

- Suppose $2^{n/2k} < m < n^{2k}$. Then $n/2k < 2k \log n$.
- So $n < 4k^2 \log n$.
- In order to bound log *n* we note that $\sqrt{n} < n/\log n < 4k^2$.
- Therefore $n < (2k)^4$ and $\log n < 4\log(2k)$
- So $n < 4k^2 \log n < 16k^2 (\log k + 1)$
- So $n = O(k^2 \log k)$.

・ 同 ト ・ ヨ ト ・ ヨ ト

Proof of our main result (continued)

- Suppose $2^{n/2k} < m < n^{2k}$. Then $n/2k < 2k \log n$.
- So $n < 4k^2 \log n$.
- In order to bound log *n* we note that $\sqrt{n} < n/\log n < 4k^2$.
- Therefore $n < (2k)^4$ and $\log n < 4\log(2k)$
- So $n < 4k^2 \log n < 16k^2 (\log k + 1)$
- So $n = O(k^2 \log k)$.

- 4 同 ト 4 ヨ ト - 4 ヨ ト

Proof of our main result (continued)

- Suppose $2^{n/2k} < m < n^{2k}$. Then $n/2k < 2k \log n$.
- So $n < 4k^2 \log n$.
- In order to bound log *n* we note that $\sqrt{n} < n/\log n < 4k^2$.
- Therefore $n < (2k)^4$ and $\log n < 4\log(2k)$
- So $n < 4k^2 \log n < 16k^2 (\log k + 1)$
- So $n = O(k^2 \log k)$.

▲帰▶ ▲国▶ ▲国▶

Proof of our main result (continued)

- Suppose $2^{n/2k} < m < n^{2k}$. Then $n/2k < 2k \log n$.
- So $n < 4k^2 \log n$.
- In order to bound log *n* we note that $\sqrt{n} < n/\log n < 4k^2$.
- Therefore $n < (2k)^4$ and $\log n < 4\log(2k)$
- So $n < 4k^2 \log n < 16k^2 (\log k + 1)$
- So $n = O(k^2 \log k)$.

A (10) A (10)

Our Main Result!

Recall our main result.

Theorem (Crowston, Fellows, Gutin, Jones, Rosamond, Thomasse, Yeo, 2011)

MAX-LIN-AA has a kernel with at most $O(k^2 \log k)$ variables.

- This kernel has a polynomial number of variables, but it is not a polynomial kernel!
- Number of equations may be $O(2^n)$.
- **Open question:** Does MAX-LIN-AA have a polynomial kernel?

イロト イポト イヨト イヨト

Our Main Result!

Recall our main result.

Theorem (Crowston, Fellows, Gutin, Jones, Rosamond, Thomasse, Yeo, 2011)

MAX-LIN-AA has a kernel with at most $O(k^2 \log k)$ variables.

- This kernel has a polynomial number of variables, but it is not a polynomial kernel!
- Number of equations may be $O(2^n)$.
- **Open question:** Does MAX-LIN-AA have a polynomial kernel?

イロト イポト イヨト イヨト

Our Main Result!

Recall our main result.

Theorem (Crowston, Fellows, Gutin, Jones, Rosamond, Thomasse, Yeo, 2011)

MAX-LIN-AA has a kernel with at most $O(k^2 \log k)$ variables.

- This kernel has a polynomial number of variables, but it is not a polynomial kernel!
- Number of equations may be $O(2^n)$.
- **Open question:** Does MAX-LIN-AA have a polynomial kernel?

・ロン ・回と ・ヨン ・ヨン

Application of our Main Result

Theorem (Crowston, Fellows, Gutin, Jones, Rosamond, Thomasse, Yeo, 2011)

MAX-LIN-AA can be solved in time $O^*(2^{O(k \log k)})$.

- **Proof:** Assume \mathcal{I} is an irreducible system with *m* equations and *n* variables.
- In polynomial time, we either solve MAX-LIN-AA or get a kernel with O(k² log k) variables.
- If we have a kernel, apply the $O^*(n^{2k})$ -time algorithm.
- Since $n = O(k^2 \log k)$, we have running time $O^*((O(k^2 \log k))^{2k}) = O^*(2^{O(2k \log(k^2 \log k))}) = O^*(2^{O(k \log k)}).$

・ロン ・回 と ・ ヨ と ・ ヨ と

Outline

2 Max-Lin-AA

Anders Yeo Max-Lin Parameterized Above Average

イロン 不同と 不同と 不同と

Related Results (Max-*r***-Lin-AA)**

I will not say much about MAX-r-LIN-AA (where equations have at most r variables) as this will be covered in the next talk!

- Gutin, Kim, Szeider, Yeo (2009) kernel with m < (2k - 1)²64^r.
- Crowston, Gutin, Kim, Jones, Rusza (2010) kernel with $n = O(k \log k)$.
- Kim, Williams (2011) kernel with n < kr(r+1)
- Crowston et.al (2011) kernel with $n \leq (2k-1)r$.

Related Results (Max-*r***-Lin-AA)**

I will not say much about MAX-r-LIN-AA (where equations have at most r variables) as this will be covered in the next talk!

- Gutin, Kim, Szeider, Yeo (2009) kernel with $m < (2k-1)^2 64^r$.
- Crowston, Gutin, Kim, Jones, Rusza (2010) kernel with $n = O(k \log k)$.
- Kim, Williams (2011) kernel with n < kr(r+1)
- Crowston et.al (2011) kernel with $n \leq (2k-1)r$.

Related Results (Max-*r***-Lin-AA)**

I will not say much about MAX-r-LIN-AA (where equations have at most r variables) as this will be covered in the next talk!

- Gutin, Kim, Szeider, Yeo (2009) kernel with $m < (2k-1)^2 64^r$.
- Crowston, Gutin, Kim, Jones, Rusza (2010) kernel with $n = O(k \log k)$.
- Kim, Williams (2011) kernel with n < kr(r+1)
- Crowston et.al (2011) kernel with $n \leq (2k-1)r$.

Related Results (Max-*r***-Lin-AA)**

I will not say much about MAX-r-LIN-AA (where equations have at most r variables) as this will be covered in the next talk!

- Gutin, Kim, Szeider, Yeo (2009) kernel with $m < (2k-1)^2 64^r$.
- Crowston, Gutin, Kim, Jones, Rusza (2010) kernel with $n = O(k \log k)$.
- Kim, Williams (2011) kernel with n < kr(r+1)
- Crowston et.al (2011) kernel with $n \leq (2k-1)r$.

(4月) (4日) (4日)

Related Results (Max-*r***-Lin-AA)**

I will not say much about MAX-r-LIN-AA (where equations have at most r variables) as this will be covered in the next talk!

- Gutin, Kim, Szeider, Yeo (2009) kernel with $m < (2k-1)^2 64^r$.
- Crowston, Gutin, Kim, Jones, Rusza (2010) kernel with $n = O(k \log k)$.
- Kim, Williams (2011) kernel with n < kr(r+1)
- Crowston et.al (2011) kernel with $n \leq (2k-1)r$.

Related Results

- Pseudo-boolean function: a function $f : \{-1, +1\}^n \to \mathbb{R}$
- Suppose we know the Fourier expansion of f(x)

$$f(x) = \sum_{S \subseteq [n]} c_S \prod_{i \in S} x_i$$

Lemma

For any pseudo-boolean function f with integer coefficients and $c_{\emptyset} = 0$, there exists an instance \mathcal{I} of MAX-LIN-AA such that $\max(f(x)) = \max$ excess of \mathcal{I} .

イロト イポト イヨト イヨト

Related Results

- Pseudo-boolean function: a function $f : \{-1, +1\}^n \to \mathbb{R}$
- Suppose we know the Fourier expansion of f(x)

$$f(x) = \sum_{S \subseteq [n]} c_S \prod_{i \in S} x_i$$

Lemma

For any pseudo-boolean function f with integer coefficients and $c_{\emptyset} = 0$, there exists an instance \mathcal{I} of MAX-LIN-AA such that $\max(f(x)) = \max$ excess of \mathcal{I} .

イロト イヨト イヨト

Related Results

Lemma

For any pseudo-boolean function f with integer coefficients and $c_{\emptyset} = 0$, there exists an instance \mathcal{I} of MAX-LIN-AA such that $\max(f(x)) = \max$ excess of \mathcal{I} .

Proof: For every Ø ≠ S ⊆ [n] with c_S ≠ 0, construct equation ∑_{i∈S} z_i = b_S with weight |c_S|, where b_S = 0 if c_S is positive and b_S = 1 if c_S is negative.

 $\begin{aligned} z_1 &= 0 & (w = 5) \\ 5x_1 - 3x_2x_3 + x_1x_2x_3 &\Rightarrow & z_2 + z_3 = 1 & (w = 3) \\ & z_1 + z_2 + z_3 = 0 & (w = 1) \end{aligned}$

• Let $z_i = 0$ if $x_i = 1$ and $z_i = 1$ if $x_i = -1$.

f(x) = weight of positive terms - weight of negative terms =
 weight of satisfied equations - weight of falsified equations

Related Results

Lemma

For any pseudo-boolean function f with integer coefficients and $c_{\emptyset} = 0$, there exists an instance \mathcal{I} of MAX-LIN-AA such that $\max(f(x)) = \max$ excess of \mathcal{I} .

• **Proof:** For every $\emptyset \neq S \subseteq [n]$ with $c_S \neq 0$, construct equation $\sum_{i \in S} z_i = b_S$ with weight $|c_S|$, where $b_S = 0$ if c_S is positive and $b_S = 1$ if c_S is negative.

 $5x_1 - 3x_2x_3 + x_1x_2x_3 \implies z_1 = 0 \qquad (w = 5)$ $z_2 + z_3 = 1 \qquad (w = 3)$ $z_1 + z_2 + z_3 = 0 \qquad (w = 1)$

• Let $z_i = 0$ if $x_i = 1$ and $z_i = 1$ if $x_i = -1$.

f(x) = weight of positive terms - weight of negative terms =
 weight of satisfied equations - weight of falsified equations

Related Results

Lemma

For any pseudo-boolean function f with integer coefficients and $c_{\emptyset} = 0$, there exists an instance \mathcal{I} of MAX-LIN-AA such that $\max(f(x)) = \max$ excess of \mathcal{I} .

• **Proof:** For every $\emptyset \neq S \subseteq [n]$ with $c_S \neq 0$, construct equation $\sum_{i \in S} z_i = b_S$ with weight $|c_S|$, where $b_S = 0$ if c_S is positive and $b_S = 1$ if c_S is negative.

 $\begin{aligned} z_1 &= 0 & (w = 5) \\ 5x_1 - 3x_2x_3 + x_1x_2x_3 &\Rightarrow & z_2 + z_3 = 1 & (w = 3) \\ & z_1 + z_2 + z_3 = 0 & (w = 1) \end{aligned}$

- Let $z_i = 0$ if $x_i = 1$ and $z_i = 1$ if $x_i = -1$.
- f(x) = weight of positive terms weight of negative terms =
 weight of satisfied equations weight of falsified equations

Related Results

Lemma

For any pseudo-boolean function f with integer coefficients and $c_{\emptyset} = 0$, there exists an instance \mathcal{I} of MAX-LIN-AA such that $\max(f(x)) = \max$ excess of \mathcal{I} .

• **Proof:** For every $\emptyset \neq S \subseteq [n]$ with $c_S \neq 0$, construct equation $\sum_{i \in S} z_i = b_S$ with weight $|c_S|$, where $b_S = 0$ if c_S is positive and $b_S = 1$ if c_S is negative.

 $5x_1 - 3x_2x_3 + x_1x_2x_3 \implies z_1 = 0 \qquad (w = 5)$ $z_2 + z_3 = 1 \qquad (w = 3)$ $z_1 + z_2 + z_3 = 0 \qquad (w = 1)$

- Let $z_i = 0$ if $x_i = 1$ and $z_i = 1$ if $x_i = -1$.
- f(x) = weight of positive terms weight of negative terms =
 weight of satisfied equations weight of falsified equations

Related Results

Consider the following problem.

MAX-r-SAT parameterized above average (MAX-r-SAT-AA) Instance: A CNF formula F with n variables, m clauses, such that each clause has r variables. Parameter: k.

Question: Can we satisfy $\geq (1 - 1/2^r)m + k$ clauses?

• $(1 - 1/2^r)m$ is the expected number of clauses satisfied by a random assignment.

Related Results

- Can represent MAX-*r*-SAT-AA as a pseudo-boolean function, *f*.
- We can then transform f into an equivalent instance I of MAX-LIN-AA in time O*(2^r) with required excess k' = 2^rk.
- f(x) is of degree r.
- Therefore \mathcal{I} is an instance of MAX-*r*-LIN-AA.
- MAX-*r*-LIN-AA has a kernel with (k'-1)r variables \Rightarrow we can solve MAX-*r*-SAT-AA in time $O^*(2^{(2^rk-1)r})$

Related Results

- Can represent MAX-*r*-SAT-AA as a pseudo-boolean function, *f*.
- We can then transform f into an equivalent instance I of MAX-LIN-AA in time O*(2^r) with required excess k' = 2^rk.
- f(x) is of degree r.
- Therefore \mathcal{I} is an instance of MAX-*r*-LIN-AA.
- MAX-r-LIN-AA has a kernel with (k' − 1)r variables
 ⇒ we can solve MAX-r-SAT-AA in time O*(2^{(2^rk−1)r})

イロト イヨト イヨト

Related Results

- Can represent MAX-*r*-SAT-AA as a pseudo-boolean function, *f*.
- We can then transform f into an equivalent instance I of MAX-LIN-AA in time O*(2^r) with required excess k' = 2^rk.
- f(x) is of degree r.
- Therefore \mathcal{I} is an instance of MAX-*r*-LIN-AA.
- MAX-r-LIN-AA has a kernel with (k' − 1)r variables
 ⇒ we can solve MAX-r-SAT-AA in time O*(2^{(2^rk−1)r})

Related Results

- Can represent MAX-*r*-SAT-AA as a pseudo-boolean function, *f*.
- We can then transform f into an equivalent instance I of MAX-LIN-AA in time O*(2^r) with required excess k' = 2^rk.
- f(x) is of degree r.
- Therefore \mathcal{I} is an instance of MAX-*r*-LIN-AA.
- MAX-*r*-LIN-AA has a kernel with (k'-1)r variables \Rightarrow we can solve MAX-*r*-SAT-AA in time $O^*(2^{(2^rk-1)r})$

Related Results

- Can represent MAX-*r*-SAT-AA as a pseudo-boolean function, *f*.
- We can then transform f into an equivalent instance I of MAX-LIN-AA in time O*(2^r) with required excess k' = 2^rk.
- f(x) is of degree r.
- Therefore \mathcal{I} is an instance of MAX-*r*-LIN-AA.
- MAX-*r*-LIN-AA has a kernel with (k'-1)r variables \Rightarrow we can solve MAX-*r*-SAT-AA in time $O^*(2^{(2^rk-1)r})$

• This approach can be extended to any boolean CSP where each constraint is on at most *r* variables.

MAX-*r*-CSP parameterized above average (MAX-*r*-CSP-AA)

Instance: A set V of n boolean variables, and a set C of m constraints, where each constraint C is a boolean function acting on at most r variables of V.

Parameter: k.

Question: Can we satisfy E + k constraints, where E is the expected number of constraints satisfied by a random assignment?

Theorem (Alon, Gutin, Kim, Szeider, Yeo (2010))

MAX-*r*-CSP-AA is FPT for fixed *r*.

More applications...

- In PERMUTATION-MAX-*c*-CSP, we are to find an *ordering* on a set of elements, and each constraint is a set of acceptable orderings for some subset of size ≤ *r*.
- Gutin, van Iersel, Mnich, Yeo (2010) showed PERMUTATION-MAX-3-CSP-AA is FPT; Kim, Williams (2011) improve this to a linear kernel.

Theorem (Kim, Williams, 2011)

PERMUTATION-MAX-3-CSP-AA has a kernel with less than 15k variables.

- 4 同 2 4 日 2 4 日 2

Open Problem

• **Open questions:** Does MAX-LIN-AA have kernel with polynomial number of equations?

- 4 回 2 4 三 2 4 三 2 4

æ

The End

Anders Yeo Max-Lin Parameterized Above Average

・ロト ・回ト ・ヨト ・ヨト

æ