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Dress Code as Satisfiability Problem 1/48

• propositional logic:

– variables tie shirt

– negation ¬ (not)

– disjunction ∨ disjunction (or)

– conjunction ∧ conjunction (and)

• three conditions / clauses:

– clearly one should not wear a tie without a shirt ¬tie∨shirt

– not wearing a tie nor a shirt is impolite tie∨shirt

– wearing a tie and a shirt is overkill ¬(tie∧shirt) ≡ ¬tie∨¬shirt

• is the formula (¬tie∨shirt)∧ (tie∨shirt)∧ (¬tie∨¬shirt) satisfiable?
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Overview 3/48

• failed literal probing

• variable elimination (VE)

• inprocessing

• lazy hyper binary resolution

• blocked clause elimination (BCE)

• hidden tautologies elimination (HTE)

• unhiding
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Failed Literal Probing 4/48
we are still working on tracking down the origin before [Freeman’95] [LeBerre’01]

• key technique in look-ahead solvers such as Satz, OKSolver, March

– failed literal probing at all search nodes

– used to find the best decision variable and phase

• simple algorithm

1. assume literal l, propagate (BCP), if this results in conflict, add unit clause ¬l

2. continue with all literals l until saturation (nothing changes)

• quadratic to cubic complexity

– BCP linear in the size of the formula 1st linear factor

– each variable needs to be tried 2nd linear factor

– and tried again if some unit has been derived 3rd linear factor
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Extensions 5/48

• lifting

– complete case split: literals implied in all cases become units

– similar to Stålmark’s method and Recursive Learning [PradhamKunz’94]

• asymmetric branching

– assume all but one literal of a clause to be false

– if BCP leads to conflict remove originally remaining unassigned literal

– implemented for a long time in MiniSAT but switched off by default

• generalizations:

– vivification [PietteHamadiSais ECAI’08]

– distillation [JinSomenzi’05][HanSomenzi DAC’07] probably most general (+ tries)

Preprocessing and Inprocessing Techniques in SAT Armin Biere – FMV – JKU Linz



Bounded Variable Elimination (VE) 6/48

[Biere’04][SubbarayanPradhan’04][EénBiere SAT’05]

• goes back to original Davis & Putnam algorithm [DP’60]

– eliminate variable x by adding all resolvents with x as pivot . . .

– . . . and removing all clauses in which x or ¬x occurs

– eliminating one variable is in the worst case quadratic

• bounded = apply only if increment in size is small

– Quantor [Biere’03,Biere’04] bound increase in terms of literals (priority queue)

– NiVER [SubbarayanPradhan’04] do non increase number of clauses (round-robin)

– SatELite [EénBiere’05] do not increase number of clauses (priority queue)
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Additional Techniques related to VE 7/48

• fast subsumption and strengthening [Biere’04][EénBiere’05]

– backward subsumption: traverse clauses of least occurring literal

– forward subsumption: one-watched literal scheme [Zhang’05]

– 1st and 2nd level signatures = Bloom-filters for faster checking

– strengthen clauses through self-subsuming resolution (later again)

• functional substitution

– if x has a functional dependency, e.g. Tseitin translation of a gate

– then only resolvents using exactly one “gate clause” need to be added

x=a∧b︷ ︸︸ ︷
(x̄∨a)(x̄∨b)(x∨ ā∨ b̄)(x∨ c)(x∨d)(x̄∨ e)(x̄∨ f ) 7 clauses

(a∨ c)(a∨d)(b∨ c)(b∨d)(ā∨ b̄∨ e)(ā∨ b̄∨ f )(c∨ e)(c∨ f )(d∨ e)(d∨ f ) 6 + 4 clauses
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Inprocessing: Interleaving Preprocessing and Search 8/48

• preprocessing can be extremely beneficial

– most SAT competition solvers use variable elimination (VE)
[EénBiere SAT’05]

– equivalence & XOR reasoning beneficial

– probing / failed literal preprocessing / hyper binary resolution useful

– however, even though polynomial, can not be run until completion

• inprocessing: simple idea to benefit from full preprocessing without penalty

– “preempt” preprocessors after some time

– resume preprocessing between restarts

– limit preprocessing time in relation to search time
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Benefits of Interleaving Preprocessing and Search 9/48

• allows to use costly preprocessors

– without increasing run-time “much” in the worst-case

– still useful for benchmarks where these costly techniques help

– good examples: probing and distillation even VE can be costly

• additional benefit:

– makes units / equivalences learned in search available to preprocessing

– particularly interesting if preprocessing simulates encoding optimizations

• danger of hiding “bad” implementation though . . .

• . . . and hard(er) to debug
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Background on Hyper Binary Resolution (HBR) 10/48

• one Hyper Binary Resolution step [Bacchus-AAAI02]

(l∨ l1∨·· ·∨ ln) (l1∨ l′) · · · (ln∨ l′)
(l∨ l′)

– combines multiple resolution steps into one

– special case “hyper unary resolution” where l = l′

– HBR stronger than unit propagation if it is repeated until (confluent) closure

– equality reduction: if (a∨b),(a∨b) ∈ f then replace a by b in f

• can be simulated by unit propagation [BacchusWinter-SAT03]

if (l∨ l′) ∈ HypBinRes( f ) then l′ ∈ UnitProp( f ∧ l) or vice versa

• repeated probing, c.f. HypBinResFast [GershmanStrichman-SAT05]
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Previous Optimizations 11/48

[BacchusWinter-SAT03][GershmanStrichman-SAT05]

• maintain acyclic and transitively-reduced binary implication graph

– acyclic: decomposition in strongly connected components (SCCs)

(a∨b)(b∨ c)(c∨a)∧R equisatisfiable to R[a/b,a/c]

– transitively-reduced: remove resp. do not add transitive edges

• not all literals have to be probed

– if l ∈ UnitProp(r) and UnitProp(r) does not produce anything
⇒ no need to probe l

– at least with respect to units it is possible to focus on roots

• current algorithms too expensive to run until completion
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Observations 12/48

• time complexity: seems to be at least quadratic, unfortunately also in practice

• space complexity: unclear, at most quadratic, linear?

• hyper binary resolution simulates structural hashing for AND gates a and b

F ≡ (a∨ x)(a∨ y)(a∨ x∨ y) (b∨ x)(b∨ y)(b∨ x∨ y) · · ·

(a∨ x)(a∨ y)(b∨ x∨ y)
(a∨b)

(b∨ x)(b∨ y)(a∨ x∨ y)
(b∨a)

a

b

x
y

x

y

can also be seen by b ∈ UnitProp(F ∧a) and a ∈ UnitProp(F ∧b)

• can not simulate structural hashing of XOR or ITE gates
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Lazy Hyper Binary Resolution (LHBR) 13/48

• learn binary clauses lazily or on-the-fly

– in the innermost (!) BCP loop

– during BCP in search or during BCP in preprocessing (failed literal probing)

• whenever a large clause (a1∨·· ·∨am∨ c) with m≥ 2 becomes a reason for c

– partial assignment σ with σ(ai) = 0 and σ(c) = 1

– check whether exists literal d dominating all ai

– in implication graph restricted to binary clauses

– which is a tree !

• learn (d∨ c) if such a dominator exists better (ē∨ c)
a b c

d

e
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Avoid Transitive Edges by Prioritizing Binary Clause Propagation 14/48

1. trail contains assigned literals

2. set n2 and n3 to the trail level of those literals that still need to be propagated

3. while 0≤ n3 ≤ n2 < |trail| and there is no conflict

(a) if n2 < |trail|

i. pick literal l at position n2, increment n2 and visit binary clauses with l

ii. assign literals forced through these binary clauses first

(b) otherwise (necessarily n3 < |trail|)

i. pick literal l at position n3, increment n3 and visit large clauses with l

ii. assign literals forced through these large clauses
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How-To Check Existence of Dominators 15/48

• for each assigned literal l keep one dominator bindom(l)

(in the implication graph restricted to binary clauses)

• thus bindom(l) is the root of binary implication tree of l

• decisions l set bindom(l) = l

• binary implications (a1∨ c) with σ(a1) = 0, σ(c) = 1 set bindom(c) = bindom(a1)

• necessary & sufficient for ai in large (m≥ 2) reasons to have common dominator:

(a1∨·· ·∨am∨ c) bindom(a1) = · · ·= bindom(am)

• if condition triggers, actually use least common ancestor (closest dominator)

• use (d∨ c) as new reason instead of (a1∨·· ·∨am∨ c)
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PrecoSAT Integration 16/48

• interleave search and preprocessing

– bound time spent in search to roughly 80%

– measured in number of propagations / resolutions

• during preprocessing / simplification on the top level

– unit propagation on the top-level does LHBR top-level (1)

– failed literal probing learns most binary clauses with LHBR probing (2)

• BCP during search learns binary clauses with LHBR search (3)
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Experiments 17/48

• rerunning SAT’09 competition with competition version 236 of PrecoSAT

– 900 seconds time out

– roughly twice as fast machines

• PrecoSAT without LHBR solves 6 less instances

– 171 instead of 177 out of 292

• statistics

– LHBR learned 48 million binary clause

– on 292 instances that is 181 thousand learned binary clauses on average

– additionally 202 million learned clauses through conflict analysis

– 19% learned (binary) clauses due to LHBR
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Summary of LHBR 18/48

• no measurable overhead doing LHBR during BCP

– so at least not harmful in contrast to many other “optimizations”

– implementation in Lingeling became non-trivial

– unfortunately does not simulate structural hashing in practice (!!)

• not formally published but implemented in PrecoSAT and Lingeling

– source code of PrecoSAT available under MIT license

– source code of Lingeling available under GPL license

– extensions in [HanSomenzi-DATE’11]

• performs a limited version of on-the-fly strengthening / subsumption

thus partially simulates distillation / vivification
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Blocked Clause Removal 19/48

fix a CNF F

blocked clause C ∈ F all clauses in F with l̄

l̄∨ ā∨ c

a∨b∨ l

l̄∨ b̄∨d

since all resolvents of C on l are tautological C can be removed

Proof

assignment σ satisfying F\C but not C

can be extended to a satisfying assignment of F by flipping value of l
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Blocked Clauses [Kullmann’99] 20/48

Definition A literal l in a clause C of a CNF F blocks C w.r.t. F if for every clause C′ ∈ F
with l̄ ∈ C′, the resolvent (C \ {l})∪ (C′ \ {l̄}) obtained from resolving C and C′ on l is a
tautology.

Definition [Blocked Clause] A clause is blocked if has a literal that blocks it.

Definition [Blocked Literal] A literal is blocked if it blocks a clause.

Example (a∨b)∧ (a∨ b̄∨ c̄)∧ (ā∨ c )

only first clause is not blocked.

second clause contains two blocked literals: a and c̄.

literal c in the last clause is blocked.

after removing either (a∨ b̄∨ c̄) or (ā∨ c), the clause (a∨b) becomes blocked
actually all clauses can be removed
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Relating Blocked Clauses and Encoding / Preprocessing Techniques 21/48

[JärvisaloBiereHeule-TACAS10]

COI Cone-of-Influence reduction

MIR Monontone-Input-Reduction

NSI Non-Shared Inputs reduction

PG Plaisted-Greenbaum polarity based encoding

TST standard Tseitin encoding

VE Variable-Elimination as in DP / Quantor / SATeLite

BCE Blocked-Clause-Elimination

Preprocessing and Inprocessing Techniques in SAT Armin Biere – FMV – JKU Linz
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encoding b be beb bebe e

T V C T V C T V C T V C T V C T V C

SU 0 46 256 2303 29 178 1042 11145 1188 11145 569 11144 2064 11153

A T 12 9 27 116 7 18 1735 1 8 1835 1 6 34 1 6 244 1 9

A P 10 9 20 94 7 18 1900 1 6 36 1 6 34 1 6 1912 1 6

AM 190 1 8 42 1 7 178 1 7 675 1 7 68 1 7 48 1 8

AN 9 3 10 50 3 10 1855 1 6 36 1 6 34 1 6 1859 1 6

H T 147 121 347 1648 117 277 2641 18118 567 18118 594 18116 3240 23140

HP 130 121 286 1398 117 277 2630 18118 567 18118 595 18116 2835 19119

HM 6961 16 91 473 16 84 621 12 78 374 12 77 403 12 76 553 15 90

HN 134 34 124 573 34 122 1185 17102 504 17101 525 17100 1246 17103

B T 577 4421253 5799 4201119 7023 57321 1410 56310 1505 52294 8076 64363

B P 542 4421153 5461 4201119 7041 57321 1413 56310 1506 52294 7642 57322

BM 10024 59 311 1252 58 303 1351 53287 1135 53286 1211 52280 1435 55303

BN 13148 196 643 2902 193 635 4845 108508 2444 107504 2250 105500 5076 114518

S = Sat competition T = plain Tseitin encoding
A = AIG competition P = Plaisted Greenbaum
H = HW model checking competition M = MiniCirc encoding
B = bit-vector SMT competition N = NiceDAGs
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Further Clause Elimination Procedures 24/48

H = hidden, A = asymmetric,
SE = subsumption elimination, T = tautology elimination

BC = blocked clause elimination, CC = covered clause elimination

ATE

HTE

TE

ASE

HSE

SE

ABCE

HBCE

ACCE

CCE

HCCE

BCE

satisfiability equivalentlogically equivalent
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Self-Subsuming Resolution and Asymmetric Literal Addition 25/48

Definition [self-subsuming resolution] [EénBiere SAT’05]

if A∨ x and B∨ x̄ are two clauses in a CNF and
A∨ x x̄∨B

A a valid resolution, e.g. B⊆
A, then replace the clause A∨ x by A , in essence removing x from A∨ x

example: if both a∨b∨ x and b∨ x̄ are in a CNF remove x from first clause

Definition [asymmetric literal addition] [HeuleJärvisaloBiere LPAR’10]

if A and B∨ x̄ are two clauses in a CNF and
A∨ x x̄∨B

A a valid resolution, e.g. B⊆ A,
then replace the clause A by A∨ x , in essence adding x to A

example: if both a∨b and b∨ x̄ are in a CNF add x to first clause
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Asymmetric and Hidden Tautologies and Blocked Clauses 26/48

Definition [asymmetric tautology / blocked clause] [HeuleJärvisaloBiere LPAR’10]

apply asymmetric literal addition to a clause w.r.t. to fixed CNF as long as possible, if the
result is a tautological / blocked then remove clause (otherwise keep original)

Definition hidden = only use binary side clauses x̄∨B

Fact AHTE can be simulated by asymmetric branching / distillation and BCP

Fact HTE can be implemented much faster by iterating over all literals instead of iterating
over all clauses (partially implemented in Lingeling)

Fact HTE after equivalence reasoning and failed literal probing until completion on binary
clauses only is confluent and BCP preserving

see our long and short LPAR’10 papers for more details
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Motivation for Unhiding 27/48

• SAT solvers applied to huge formulas

– million of variables

– fastests solvers use preprocessing/inprocessing

– need cheap and effective inprocessing techniques for millions of variables

• this talk:

– unhiding redundancy in large formulas

– almost linear randomized algorithm

– using the binary implication graph

– fast enough to be applied to learned clauses

• see our SAT’11 paper for more details
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Binary Implication Graph BIG 28/48

a

c

b

ed

f g

h

g

h

e

b

d

f

a

c

(ā∨ c)∧ (ā∨d)∧ (b̄∨d)∧ (b̄∨ e)∧
(c̄∨ f )∧ (d̄∨ f )∧ (ḡ∨ f )∧ ( f̄ ∨h)∧
(ḡ∨h)∧ (ā∨ ē∨h)∧ (b̄∨ c̄∨h)∧ (a∨b∨ c∨d∨ e∨ f ∨g∨h)︸ ︷︷ ︸

non binary clauses
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Transitive Reduction TRD 29/48

a

c

b

ed

f g

h

g

h

e

b

d

f

a

c

(ā∨ c)∧ (ā∨d)∧ (b̄∨d)∧ (b̄∨ e)∧
(c̄∨ f )∧ (d̄∨ f )∧ (ḡ∨ f )∧ ( f̄ ∨h)∧

TRD
g→ f → h

(ḡ∨h)∧ (ā∨ ē∨h)∧ (b̄∨ c̄∨h)∧ (a∨b∨ c∨d∨ e∨ f ∨g∨h)
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Hidden Tautology Elimination HTE
[HeuleJärvisaloBiere LPAR’2010]

30/48

c

b

ed

f g

g

e

b

d

f

c

a

h

h

a

(ā∨ c)∧ (ā∨d)∧ (b̄∨d)∧ (b̄∨ e)∧
(c̄∨ f )∧ (d̄∨ f )∧ (ḡ∨ f )∧ ( f̄ ∨h)∧

HTE
a→ d→ f → h

(ā∨ ē∨h)∧ (b̄∨ c̄∨h)∧ (a∨b∨ c∨d∨ e∨ f ∨g∨h)
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Hidden Tautology Elimination HTE
[HeuleJärvisaloBiere LPAR’2010]

31/48

ed

f g

g

ed

f

h

ah

a b

c

c

b

(ā∨ c)∧ (ā∨d)∧ (b̄∨d)∧ (b̄∨ e)∧
(c̄∨ f )∧ (d̄∨ f )∧ (ḡ∨ f )∧ ( f̄ ∨h)∧

HTE
c→ f → h

(b̄∨ c̄∨h)∧ (a∨b∨ c∨d∨ e∨ f ∨g∨h)
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Self-Subsuming Resolution SSR
[EénBiere-SAT’05]

32/48

C∨ l D∨ l̄
D

C ⊆ D
a∨b∨ l a∨b∨ c∨ l̄

a∨b∨ c

resolvent D subsumes second antecedent D∨ l̄

assume given CNF contains both antecedents . . .(a∨b∨ l)(a∨b∨ c∨ l̄) · · ·

if D is added to CNF then D∨ l̄ can be removed ⇓

which in essence removes l̄ from D∨ l̄ . . .(a∨b∨ l)(a∨b∨ c ) . . .

used in SATeLite preprocessor

now common in many SAT solvers
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HTE = Reverse SSR + Tautology Elimination
[HeuleJärvisaloBiere LPAR’2010]

33/48

hidden literal addition (HLA) uses SSR in reverse order

C∨ l D∨ l̄
D

C ⊆ D
a∨b∨ l a∨b∨ c∨ l̄

a∨b∨ c

assume given CNF contains resolvent and first antecedent . . .(a∨b∨ l)(a∨b∨ c) · · ·

we can replace D by D∨ l̄ . . .(a∨b∨ l)(a∨b∨ c∨ l̄) . . .

which in essence adds l̄ to D, repeat HLA until fix-point

keep remaining non-tautological clauses after removing added literals again

HTE = assume C∨ l is a binary clauses more general versions in the paper

remove clauses with a literal implied by negation of another literal in the clause

HTE confluent and BCP preserving modulo equivalent variable renaming
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Hidden Literal Elimination HLE
[HeuleJärvisaloBiere SAT’11]

34/48

better explained on binary implication graph

remove literal from a clause which implies another literal in the clause

. . .(ā∨b)(b̄∨ c)(a∨ c∨d) . . . ⇒ . . .(ā∨b)(b̄∨ c)(c∨d) . . .

related work before all uses BCP:

• asymmetric branching implemented in MiniSAT but switched off by default

• distillation [JinSomenzi’05][HanSomenzi DAC’07]

• vivification [PietteHamadiSais ECAI’08]

• caching technique in CryptoMiniSAT

HTE/HLE only uses the binary implication graph!
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Hidden Literal Elimination HLE
[HeuleJärvisaloBiere SAT’11]

35/48

e

e

h

ha b

dc

f g c

ba

d

f g

(ā∨ c)∧ (ā∨d)∧ (b̄∨d)∧ (b̄∨ e)∧
(c̄∨ f )∧ (d̄∨ f )∧ (ḡ∨ f )∧ ( f̄ ∨h)∧

HLE
all but e imply h

also b implies e

(a∨b∨ c∨d∨ e∨ f ∨g∨h)
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Hidden Literal Elimination HLE
[HeuleJärvisaloBiere SAT’11]

36/48

a

c

b

ed

f g

h

g

h

e

b

d

f

a

c

(ā∨ c)∧ (ā∨d)∧ (b̄∨d)∧ (b̄∨ e)∧
(c̄∨ f )∧ (d̄∨ f )∧ (ḡ∨ f )∧ ( f̄ ∨h)∧

( e∨ h)
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TRD + HTE + HLE
[HeuleJärvisaloBiere SAT’11]

37/48

a
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h

g

h

e

b

d

f

a

c

(ā∨ c)∧ (ā∨d)∧ (b̄∨d)∧ (b̄∨ e)∧
(c̄∨ f )∧ (d̄∨ f )∧ (ḡ∨ f )∧ ( f̄ ∨h)∧
(e∨h)
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Failed Literal Elimination FL 38/48

actually quite old technique . . . [Freeman PhdThesis’95] [LeBerre’01] . . .

assume literal l, BCP, if conflict, add unit l̄

rather costly to run until completion conjecture: at least quadratic

one BCP is linear and also in practice can be quite expensive

need to do it for all variables and restart if new binary clause generated

useful in practice: lift common implied literals for assumption l and assumption l̄

even on BIG (FL2) conjectured to be quadratic [VanGelder’05]

. . .(ā∨b)(b̄∨ c)(c̄∨d)(d̄∨ ā) . . . ⇒ add unit clause ā

subsumed by running one HLA until completion
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Equivalent Literal Substitution ELS
[AspvallPlassTarjan’79] [Li’00] [Val’01] [Brafman’04] [VanGelder’05]

39/48

decompose BIG into strongly connect components (SCCs)

if there is an l with l and l̄ in the same component⇒ unsatisfiable

otherwise replace all literals by a “representative”

linear algorithm can be applied routinely during garbage collection

but as with failed literal preprocessing may generate new binary clauses

. . .(ā∨b)(b̄∨ c)(c̄∨a)(a∨b∨ c∨d) . . . ⇒ . . .(a∨d) . . .
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Time Stamping
[HeuleJärvisaloBiere SAT’11]
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DFS tree with discovered and finished times: [dsc(l),fin(l)]

g

a

ed

f

h

c

b

g [1,6]f [2,5]

d

a b [11,16]

e[12,13]c [14,15]

[29,32]

[30,31]

h [3,4]

[7,10]

[17,28]

[18,19][20,27]

[25,26] [21,24]

[22,23] [8,9]

tree edges

well known
parenthesis theorem: l ancestor in DFS tree of k iff [dsc(k),fin(k)]⊆ [dsc(l),fin(l)]

ancestor relationship gives necessary conditions for (transitive) implication:

if [dsc(k),fin(k)]⊆ [dsc(l),fin(l)] then l→ k

if [dsc(l̄),fin(l̄)]⊆ [dsc(k̄),fin(k̄)] then l→ k
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Unhiding: Applying Time Stamping to TRD/HTE/HLE/FL2/. . .
[HeuleJärvisaloBiere SAT’11]
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• time stamping in previous example does not cover b→ h
[11,16] = [dsc(b),fin(b)] 6⊆ [dsc(h),fin(h)] = [3,4]
[17,28] = [dsc(h̄),fin(h̄)] 6⊆ [dsc(b̄),fin(b̄)] = [8,9]

• in example still both HTE “unhidden”, HLE works too (since b→ e)

• “coverage” heavily depends on DFS order

• as solution we propose multiple randomized DFS rounds/phases

• so we approximate a quadratic problem (reachability) randomly by a linear algorithm

• if BIG is a tree one time stamping covers everything
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Unhiding through Time Stamping
[HeuleJärvisaloBiere SAT’11]
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Unhiding (formula F)
1 stamp := 0
2 foreach literal l in BIG(F) do
3 dsc(l) := 0; fin(l) := 0
4 prt(l) := l; root(l) := l
5 foreach r ∈ RTS(F) do
6 stamp := Stamp(r,stamp)
7 foreach literal l in BIG(F) do
8 if dsc(l) = 0 then
9 stamp := Stamp(l,stamp)
10 return Simplify(F)

Stamp (literal l, integer stamp)
1 stamp := stamp+1
2 dsc(l) := stamp
3 foreach (l̄∨ l′) ∈ F2 do
4 if dsc(l′) = 0 then
5 prt(l′) := l
6 root(l′) := root(l)
7 stamp := Stamp(l′,stamp)
8 stamp := stamp+1
9 fin(l) := stamp
10 return stamp

Simplify (formula F)
1 foreach C ∈ F
2 F := F \{C}
3 if UHTE(C) then continue
4 F := F ∪{UHLE(C)}
5 return F
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Unhiding HTE
[HeuleJärvisaloBiere SAT’11]
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UHTE (clause C)
1 lpos := first element in S+(C)
2 lneg := first element in S−(C)
3 while true
4 if dsc(lneg)> dsc(lpos) then
5 if lpos is last element in S+(C) then return false
6 lpos := next element in S+(C)
7 else if fin(lneg)< fin(lpos) or (|C|= 2 and (lpos = l̄neg or prt(lpos) = lneg)) then
8 if lneg is last element in S−(C) then return false
9 lneg := next element in S−(C)
10 else return true

S+(C) sequence of literals in C ordered by dsc()
S−(C) sequence of negations of literals in C ordered by dsc()

O(|C|log|C|)
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Unhiding HLE
[HeuleJärvisaloBiere SAT’11]
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UHLE (clause C)
1 finished := finish time of first element in S+rev(C)
2 foreach l ∈ S+rev(C) starting at second element
3 if fin(l)> finished then C :=C \{l}
4 else finished := fin(l)
5 finished := finish time of first element in S−(C)
6 foreach l̄ ∈ S−(C) starting at second element
7 if fin(l̄)< finished then C :=C \{l}
8 else finished := fin(l̄)
9 return C

S+rev(C) reverse of S+(C)

O(|C|log|C|)
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Advanced Time Stamping
[HeuleJärvisaloBiere SAT’11]
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Stamp (literal l, integer stamp)
1 BSC stamp := stamp+1
2 BSC dsc(l) := stamp; obs(l) := stamp
3 ELS flag := true // l represents a SCC
4 ELS S.push(l) // push l on SCC stack
5 BSC for each (l̄∨ l′) ∈ F2
6 TRD if dsc(l)< obs(l′) then F := F \{(l̄∨ l′)}; continue
7 FLE if dsc(root(l))≤ obs(l̄′) then
8 FLE lfailed := l
9 FLE while dsc(lfailed)> obs(l̄′) do lfailed := prt(lfailed)
10 FLE F := F ∪{(l̄failed)}
11 FLE if dsc(l̄′) 6= 0 and fin(l̄′) = 0 then continue
12 BSC if dsc(l′) = 0 then
13 BSC prt(l′) := l
14 BSC root(l′) := root(l)
15 BSC stamp := Stamp(l′,stamp)
16 ELS if fin(l′) = 0 and dsc(l′)< dsc(l) then
17 ELS dsc(l) := dsc(l′); flag := false // l is equivalent to l′
18 OBS obs(l′) := stamp // set last observed time attribute
19 ELS if flag = true then // if l represents a SCC
20 BSC stamp := stamp+1
21 ELS do
22 ELS l′ := S.pop() // get equivalent literal
23 ELS dsc(l′) := dsc(l) // assign equal discovered time
24 BSC fin(l′) := stamp // assign equal finished time
25 ELS while l′ 6= l
26 BSC return stamp
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Implementation
[HeuleJärvisaloBiere SAT’11]
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• implemented as one inprocessing phase in our SAT solver Lingeling
beside variable elimination, distillation, blocked clause elimination, probing, . . .

• bursts of randomized DFS rounds and sweeping over the whole formula

• fast enough to be applicable to large learned clauses as well
unhiding is particullary effective for learned clauses

• beside UHTE and UHLE we also have added hyper binary resolution UHBR
not useful in practice
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Lingeling 571 on SAT’09 Competition Application Benchmarks
[HeuleJärvisaloBiere SAT’11]
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configuration sol sat uns unhd simp elim
adv.stamp (no uhbr) 188 78 110 7.1% 33.0% 16.1%
adv.stamp (w/uhbr) 184 75 109 7.6% 32.8% 15.8%
basic stamp (no uhbr) 183 73 110 6.8% 32.3% 15.8%
basic stamp (w/uhbr) 183 73 110 7.4% 32.8% 15.8%
no unhiding 180 74 106 0.0% 28.6% 17.6%

configuration hte stamp redundant hle redundant units stamp
adv.stamp (no uhbr) 22 64% 59% 291 77.6% 935 57%
adv.stamp (w/uhbr) 26 67% 70% 278 77.9% 941 58%
basic stamp (no uhbr) 6 0% 52% 296 78.0% 273 0%
basic stamp (w/uhbr) 7 0% 66% 288 76.7% 308 0%
no unhiding 0 0% 0% 0 0.0% 0 0%

similar results for crafted and SAT’10 Race instances
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Conclusions 48/48

• preprocessing is important for SAT solvers

• hard kernels do occur in practice

• inprocessing provides additional benefits

• new class of clause elimination procedures

• even quadratic algorithms are most of the time too expensive

Preprocessing and Inprocessing Techniques in SAT Armin Biere – FMV – JKU Linz


