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Parameterized Above Tight Bounds: Max-Sat

MAX-SAT ( 'Standard’ parameterization)
Instance: A CNF formula F with n variables, m clauses.
Parameter: k.

Question: Can we satisfy > k clauses?
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@ Known bound: can satisfy at least m/2 clauses. Why?
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MAX-SAT ( 'Standard’ parameterization)
Instance: A CNF formula F with n variables, m clauses.
Parameter: k.

Question: Can we satisfy > k clauses?

@ Known bound: can satisfy at least m/2 clauses. Why?

This is a lower bound on the average number of satisfied clauses in
a random assignment.

Anders Yeo Max-Lin Parameterized Above Average



Parameterizing above tight bounds: Example Max-Sat

Parameterized Above Tight Bounds: Max-Sat

MAX-SAT ( 'Standard’ parameterization)
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Parameterized Above Tight Bounds: Max-Sat

MAX-SAT ( 'Standard’ parameterization)

Instance: A CNF formula F with n variables, m clauses.
Parameter: k.

Question: Can we satisfy > k clauses?

@ Known bound: can satisfy at least m/2 clauses. Why?

This is a lower bound on the average number of satisfied clauses in
a random assignment.

@ So it is trivially FPT. Why?
If k < m/2 return YES; otherwise m < 2k which is a kernel.
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Parameterized Above Tight Bounds: Max-Sat

MAX-SAT ( 'Standard’ parameterization)

Instance: A CNF formula F with n variables, m clauses.
Parameter: k.

Question: Can we satisfy > k clauses?

@ Known bound: can satisfy at least m/2 clauses. Why?

This is a lower bound on the average number of satisfied clauses in
a random assignment.

@ So it is trivially FPT. Why?
If k < m/2 return YES; otherwise m < 2k which is a kernel.

@ So what does this mean?
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Parameterized Above Tight Bounds: Max-Sat

MAX-SAT ( 'Standard’ parameterization)

Instance: A CNF formula F with n variables, m clauses.
Parameter: k.

Question: Can we satisfy > k clauses?

@ Known bound: can satisfy at least m/2 clauses. Why?
This is a lower bound on the average number of satisfied clauses in
a random assignment.

@ So it is trivially FPT. Why?
If k < m/2 return YES; otherwise m < 2k which is a kernel.

@ So what does this mean?

Such a kernel is not very useful: There is no reductions and k
(> m/2) is large for all non trivial cases!
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Parameterized Above Tight Bounds: Max-Sat

@ A better parameterization:

MAX-SAT parameterized above m/2
Instance: A CNF formula F with n variables, m clauses.

Parameter: k.

Question: Can we satisfy > m/2 + k clauses?
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Parameterized Above Tight Bounds: Max-Sat

@ A better parameterization:

MAX-SAT parameterized above m/2
Instance: A CNF formula F with n variables, m clauses.

Parameter: k.

Question: Can we satisfy > m/2 + k clauses?

@ In this case k is smaller!
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Parameterized Above Tight Bounds: Max-Sat

@ A better parameterization:

MAX-SAT parameterized above m/2
Instance: A CNF formula F with n variables, m clauses.

Parameter: k.

Question: Can we satisfy > m/2 + k clauses?

@ In this case k is smaller!

@ And the problem becomes more interesting!
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Parameterized Above Tight Bounds: Max-Sat

@ The above problem was solved by Mahajan and Raman, who
gave a linear kernel.
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Parameterized Above Tight Bounds: Max-Sat

@ The above problem was solved by Mahajan and Raman, who
gave a linear kernel.
@ It is still relatively easy due to the following:

@ Reduce an instance by removing any two clauses of the form
(x) and (%).
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Parameterized Above Tight Bounds: Max-Sat

@ The above problem was solved by Mahajan and Raman, who
gave a linear kernel.

@ It is still relatively easy due to the following:

@ Reduce an instance by removing any two clauses of the form
(x) and (%).

@ Repeatadly doing this creates an instance of 2-satisfiable-SAT
and does not change the problem.
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Parameterized Above Tight Bounds: Max-Sat

@ The above problem was solved by Mahajan and Raman, who
gave a linear kernel.
@ It is still relatively easy due to the following:
@ Reduce an instance by removing any two clauses of the form
(x) and (%).
@ Repeatadly doing this creates an instance of 2-satisfiable-SAT
and does not change the problem.
o However qASm becomes a tight lower bound on the number of
satisfied clausses, where ¢ = (v/5 —1)/2 ~ 0.618.

Anders Yeo Max-Lin Parameterized Above Average



Parameterizing above tight bounds: Example Max-Sat

Parameterized Above Tight Bounds: Max-Sat

@ The above problem was solved by Mahajan and Raman, who
gave a linear kernel.

@ It is still relatively easy due to the following:

@ Reduce an instance by removing any two clauses of the form
(x) and (%).

@ Repeatadly doing this creates an instance of 2-satisfiable-SAT
and does not change the problem.

o However qASm becomes a tight lower bound on the number of

satisfied clausses, where ¢ = (v/5 —1)/2 ~ 0.618.
@ Therefore there is a kernel.

Proof: If k < (¢ — 2)m answer YES.
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Parameterized Above Tight Bounds: Max-Sat

@ The above problem was solved by Mahajan and Raman, who
gave a linear kernel.
@ It is still relatively easy due to the following:
@ Reduce an instance by removing any two clauses of the form

(x) and (%).

@ Repeatadly doing this creates an instance of 2-satisfiable-SAT
and does not change the problem.

o However qASm becomes a tight lower bound on the number of
satisfied clausses, where ¢ = (v/5 —1)/2 ~ 0.618.

@ Therefore there is a kernel.
Proof: If k < (¢ — —)m answer YES.

Otherwise m < k/(¢ - 1)
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Parameterized Above Tight Bounds: Max-Sat

@ The above problem was solved by Mahajan and Raman, who
gave a linear kernel.
@ It is still relatively easy due to the following:
@ Reduce an instance by removing any two clauses of the form

(x) and (%).

@ Repeatadly doing this creates an instance of 2-satisfiable-SAT
and does not change the problem.

o However qASm becomes a tight lower bound on the number of
satisfied clausses, where ¢ = (v/5 —1)/2 ~ 0.618.

@ Therefore there is a kernel.
Proof: If k < (¢ — —)m answer YES.
Otherwise m < k/(¢ - 1)

@ This gives rise to a new problem.....
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Parameterized Above Tight Bounds: Max-Sat

MAX-2-SATISFIABLE-S AT parameterized above quSm

Instance: A CNF formula F with n variables, m clauses and any two
clauses can be simultaniously satisfied.

Parameter: k.

Question: Can we satisfy > ¢m + k clauses?
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Parameterized Above Tight Bounds: Max-Sat

MAX-2-SATISFIABLE-S AT parameterized above quSm

Instance: A CNF formula F with n variables, m clauses and any two
clauses can be simultaniously satisfied.

Parameter: k.

Question: Can we satisfy > ¢m + k clauses?

@ The above problem was shown to have a kernel with at most
O(k) variables, by Crowston, Gutin, Jones and AY.
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Parameterized Above Tight Bounds: Max-Sat

MAX-2-SATISFIABLE-S AT parameterized above quSm

Instance: A CNF formula F with n variables, m clauses and any two
clauses can be simultaniously satisfied.

Parameter: k.

Question: Can we satisfy > ¢m + k clauses?

@ The above problem was shown to have a kernel with at most
O(k) variables, by Crowston, Gutin, Jones and AY.

@ This approach does not seem to be eaily extendable.
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Parameterized Above Tight Bounds: In general

@ In problems parameterized above (below) tight bounds,
we take a maximization (minimization) problem with a tight
lower (upper) bound, and ask if we can get k above (below)
this bound.
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Parameterized Above Tight Bounds: In general

@ In problems parameterized above (below) tight bounds,
we take a maximization (minimization) problem with a tight
lower (upper) bound, and ask if we can get k above (below)

this bound.
@ Ensures the parameter is small in interesting cases.
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Parameterized Above Tight Bounds: In general

@ In problems parameterized above (below) tight bounds,
we take a maximization (minimization) problem with a tight
lower (upper) bound, and ask if we can get k above (below)
this bound.

@ Ensures the parameter is small in interesting cases.

@ First introduced in a paper by Mahajan and Raman published
in 1999.
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Parameterizing above tight bounds: Example Max-Sat

Parameterized Above Tight Bounds: In general

@ In problems parameterized above (below) tight bounds,
we take a maximization (minimization) problem with a tight
lower (upper) bound, and ask if we can get k above (below)
this bound.

@ Ensures the parameter is small in interesting cases.

@ First introduced in a paper by Mahajan and Raman published
in 1999.

@ We say “above average” when the tight lower bound is the
expectation of a random assignment.
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Max-Lin-AA

Max-Lin Above Average

@ MAX-LIN problem: given a system Z of m linear equations in
n variables over F».
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Max-Lin-AA

Max-Lin Above Average

@ MAX-LIN problem: given a system Z of m linear equations in
n variables over F».

@ [, is the Galois field with 2 elements (1 + 1 = 0).

Anders Yeo Max-Lin Parameterized Above Average



Max-Lin-AA

Max-Lin Above Average

@ MAX-LIN problem: given a system Z of m linear equations in
n variables over F».

o [Fy is the Galois field with 2 elements (141 = 0).
@ Each equation is assigned a positive integer weight.
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Max-Lin-AA

Max-Lin Above Average

@ MAX-LIN problem: given a system Z of m linear equations in
n variables over F».

o [Fy is the Galois field with 2 elements (141 = 0).

@ Each equation is assigned a positive integer weight.

@ We wish to find an assignment of values to the variables in
order to maximize the total weight of satisfied equations.

21:1
z1+22=0
22—1—23:1

zZ1+z2+z3=1
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Max-Lin-AA

Max-Lin Above Average

@ MAX-LIN problem: given a system Z of m linear equations in
n variables over F».

o [Fy is the Galois field with 2 elements (141 = 0).

@ Each equation is assigned a positive integer weight.

@ We wish to find an assignment of values to the variables in
order to maximize the total weight of satisfied equations.

21:1
z1+22=0
22—1—23:1

zZ1+z2+z3=1

@ Known bound: can satisfy at least W /2, where W = total
weight of equations.
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Max-Lin-AA

Tightness of W/ /2 bound

@ W/2 is a tight lower bound on max(Z).

°eg.
21:0
21:1
z+2z3=0
22—1—23:1
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Max-Lin-AA

Tightness of W/ /2 bound

@ W/2 is a tight lower bound on max(Z).

°eg.
21:0
21:1
z+2z3=0
22—1—23:1

Theorem (Hastad, 2001)

For any e > 0, it is impossible to decide in polynomial time
between instances of MAX-LIN in which max(Z) < (1/2 4 €)m,
and instances in which max(Z) > (1 — €)m, unless P = NP.
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Max-Lin-AA

Max-Lin Above Average

@ Let max(Z) denote the maximum possible weight of satisfied
equations in Z.

MAX-LIN ABOVE AVERAGE (MAX-LIN-AA)

Instance: A system Z of m linear equations in n variables over FFy,
with total weight W.

Parameter: k.
Question: Is max(Z) > W /2 + k?

Anders Yeo Max-Lin Parameterized Above Average



Max-Lin-AA

Max-Lin Above Average

@ Let max(Z) denote the maximum possible weight of satisfied
equations in Z.

MAX-LIN ABOVE AVERAGE (MAX-LIN-AA)

Instance: A system Z of m linear equations in n variables over FFy,
with total weight W.

Parameter: k.
Question: Is max(Z) > W /2 + k?

@ Mahajan, Raman & Sikdar (2006) asked if MAX-LIN-AA is
FPT.
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Max-Lin-AA

Motivation

MAX-r-LIN is equivalent to MAX-LIN except all equations have
at most r variables.

MAX-LIN and MAX-r-LIN are important problems, for many
reasons....
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at most r variables.
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@ Hastad said they were as basic as satisfiability.
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Motivation

MAX-r-LIN is equivalent to MAX-LIN except all equations have
at most r variables.

MAX-LIN and MAX-r-LIN are important problems, for many
reasons....

@ Hastad said they were as basic as satisfiability.

@ They are important tools for constraint satisfaction problems
(such as MAXSAT or MAX-r-SAT).

@ So MAX-LIN and MAX-r-LIN have attracted significant
interest in algorithmics.
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Max-Lin-AA

Motivation

MAX-r-LIN is equivalent to MAX-LIN except all equations have
at most r variables.

MAX-LIN and MAX-r-LIN are important problems, for many
reasons....

@ Hastad said they were as basic as satisfiability.

@ They are important tools for constraint satisfaction problems
(such as MAXSAT or MAX-r-SAT).

@ So MAX-LIN and MAX-r-LIN have attracted significant
interest in algorithmics.

@ A number of papers made progress on MAX-r-LIN-AA
before MAX-LIN-A A was shown to be FPT.
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FPT Results

Overview
[*]
[*]
[*]
[*)]
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FPT Results

Notation

@ For a given assignment, the excess = total weight of satisfied
equations — total weight of falsified equations.

Anders Yeo Max-Lin Parameterized Above Average



FPT Results

Notation

@ For a given assignment, the excess = total weight of satisfied
equations — total weight of falsified equations.

@ MAX-LIN-AA is equivalent to asking if the max excess is at

least 2k.
Example:
zZ1 =
zZy = 1
z1+2=1
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FPT Results

Reduction Rules

Reduction Rule (LHS rule)

Suppose we have two equations, ) ;s zi = b1 (weight wy) and
Y ics Zi = by (weight wy), where wy > wy.

If by = by, replace with one equation )", ¢ zi = by (weight wi + w).
If by # by, replace with one equation Zies z; = by (weight wi — wy).

z1+z=1 (w=1) =
z1+2=1 (W:2)
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FPT Results

Reduction Rules

Reduction Rule (LHS rule)

Suppose we have two equations, ) ;s zi = b1 (weight wy) and
Y ics Zi = by (weight wy), where wy > wy.

If by = by, replace with one equation )", ¢ zi = by (weight wi + w).
If by # by, replace with one equation Zies z; = by (weight wi — wy).

z1+z=1 (w=1l) = zn+zn=1 (w =3)
z1+2=1 (W:2)
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FPT Results

Reduction Rules

Reduction Rule (LHS rule)

Suppose we have two equations, ) ;s zi = b1 (weight wy) and
Y ics Zi = by (weight wy), where wy > wy.

If by = by, replace with one equation )", ¢ zi = by (weight wi + w).
If by # by, replace with one equation Zies z; = by (weight wi — wy).

z1+z=1 (w=1l) = zn+zn=1 (w =3)
z1+2=1 (W:2)

z+z3+2,=0 (W:3) =
Z+zz+z4=1 (W:2)
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FPT Results

Reduction Rules

Reduction Rule (LHS rule)

Suppose we have two equations, ) ;s zi = b1 (weight wy) and
Y ics Zi = by (weight wy), where wy > wy.

If by = by, replace with one equation )", ¢ zi = by (weight wi + w).
If by # by, replace with one equation Zies z; = by (weight wi — wy).

z1+z=1 (w=1l) = zn+zn=1 (w =3)
z1+2=1 (W:2)

n+z+z=0 (w=3) = zn+zn+z=0 (w=1)
Zo+zz3+z4=1 (W:2)

@ Allows us to assume no two equations have the same
left-hand side.
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FPT Results

Reduction Rules

Reduction Rule (Rank rule)

Let A be the matrix over F, corresponding to the set of equations
in I, such that aj; = 1 if z; appears in equation j, and 0 otherwise.
Let t = rankA and suppose columns a, ..., a" of A are linearly
independent. Then delete all variables not in {z;,...,z,} from the
equations of S.

21+Z3+Z4:1 1 011
z+z3+2z2=0 = 0111 =
Z2+2z3=0 0110
z1+2=1 1 1 00
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FPT Results

Reduction Rules

Reduction Rule (Rank rule)

Let A be the matrix over F, corresponding to the set of equations
in I, such that aj; = 1 if z; appears in equation j, and 0 otherwise.
Let t = rankA and suppose columns a, ..., a" of A are linearly
independent. Then delete all variables not in {z;,...,z,} from the
equations of S.

21+Z3—|—Z4:1 1 0 11
Zo+z3+22=0 = 0111 =
Z2+2z3=0 0110
z1+2=1 1100
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FPT Results

Reduction Rules

Reduction Rule (Rank rule)

Let A be the matrix over F, corresponding to the set of equations
in I, such that aj; = 1 if z; appears in equation j, and 0 otherwise.
Let t = rankA and suppose columns a, ..., a" of A are linearly
independent. Then delete all variables not in {z;,...,z,} from the
equations of S.

z21+z3+2z4=1 1 0 11 zZ14+2z4=1
Zo+z3+22=0 = 0111 = z+z=0
z+23=0 0110 z =0

z1+2z2=1 1100 z1+2=1
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FPT Results

Reduction Rules

Why does the Rank Rule work?

z 7
z1+z3+z3=1 1 0 1 1 z14+z4=1
2+z3+2=0 = 01 11 = z+z2=0
zZ+2z3=0 01 10 Zy =
z1+z=1 1100 z+z=1
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FPT Results

Reduction Rules

Why does the Rank Rule work?

z 7
z1+z3+z3=1 1 0 1 1 z14+z4=1
2+z3+2=0 = 01 11 = z+z2=0
zZ+2z3=0 01 10 =0
z1+z=1 1100 z+z=1

@ Set z3 = 0 and add a solution for Z’ to get a solution of equal
weight for Z.
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FPT Results

Reduction Rules

Why does the Rank Rule work?

z 7
z1+z3+z3=1 1 0 1 1 z14+z4=1
2+z3+2=0 = 01 11 = z+z2=0
zZ+2z3=0 01 10 =0
z1+z=1 1100 z+z=1

@ Set z3 = 0 and add a solution for Z’ to get a solution of equal
weight for Z.

@ Consider a solution for Z.
If z3 =1, then change the values of z1, 25, z3 to get an
equivalent solution with z3 = 0.
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FPT Results

Reduction Rules

Why does the Rank Rule work?

z 7
z1+z3+z3=1 1 0 1 1 z14+z4=1
2+z3+2=0 = 01 11 = z+z2=0
zZ+2z3=0 01 10 =0
z1+z=1 1100 z+z=1

@ Set z3 = 0 and add a solution for Z’ to get a solution of equal
weight for Z.

@ Consider a solution for Z.
If z3 =1, then change the values of z1, 25, z3 to get an
equivalent solution with z3 = 0. Why does this work?
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FPT Results

Reduction Rules

Why does the Rank Rule work?

z 7
z1+z3+z3=1 1 0 1 1 z14+z4=1
2+z3+2=0 = 01 11 = z+z2=0
zZ+2z3=0 01 10 =0
z1+z=1 1100 z+z=1

@ Set z3 = 0 and add a solution for Z’ to get a solution of equal
weight for Z.

@ Consider a solution for Z.
If z3 =1, then change the values of z1, 25, z3 to get an
equivalent solution with z3 = 0. Why does this work?
So z3 = 0, and we have a solution for Z’ of equal weight.
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FPT Results

Reduction rule

@ What we would like to show: For reduced instances, if m is
large enough the answer is YES.

@ Sadly this is not true...
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FPT Results

Reduction rule

@ What we would like to show: For reduced instances, if m is
large enough the answer is YES.

@ Sadly this is not true...

@ Consider a 'complete’ system on n variables with all RHS = 1.

X1 =1
X2 =1
X1+ X2 =1
X3 =1
X1+ X3 =1
X2 + X3 =1
x1+x+x3 =1
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FPT Results

Reduction rule

@ What we would like to show: For reduced instances, if m is
large enough the answer is YES.

@ Sadly this is not true...

@ Consider a 'complete’ system on n variables with all RHS = 1.

X1 =1
X2 =1
X2 =
X3 =
X3 =
X0+ X3 = 1
xp+x3 =0
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FPT Results

Reduction rule

@ What we would like to show: For reduced instances, if m is
large enough the answer is YES.

@ Sadly this is not true...

@ Consider a 'complete’ system on n variables with all RHS = 1.
X1 =1
X2 =
X2 =0

@ The maximum excess is 1 but m =2" — 1.
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FPT Results

Main Results

@ Theorem A: [Crowston, Fellows, Gutin, Jones, Rosamond,
Thomasse, Yeo, 2011] MAX-LIN-AA can be solved in time
O*(n2k).

@ Theorem B: [Crowston, Gutin, Jones, Kim, Ruzsa, 2010] If Z
is reduced and 2k < m < 2"/2k then 7 is a YES-instance.

The above results can be combined to show the following

Theorem (Crowston, Fellows, Gutin, Jones, Rosamond,

Thomasse, Yeo, 2011)

MAX-LIN-AA is fixed-parameter tractable, and has a kernel with
O(k? log k) variables.
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FPT Results

Proof of Theorem A (Algorithm 7)

Algorithm #H (More detail)

© Choose an equation e, which can be written as Zies zi = b,
with weight w(e).

©Q Choose some j € S.
© Simplify the system under the assumption that e is true:

@ Remove equation e.

@ Perform the substitution z; = Y(ie s\ jZi + b forall
equations containing z;.

© Reduce the system by LHS Rule.

Q Reduce k by w(e)/2.
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FPT Results

Example

n+zz+z5=1

Z+z3=1
z1+2=0
3+ z3+2z5=1
z1+24=0

Z1+2+z5=1
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FPT Results

Example

nt+znt+z=1 = zn=z3+z5+1

Z+z3=1
z1+2=0
3+ z3+2z5=1
z1+24=0

Z1+2+z5=1
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FPT Results

Example

nt+znt+z=1 = zn=z3+z5+1

Z+z3=1

z1+2=0 = znt+z+1+2=0
3+ z3+2z5=1

z1+23=0 z3+2z5+14+22=0

4

Z1+2+z5=1 nt+zz+1+2+2z5=1
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FPT Results

Example

n+zntzn=1 =
Z+z3=1
z21+2=0 =
zz+z4+2z5=1
z1+23=0

Z1+2+z5=1

Now we simplify......

n=z3+2z5+1

zz+z+1+2=0

z3+2z5+14+2,=0
nt+zz+1+2+2z5=1

S

+z3=1
Z+z3+2z5=1
ZZt+z4+2z5=1
ntzt+zs=1
z+2z3=0
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Example

(21+Z3+Z5:1)

Z+z3+z5=1
ntz+2z5=1 (w=2)
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Example

(21+Z3+Z5:1)

Z+z3+z5=1
ntz+2z5=1 (w=2)

So under the assumption that e = "z; + z3 + z5 = 1" is true we
have reduced Z to a smaller problem Z’ such that we can do
w(e)/2 more above average in Z than in 7.
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Example

(21+Z3+Z5:1)

Z+z3+z5=1
ntz+2z5=1 (w=2)

So under the assumption that e = "z; + z3 + z5 = 1" is true we
have reduced Z to a smaller problem Z’ such that we can do
w(e)/2 more above average in Z than in Z'. Why?
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Example

(21+Z3+Z5:1)

Z+z3+z5=1
ntz+2z5=1 (w=2)

So under the assumption that e = "z; + z3 + z5 = 1" is true we
have reduced Z to a smaller problem Z’ such that we can do
w(e)/2 more above average in Z than in Z'. Why?

Answer: For any solution of 7/, set z; = z3 + z5 + 1.....
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FPT Results

So what does Algorithm #H give us

Assume our instance is reduced.
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So what does Algorithm #H give us

Assume our instance is reduced.

@ If we can mark equations of total weight R then the maximum
excess is at least R (we can get at least R/2 above the
average).
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So what does Algorithm #H give us

Assume our instance is reduced.

@ If we can mark equations of total weight R then the maximum
excess is at least R (we can get at least R/2 above the
average).

@ If the maximum excess is R then if we keep choosing
equations which are true in a given optimal solution, we will
mark equations of total weight R.
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FPT Results

So what does Algorithm #H give us

Assume our instance is reduced.

@ If we can mark equations of total weight R then the maximum
excess is at least R (we can get at least R/2 above the
average).

@ If the maximum excess is R then if we keep choosing
equations which are true in a given optimal solution, we will
mark equations of total weight R.

How can this be used to prove Theorem A......
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FPT Results

Proof of Theorem A

Theorem A [Crowston, Fellows, Gutin, Jones, Rosamond,
Thomasse, Yeo, 2011] There exists an O*(n?k)-time algorithm for
MaXx-LIN-AA.

@ Proof (sketch):
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Proof of Theorem A

Theorem A [Crowston, Fellows, Gutin, Jones, Rosamond,
Thomasse, Yeo, 2011] There exists an O*(n?k)-time algorithm for
MaXx-LIN-AA.

@ Proof (sketch): Let e,... e, be a set of equations in Z
which are 'independent’.
(LHSs correspond to independent rows in matrix A.)
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Proof of Theorem A

Theorem A [Crowston, Fellows, Gutin, Jones, Rosamond,
Thomasse, Yeo, 2011] There exists an O*(n?k)-time algorithm for
MaXx-LIN-AA.

@ Proof (sketch): Let e,... e, be a set of equations in Z
which are 'independent’.
(LHSs correspond to independent rows in matrix A.)

@ Check unique assignment in which e, ... e, all false. If this
assignment achieves excess 2k, return YES.
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Proof of Theorem A

Theorem A [Crowston, Fellows, Gutin, Jones, Rosamond,
Thomasse, Yeo, 2011] There exists an O*(n?k)-time algorithm for
MaXx-LIN-AA.

@ Proof (sketch): Let e,... e, be a set of equations in Z
which are 'independent’.
(LHSs correspond to independent rows in matrix A.)

@ Check unique assignment in which e, ... e, all false. If this
assignment achieves excess 2k, return YES.

@ Otherwise, one of ey, ... e, must be true.

@ Branch n ways. In branch i mark equation €; in Algorithm
and solve resulting system.
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Proof of Theorem A

Theorem A [Crowston, Fellows, Gutin, Jones, Rosamond,
Thomasse, Yeo, 2011] There exists an O*(n?k)-time algorithm for
MaXx-LIN-AA.

@ Proof (sketch): Let e,... e, be a set of equations in Z
which are 'independent’.
(LHSs correspond to independent rows in matrix A.)

@ Check unique assignment in which e, ... e, all false. If this
assignment achieves excess 2k, return YES.

@ Otherwise, one of ey, ... e, must be true.

@ Branch n ways. In branch i mark equation €; in Algorithm

and solve resulting system.

@ Since we can stop after 2k iterations of H, search tree has n2k

leaves.
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FPT Results

Proof of Theorem B

Theorem B: [Crowston, Gutin, Jones, Kim, Ruzsa, 2010] If Z is
reduced and 2k < m < 2”/2k, then 7 is a YES-instance.
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Proof of Theorem B

Theorem B: [Crowston, Gutin, Jones, Kim, Ruzsa, 2010] If Z is
reduced and 2k < m < 2”/2k, then 7 is a YES-instance.

@ If we can run algorithm H for 2k iterations, we can get an
excess of at least 2k.
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Proof of Theorem B

Theorem B: [Crowston, Gutin, Jones, Kim, Ruzsa, 2010] If Z is
reduced and 2k < m < 2”/2k, then 7 is a YES-instance.

@ If we can run algorithm H for 2k iterations, we can get an
excess of at least 2k.

@ Problem: After running H a few times all the remaining
equations may 'cancel out’ under LHS Rule.
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Proof of Theorem B

Theorem B: [Crowston, Gutin, Jones, Kim, Ruzsa, 2010] If Z is
reduced and 2k < m < 2”/2k, then 7 is a YES-instance.

@ If we can run algorithm H for 2k iterations, we can get an
excess of at least 2k.

@ Problem: After running H a few times all the remaining
equations may 'cancel out’ under LHS Rule.

@ One solution: M-sum-free vectors.
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FPT Results

Proof of Theorem B

Theorem B: [Crowston, Gutin, Jones, Kim, Ruzsa, 2010] If Z is
reduced and 2k < m < 2”/2k, then 7 is a YES-instance.

@ If we can run algorithm H for 2k iterations, we can get an
excess of at least 2k.

@ Problem: After running H a few times all the remaining
equations may 'cancel out’ under LHS Rule.

@ One solution: M-sum-free vectors.
@ Let K and M be sets of vectors in F5 such that K C M.

@ K is M-sum-free if no sum of two or more vectors in K is
equal to a vector in M.
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FPT Results

Proof of Theorem B

Lemma View the LHSs of equations in I as a set M of vectors in
F5. Let eq,...e: be a set of equations in I that correspond to an
M-sum-free set of vectors. Then we can run algorithm H for t
iterations, choosing equations e, ... e; in turn, and get an excess
of at least t.

Why?
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FPT Results

Proof of Theorem B

Lemma View the LHSs of equations in I as a set M of vectors in
F5. Let eq,...e: be a set of equations in I that correspond to an
M-sum-free set of vectors. Then we can run algorithm H for t
iterations, choosing equations e, ... e; in turn, and get an excess
of at least t.

Why? Assume for the sake of contradiction e; gets cancelled out.
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Proof of Theorem B

Lemma View the LHSs of equations in I as a set M of vectors in
F5. Let eq,...e: be a set of equations in I that correspond to an
M-sum-free set of vectors. Then we can run algorithm H for t
iterations, choosing equations e, ... e; in turn, and get an excess
of at least t.

Why? Assume for the sake of contradiction e; gets cancelled out.

@ Then by picking ey, ..., e—1 in Algorithm H we have created
a different equation, say f;, with the same LHS as ¢;.
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FPT Results

Proof of Theorem B

Lemma View the LHSs of equations in I as a set M of vectors in
F5. Let eq,...e: be a set of equations in I that correspond to an
M-sum-free set of vectors. Then we can run algorithm H for t

iterations, choosing equations e, ... e; in turn, and get an excess
of at least t.

Why? Assume for the sake of contradiction e; gets cancelled out.

@ Then by picking ey, ..., e—1 in Algorithm H we have created
a different equation, say f;, with the same LHS as ¢;.

@ So considering LHSs we get: e; = f; = ¢j; + eJ2 +-+e,+€
for some {j1,...,ja} €{1,...,i — 1} and €’ is any equation.
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Proof of Theorem B

Lemma View the LHSs of equations in I as a set M of vectors in
F5. Let eq,...e: be a set of equations in I that correspond to an
M-sum-free set of vectors. Then we can run algorithm H for t
iterations, choosing equations e, ... e; in turn, and get an excess
of at least t.

Why? Assume for the sake of contradiction e; gets cancelled out.

@ Then by picking ey, ..., e—1 in Algorithm H we have created
a different equation, say f;, with the same LHS as ¢;.

@ So considering LHSs we get: e; = f; = ¢j; + eJ2 +-+e,+€
for some {j1,...,ja} €{1,...,i — 1} and €’ is any equation.

@ However this implies that &' = ej, + e, +---+€j, + ¢, a
contradiction.
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FPT Results

Proof of Theorem B

Lemma C [Crowston, Gutin, Jones, Kim and Ruzsa (2010)] Let M
be a proper subset in F5 such that span(M) =FJ. If k is a
positive integer and t < |[M| < 2"/t then, in time |M|°() we can
find an M-sum-free subset K of M s.t. |K| = t.

Theorem B: If 2k < m < 2”/2k, then 7 is a YES-instance.
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Proof of Theorem B

Lemma C [Crowston, Gutin, Jones, Kim and Ruzsa (2010)] Let M
be a proper subset in F5 such that span(M) =FJ. If k is a
positive integer and t < |[M| < 2"/t then, in time |M|°() we can
find an M-sum-free subset K of M s.t. |K| = t.

Theorem B: If 2k < m < 2”/2k, then 7 is a YES-instance.

@ Suppose Z is reduced and 2k < m < 2"/2k,
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Proof of Theorem B

Lemma C [Crowston, Gutin, Jones, Kim and Ruzsa (2010)] Let M
be a proper subset in F5 such that span(M) =FJ. If k is a
positive integer and t < |[M| < 2"/t then, in time |M|°() we can
find an M-sum-free subset K of M s.t. |K| = t.

Theorem B: If 2k < m < 2”/2k, then 7 is a YES-instance.

@ Suppose Z is reduced and 2k < m < 2"/2k,

@ Let M be the set of vectors in F5 corresponding to LHSs of
equations in 7
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FPT Results

Proof of Theorem B

Lemma C [Crowston, Gutin, Jones, Kim and Ruzsa (2010)] Let M
be a proper subset in F5 such that span(M) =FJ. If k is a
positive integer and t < |[M| < 2"/t then, in time |M|°() we can
find an M-sum-free subset K of M s.t. |K| = t.

Theorem B: If 2k < m < 2”/2k, then 7 is a YES-instance.

@ Suppose Z is reduced and 2k < m < 2"/2k,

@ Let M be the set of vectors in F5 corresponding to LHSs of
equations in 7

@ Find an M-sum-free subset K of M s.t. |K| = 2k.

Anders Yeo Max-Lin Parameterized Above Average
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Proof of Theorem B

Lemma C [Crowston, Gutin, Jones, Kim and Ruzsa (2010)] Let M
be a proper subset in F5 such that span(M) =FJ. If k is a
positive integer and t < |[M| < 2"/t then, in time |M|°() we can
find an M-sum-free subset K of M s.t. |K| = t.

Theorem B: If 2k < m < 2”/2k, then 7 is a YES-instance.

@ Suppose Z is reduced and 2k < m < 2"/2k,

@ Let M be the set of vectors in F5 corresponding to LHSs of
equations in 7

@ Find an M-sum-free subset K of M s.t. |K| = 2k.

@ Let e, ... epk be the equations corresponding to K, and run
algorithm H marking ey, ... ey in turn.
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Proof of Theorem B

Lemma C [Crowston, Gutin, Jones, Kim and Ruzsa (2010)] Let M
be a proper subset in F5 such that span(M) =FJ. If k is a
positive integer and t < |[M| < 2"/t then, in time |M|°() we can
find an M-sum-free subset K of M s.t. |K| = t.

Theorem B: If 2k < m < 2”/2k, then 7 is a YES-instance.

@ Suppose Z is reduced and 2k < m < 2"/2k,

@ Let M be the set of vectors in F5 corresponding to LHSs of
equations in 7

@ Find an M-sum-free subset K of M s.t. |K| = 2k.

@ Let e, ... epk be the equations corresponding to K, and run
algorithm H marking ey, ... ey in turn.

@ Then we get excess 2k, so the answer is YES.
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FPT Results

Recall Theorem A and Theorem B

Theorem A: [Crowston, Fellows, Gutin, Jones, Rosamond,
Thomasse, Yeo, 2011] MAX-LIN-AA can be solved in time
O*(n2k).

Theorem B: [Crowston, Gutin, Jones, Kim, Ruzsa, 2010] If Z is
reduced and 2k < m < 2"/2k then T is a YES-instance.
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FPT Results

Proof of our main result

Theorem (Crowston, Fellows, Gutin, Jones, Rosamond,
Thomasse, Yeo, 2011)

MAX-LIN-AA has a kernel with at most O(k? log k) variables.

@ Proof:
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FPT Results

Proof of our main result

Theorem (Crowston, Fellows, Gutin, Jones, Rosamond,
Thomasse, Yeo, 2011)

MAX-LIN-AA has a kernel with at most O(k? log k) variables.

@ Proof: Let Z be a reduced system.
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FPT Results

Proof of our main result

Theorem (Crowston, Fellows, Gutin, Jones, Rosamond,
Thomasse, Yeo, 2011)

MAX-LIN-AA has a kernel with at most O(k? log k) variables.

@ Proof: Let Z be a reduced system.

@ Case 1: m > n?k. Then using O*(n?) algorithm, can solve in
polynomial time.
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FPT Results

Proof of our main result

Theorem (Crowston, Fellows, Gutin, Jones, Rosamond,
Thomasse, Yeo, 2011)

MAX-LIN-AA has a kernel with at most O(k? log k) variables.

@ Proof: Let Z be a reduced system.

@ Case 1: m > n?k. Then using O*(n?) algorithm, can solve in
polynomial time.

@ Case 2: 2k<m< on/2k By earlier Theorem return YES.
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FPT Results

Proof of our main result

Theorem (Crowston, Fellows, Gutin, Jones, Rosamond,
Thomasse, Yeo, 2011)

MAX-LIN-AA has a kernel with at most O(k? log k) variables.

Proof: Let Z be a reduced system.

Case 1: m > n?*. Then using O*(n?*) algorithm, can solve in
polynomial time.

(4]

Case 2: 2k < m< on/2k By earlier Theorem return YES.

Case 3: m < 2k. Since 7 reduced by Rank Rule, n < m so
n = O(k?log k).
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FPT Results

Proof of our main result

Theorem (Crowston, Fellows, Gutin, Jones, Rosamond,
Thomasse, Yeo, 2011)

MAX-LIN-AA has a kernel with at most O(k? log k) variables.

Proof: Let Z be a reduced system.

Case 1: m > n?*. Then using O*(n?*) algorithm, can solve in
polynomial time.

(4]

Case 2: 2k < m< on/2k By earlier Theorem return YES.

Case 3: m < 2k. Since 7 reduced by Rank Rule, n < m so
n = O(k?log k).

Only remaining case is 2"/2k < m < n2k.

(4]
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FPT Results

Proof of our main result (continued)

@ Suppose 272k < m < n®_ Then n/2k < 2k log n.
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Proof of our main result (continued)

@ Suppose 272k < m < n®_ Then n/2k < 2k log n.
@ So n < 4k?log n.
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FPT Results

Proof of our main result (continued)

@ Suppose 272k < m < n®_ Then n/2k < 2k log n.
@ So n < 4k?log n.
@ In order to bound log n we note that \/n < n/logn < 4k°.
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FPT Results

Proof of our main result (continued)

@ Suppose 272k < m < n®_ Then n/2k < 2k log n.

@ So n < 4k?log n.

@ In order to bound log n we note that \/n < n/logn < 4k?.
@ Therefore n < (2k)* and log n < 4log(2k)
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Proof of our main result (continued)

(*]
(]
(*]
(*]
o
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Suppose 2"/ < m < n?*. Then n/2k < 2klog n.

So n < 4k?log n.

In order to bound log n we note that \/n < n/logn < 4k°.
Therefore n < (2k)* and log n < 4 log(2k)

So n < 4k?log n < 16k?(log k + 1)



FPT Results

Proof of our main result (continued)
o
o
o
o
[*]
[*]
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Suppose 2"/ < m < n?*. Then n/2k < 2klog n.

So n < 4k?log n.

In order to bound log n we note that \/n < n/logn < 4k°.
Therefore n < (2k)* and log n < 4 log(2k)

So n < 4k?log n < 16k?(log k + 1)

So n = O(k?log k).



FPT Results

Our Main Result!

Recall our main result.

Theorem (Crowston, Fellows, Gutin, Jones, Rosamond,

Thomasse, Yeo, 2011)
MAX-LIN-AA has a kernel with at most O(k? log k) variables.

@ This kernel has a polynomial number of variables, but it is not
a polynomial kernel!
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FPT Results

Our Main Result!

Recall our main result.

Theorem (Crowston, Fellows, Gutin, Jones, Rosamond,

Thomasse, Yeo, 2011)
MAX-LIN-AA has a kernel with at most O(k? log k) variables.

@ This kernel has a polynomial number of variables, but it is not
a polynomial kernel!

@ Number of equations may be O(2").
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FPT Results

Our Main Result!

Recall our main result.

Theorem (Crowston, Fellows, Gutin, Jones, Rosamond,

Thomasse, Yeo, 2011)
MAX-LIN-AA has a kernel with at most O(k? log k) variables.

@ This kernel has a polynomial number of variables, but it is not
a polynomial kernel!

@ Number of equations may be O(2").

@ Open question: Does MAX-LIN-AA have a polynomial
kernel?
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FPT Results

Application of our Main Result

Theorem (Crowston, Fellows, Gutin, Jones, Rosamond,
Thomasse, Yeo, 2011)

MAX-LIN-AA can be solved in time O*(ZO(kbg k)).

@ Proof: Assume Z is an irreducible system with m equations
and n variables.

@ In polynomial time, we either solve MAX-LIN-AA or get a
kernel with O(k? log k) variables.

@ If we have a kernel, apply the O*(n?*)-time algorithm.

@ Since n = O(k?log k), we have running time
O*((O(k2 log k))zk) _ O*(20(2klog(k2 log k))) _ O*(zO(klogk))_

Anders Yeo Max-Lin Parameterized Above Average



Related Results

Outline

O Related Results
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Related Results

Related Results (Max-r-Lin-AA)

| will not say much about MAX-r-LIN-A A(where equations have
at most r variables) as this will be covered in the next talk!
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Related Results

Related Results (Max-r-Lin-AA)

| will not say much about MAX-r-LIN-A A(where equations have
at most r variables) as this will be covered in the next talk!

@ Gutin, Kim, Szeider, Yeo (2009) - kernel with
m < (2k — 1)64".
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Related Results

Related Results (Max-r-Lin-AA)

| will not say much about MAX-r-LIN-A A(where equations have
at most r variables) as this will be covered in the next talk!

@ Gutin, Kim, Szeider, Yeo (2009) - kernel with
m < (2k — 1)64".

@ Crowston, Gutin, Kim, Jones, Rusza (2010) - kernel with
n= O(klog k).
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Related Results

Related Results (Max-r-Lin-AA)

| will not say much about MAX-r-LIN-A A(where equations have
at most r variables) as this will be covered in the next talk!

@ Gutin, Kim, Szeider, Yeo (2009) - kernel with
m < (2k — 1)64".

@ Crowston, Gutin, Kim, Jones, Rusza (2010) - kernel with
n= O(klog k).

@ Kim, Williams (2011) - kernel with n < kr(r + 1)
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Related Results

Related Results (Max-r-Lin-AA)

| will not say much about MAX-r-LIN-A A(where equations have
at most r variables) as this will be covered in the next talk!

@ Gutin, Kim, Szeider, Yeo (2009) - kernel with
m < (2k — 1)64".

@ Crowston, Gutin, Kim, Jones, Rusza (2010) - kernel with
n= O(klog k).

@ Kim, Williams (2011) - kernel with n < kr(r + 1)

@ Crowston et.al (2011) - kernel with n < (2k — 1)r.
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Related Results

Related Results

o Pseudo-boolean function: a function f: {-1,+1}" - R

@ Suppose we know the Fourier expansion of f(x)

f(x) = Z C5HX,'

SCln  i€S
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Related Results

o Pseudo-boolean function: a function f: {-1,+1}" - R

@ Suppose we know the Fourier expansion of f(x)

f(x) = Z C5HX,'

SCln  i€S

For any pseudo-boolean function f with integer coefficients and
cp = 0, there exists an instance Z of MAX-LIN-AA such that
max(f(x)) = max excess of .
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Related Results

For any pseudo-boolean function f with integer coefficients and
cp = 0, there exists an instance Z of MAX-LIN-AA such that
max(f(x)) = max excess of .

@ Proof:

Anders Yeo Max-Lin Parameterized Above Average



Related Results

Related Results

For any pseudo-boolean function f with integer coefficients and
cp = 0, there exists an instance Z of MAX-LIN-AA such that
max(f(x)) = max excess of .

@ Proof: For every (§ # S C [n] with ¢s # 0, construct
equation ) ;s zi = bs with weight |cs|, where bs = 0 if cs is
positive and bsg = 1 if cg is negative.

zZ1 = 0 (W = 5)
5x1 — 3x0x3 + x1X0x3 = z+z3=1 (W = 3)
z21+20+23=0 (W:].)
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Related Results

Related Results

For any pseudo-boolean function f with integer coefficients and
cp = 0, there exists an instance Z of MAX-LIN-AA such that
max(f(x)) = max excess of .

@ Proof: For every (§ # S C [n] with ¢s # 0, construct
equation ) ;s zi = bs with weight |cs|, where bs = 0 if cs is
positive and bsg = 1 if cg is negative.

zZ1 = 0 (W = 5)
5x1 — 3x0x3 + x1%0x3 = 2+ z3=1 (W = 3)
z21+20+23=0 (W:].)

@ letzi=0ifx;=1landz;=1if x; = —1.
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Related Results

Related Results

For any pseudo-boolean function f with integer coefficients and
cp = 0, there exists an instance Z of MAX-LIN-AA such that
max(f(x)) = max excess of .

@ Proof: For every (§ # S C [n] with ¢s # 0, construct
equation ) ;s zi = bs with weight |cs|, where bs = 0 if cs is
positive and bsg = 1 if cg is negative.

zZ1 = 0 (W = 5)
5x1 — 3x0x3 + x1%0x3 = 2+ z3=1 (W = 3)
z21+20+23=0 (W:].)

@ letzi=0ifx;=1landz;=1if x; = —1.

@ f(x) = weight of positive terms — weight of negative terms =
weight of satisfied equations — weight of falsified equations
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Consider the following problem.

MAX-r-SAT parameterized above average (MAX-r-SAT-AA)

Instance: A CNF formula F with n variables, m clauses, such that
each clause has r variables.

Parameter: k.
Question: Can we satisfy > (1 — 1/2")m + k clauses?

@ (1 —1/2")m is the expected number of clauses satisfied by a
random assignment.
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@ Can represent MAX-r-SAT-AA as a pseudo-boolean function,
f.
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@ Can represent MAX-r-SAT-AA as a pseudo-boolean function,
f.

@ We can then transform f into an equivalent instance Z of
MAX-LIN-AA in time O*(2") with required excess k' = 2"k.
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@ Can represent MAX-r-SAT-AA as a pseudo-boolean function,
f.

@ We can then transform f into an equivalent instance Z of
MAX-LIN-AA in time O*(2") with required excess k' = 2"k.
@ f(x) is of degree r.
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@ Can represent MAX-r-SAT-AA as a pseudo-boolean function,
f.

@ We can then transform f into an equivalent instance Z of
MAX-LIN-AA in time O*(2") with required excess k' = 2"k.

@ f(x) is of degree r.

@ Therefore Z is an instance of MAX-r-LIN-AA.
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Can represent MAX-r-SAT-AA as a pseudo-boolean function,
f.

We can then transform f into an equivalent instance Z of
MAX-LIN-AA in time O*(2") with required excess k' = 2"k.
f(x) is of degree r.

Therefore 7 is an instance of MAX-r-LIN-AA.

@ MAX-r-LIN-AA has a kernel with (k" — 1)r variables
= we can solve MAX-r-SAT-AA in time O0*(2(2"k=1)r)

(4]

(4]
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@ This approach can be extended to any boolean CSP where
each constraint is on at most r variables.

MAX-r-CSP parameterized above average (MAX-r-
CSP-AA)

Instance: A set V of n boolean variables, and a set C
of m constraints, where each constraint C is a boolean
function acting on at most r variables of V.

Parameter: k.

Question: Can we satisfy E + k constraints, where E is
the expected number of constraints satisfied by a random
assignment?

Theorem (Alon, Gutin, Kim, Szeider, Yeo (2010))

Max-r-CSP-AA s FPT for fixed r.
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More applications...

@ In PERMUTATION-MAX-c-CSP, we are to find an ordering
on a set of elements, and each constraint is a set of
acceptable orderings for some subset of size < r.

@ Gutin, van lersel, Mnich, Yeo (2010) showed
PERMUTATION-MAX-3-CSP-AA is FPT; Kim, Williams
(2011) improve this to a linear kernel.

Theorem (Kim, Williams, 2011)

PERMUTATION-MAX-3-CSP-AA has a kernel with less than 15k
variables.
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Open Problem

@ Open questions: Does MAX-LIN-AA have kernel with
polynomial number of equations?
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Thank youl!

The End
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