Preprocessing and Inprocessing Techniques in SAT

Armin Biere

Institute for Formal Models and Verification Johannes Kepler University Linz, Austria

joint work with Marijn Heule and Matti Järvisalo

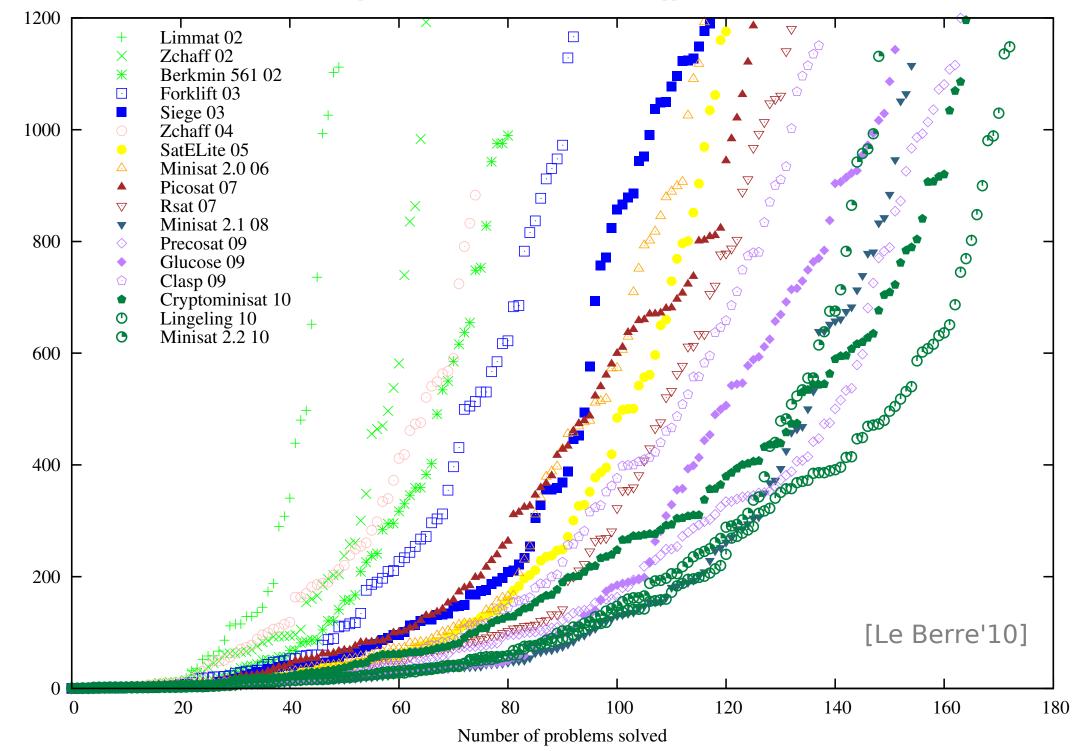
WorKer'11

3rd Workshop on Kernelization TU Vienna, Austria

Friday, September 2, 2011

- propositional logic:
 - variables tie shirt
 - negation \neg (not)
 - disjunction \lor disjunction (or)
 - conjunction \wedge conjunction (and)
- three conditions / clauses:
 - clearly one should not wear a tie without a shirt $\neg tie \lor shirt$ not wearing a tie nor a shirt is impolitetie $\lor shirt$ wearing a tie and a shirt is overkill $\neg(tie \land shirt) \equiv \neg tie \lor \neg shirt$
- is the formula $(\neg tie \lor shirt) \land (tie \lor shirt) \land (\neg tie \lor \neg shirt)$ satisfiable?

Results of the SAT competition/race winners on the SAT 2009 application benchmarks, 20mn timeout



- failed literal probing
- variable elimination (VE)
- inprocessing
- lazy hyper binary resolution
- blocked clause elimination (BCE)
- hidden tautologies elimination (HTE)
- unhiding

Failed Literal Probing

we are still working on tracking down the origin before [Freeman'95] [LeBerre'01]

- key technique in look-ahead solvers such as Satz, OKSolver, March
 - failed literal probing at all search nodes
 - used to find the best decision variable and phase
- simple algorithm
 - 1. assume literal *l*, propagate (BCP), if this results in conflict, add unit clause $\neg l$
 - 2. continue with all literals *l* until *saturation* (nothing changes)
- quadratic to cubic complexity
 - BCP linear in the size of the formula
 - each variable needs to be tried
 - and tried again if some unit has been derived

Preprocessing and Inprocessing Techniques in SAT

1st linear factor

2nd linear factor

3rd linear factor

5/48

- lifting
 - complete case split: literals implied in all cases become units
 - similar to Stålmark's method and Recursive Learning [PradhamKunz'94]
- asymmetric branching
 - assume all but one literal of a clause to be false
 - if BCP leads to conflict remove originally remaining unassigned literal
 - implemented for a long time in MiniSAT but switched off by default
- generalizations:
 - vivification [PietteHamadiSais ECAI'08]
 - distillation [JinSomenzi'05][HanSomenzi DAC'07] probably most general (+ tries)

[Biere'04][SubbarayanPradhan'04][EénBiere SAT'05]

- goes back to original Davis & Putnam algorithm
 - eliminate variable *x* by adding all resolvents with *x* as pivot ...
 - ... and removing all clauses in which x or $\neg x$ occurs
 - eliminating one variable is in the worst case quadratic
- bounded = apply only if increment in size is small
 - Quantor [Biere'03,Biere'04] bound increase in terms of literals (priority queue)
 - NiVER [SubbarayanPradhan'04] do non increase number of clauses (round-robin)
 - SatELite [EénBiere'05] do not increase number of clauses (priority queue)

- fast subsumption and strengthening [Biere'04][EénBiere'05]
 - backward subsumption: traverse clauses of least occurring literal
 - forward subsumption: one-watched literal scheme [Zhang'05]
 - 1st and 2nd level signatures = Bloom-filters for faster checking
 - strengthen clauses through self-subsuming resolution (later again)
- functional substitution
 - if x has a functional dependency, e.g. Tseitin translation of a gate
 - then only resolvents using exactly one "gate clause" need to be added

$$\underbrace{(\bar{x} \lor a)(\bar{x} \lor b)(x \lor \bar{a} \lor \bar{b})}_{(x \lor c)(x \lor d)(\bar{x} \lor e)(\bar{x} \lor f)}$$
7 clauses

 $(a \lor c)(a \lor d)(b \lor c)(b \lor d)(\bar{a} \lor \bar{b} \lor e)(\bar{a} \lor \bar{b} \lor f)(c \lor e)(c \lor f)(d \lor e)(d \lor f)$ 6 + 4 clauses

- preprocessing can be extremely beneficial
 - most SAT competition solvers use variable elimination (VE) [EénBiere SAT'05]
 - equivalence & XOR reasoning beneficial
 - probing / failed literal preprocessing / hyper binary resolution useful
 - however, even though polynomial, can not be run until completion
- **inprocessing**: simple idea to benefit from full preprocessing without penalty
 - "preempt" preprocessors after some time
 - resume preprocessing between restarts
 - limit preprocessing time in relation to search time

- allows to use costly preprocessors
 - without increasing run-time "much" in the worst-case
 - still useful for benchmarks where these costly techniques help
 - good examples: probing and distillation

even VE can be costly

- additional benefit:
 - makes units / equivalences learned in search available to preprocessing
 - particularly interesting if preprocessing simulates encoding optimizations
- danger of hiding "bad" implementation though ...
- ... and hard(er) to debug

• one Hyper Binary Resolution step

[Bacchus-AAAI02]

$$\frac{(l \vee l_1 \vee \cdots \vee l_n) \quad (\overline{l_1} \vee l') \quad \cdots \quad (\overline{l_n} \vee l')}{(l \vee l')}$$

- combines multiple resolution steps into one
- special case "hyper unary resolution" where l = l'
- HBR stronger than unit propagation if it is repeated until (confluent) closure
- equality reduction: if $(a \lor \overline{b}), (\overline{a} \lor b) \in f$ then replace *a* by *b* in *f*
- can be simulated by unit propagation

[BacchusWinter-SAT03]

- if $(l \lor l') \in HypBinRes(f)$ then $l' \in UnitProp(f \land \overline{l})$ or vice versa
- repeated probing, c.f. HypBinResFast

Preprocessing and Inprocessing Techniques in SAT

[GershmanStrichman-SAT05]

Previous Optimizations

[BacchusWinter-SAT03][GershmanStrichman-SAT05]

- maintain acyclic and transitively-reduced binary implication graph
 - acyclic: decomposition in strongly connected components (SCCs)

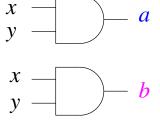
 $(\overline{a} \lor b)(\overline{b} \lor c)(\overline{c} \lor a) \land R$ equisatisfiable to R[a/b, a/c]

- transitively-reduced: remove resp. do not add transitive edges
- not all literals have to be probed
 - if $l \in \text{UnitProp}(r)$ and UnitProp(r) does not produce anything \Rightarrow no need to probe l
 - at least with respect to units it is possible to focus on roots
- current algorithms too expensive to run until completion

- time complexity: seems to be at least quadratic, unfortunately also in practice
- **space** complexity: unclear, at most quadratic, linear?
- hyper binary resolution simulates structural hashing for AND gates *a* and *b*

 $F \equiv (\overline{a} \lor x)(\overline{a} \lor y)(a \lor \overline{x} \lor \overline{y}) \quad (\overline{b} \lor x)(\overline{b} \lor y)(b \lor \overline{x} \lor \overline{y}) \quad \cdots$

$$\frac{(\overline{a} \lor x)(\overline{a} \lor y)(b \lor \overline{x} \lor \overline{y})}{(\overline{a} \lor b)} \qquad \frac{(\overline{b} \lor x)(\overline{b} \lor y)(a \lor \overline{x} \lor \overline{y})}{(\overline{b} \lor a)}$$



can also be seen by $b \in \text{UnitProp}(F \land a)$ and $a \in \text{UnitProp}(F \land b)$

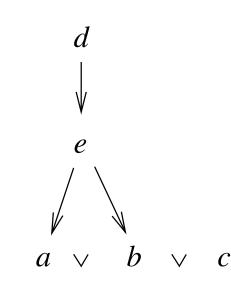
• can not simulate structural hashing of XOR or ITE gates

Preprocessing and Inprocessing Techniques in SAT

- learn binary clauses lazily or on-the-fly
 - in the innermost (!) BCP loop
 - during BCP in search or during BCP in preprocessing (failed literal probing)

better $(\bar{e} \lor c)$

- whenever a large clause $(a_1 \lor \cdots \lor a_m \lor c)$ with $m \ge 2$ becomes a reason for c
 - partial assignment σ with $\sigma(a_i) = 0$ and $\sigma(c) = 1$
 - check whether exists literal *d* dominating all $\overline{a_i}$
 - in implication graph restricted to binary clauses
 - which is a tree !
- learn $(\overline{d} \lor c)$ if such a dominator exists



- 1. trail contains assigned literals
- 2. set n_2 and n_3 to the trail level of those literals that still need to be propagated
- 3. while $0 \le n_3 \le n_2 < |\text{trail}|$ and there is no conflict
 - (a) if $n_2 < |\text{trail}|$
 - i. pick literal *l* at position n_2 , increment n_2 and visit binary clauses with \overline{l}
 - ii. assign literals forced through these binary clauses first
 - (b) otherwise (necessarily $n_3 < |\text{trail}|$)
 - i. pick literal l at position n_3 , increment n_3 and visit large clauses with \overline{l}
 - ii. assign literals forced through these large clauses

- for each assigned literal *l* keep one dominator bindom(*l*)
 (in the implication graph restricted to binary clauses)
- thus bindom(*l*) is the root of binary implication tree of *l*
- decisions l set bindom(l) = l
- binary implications $(a_1 \lor c)$ with $\sigma(a_1) = 0$, $\sigma(c) = 1$ set bindom $(c) = bindom(\overline{a_1})$
- necessary & sufficient for $\overline{a_i}$ in large $(m \ge 2)$ reasons to have common dominator:

 $(a_1 \lor \cdots \lor a_m \lor c)$ bindom $(\overline{a_1}) = \cdots = bindom(\overline{a_m})$

- if condition triggers, actually use least common ancestor (closest dominator)
- use $(\overline{d} \lor c)$ as **new reason** instead of $(a_1 \lor \cdots \lor a_m \lor c)$

Preprocessing and Inprocessing Techniques in SAT

- interleave search and preprocessing
 - bound time spent in search to roughly 80%
 - measured in number of propagations / resolutions
- during preprocessing / simplification on the top level
 - unit propagation on the top-level does LHBR
 top-level (1)
 - failed literal probing learns most binary clauses with LHBR
 probing (2)
- BCP during search learns binary clauses with LHBR search (3)

- rerunning SAT'09 competition with competition version 236 of PrecoSAT
 - 900 seconds time out
 - roughly twice as fast machines
- PrecoSAT without LHBR solves 6 less instances
 - 171 instead of 177 out of 292
- statistics
 - LHBR learned 48 million binary clause
 - on 292 instances that is 181 thousand learned binary clauses on average
 - additionally 202 million learned clauses through conflict analysis
 - 19% learned (binary) clauses due to LHBR

- no measurable overhead doing LHBR during BCP
 - so at least not harmful in contrast to many other "optimizations"
 - implementation in Lingeling became non-trivial
 - unfortunately does not simulate structural hashing in practice (!!)
- *not formally published* but implemented in PrecoSAT and Lingeling
 - source code of PrecoSAT available under MIT license
 - source code of Lingeling available under GPL license
 - extensions in [HanSomenzi-DATE'11]
- performs a limited version of on-the-fly strengthening / subsumption

thus partially simulates distillation / vivification

blocked clause $C \in F$ all clauses in F with \overline{l}

fix a CNF F

 $a \lor b \lor l$

 $\overline{l} \vee \overline{b} \vee d$

 $\overline{l} \vee \overline{a} \vee c$

since all resolvents of C on *l* are tautological C can be removed

Proof

assignment σ satisfying $F \setminus C$ but not C

can be extended to a satisfying assignment of F by flipping value of l

Preprocessing and Inprocessing Techniques in SAT

Definition A literal *l* in a clause *C* of a CNF *F* blocks *C* w.r.t. *F* if for every clause $C' \in F$ with $\overline{l} \in C'$, the resolvent $(C \setminus \{l\}) \cup (C' \setminus \{\overline{l}\})$ obtained from resolving *C* and *C'* on *l* is a tautology.

Definition [Blocked Clause] A clause is **blocked** if has a literal that blocks it.

Definition [Blocked Literal] A literal is blocked if it blocks a clause.

Example

 $(a \lor b) \land (a \lor \bar{b} \lor \bar{c}) \land (\bar{a} \lor c)$

only first clause is not blocked.

second clause contains two blocked literals: a and \bar{c} .

literal *c* in the last clause is blocked.

after removing either $(a \lor \overline{b} \lor \overline{c})$ or $(\overline{a} \lor c)$, the clause $(a \lor b)$ becomes blocked actually all clauses can be removed

Relating Blocked Clauses and Encoding / Preprocessing Techniques

21/48

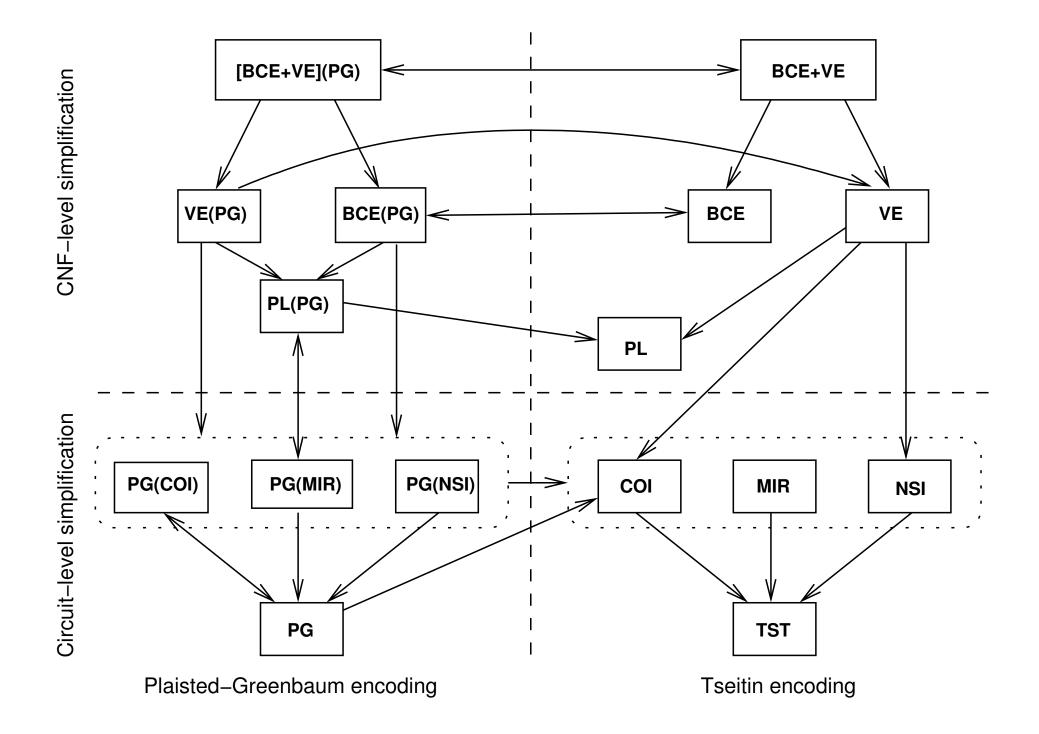
[JärvisaloBiereHeule-TACAS10]

- **COI** Cone-of-Influence reduction
- **MIR** Monontone-Input-Reduction
- **NSI** Non-Shared Inputs reduction

- **PG** Plaisted-Greenbaum polarity based encoding
- **TST** standard Tseitin encoding

VE Variable-Elimination as in DP / Quantor / SATeLite

BCE Blocked-Clause-Elimination



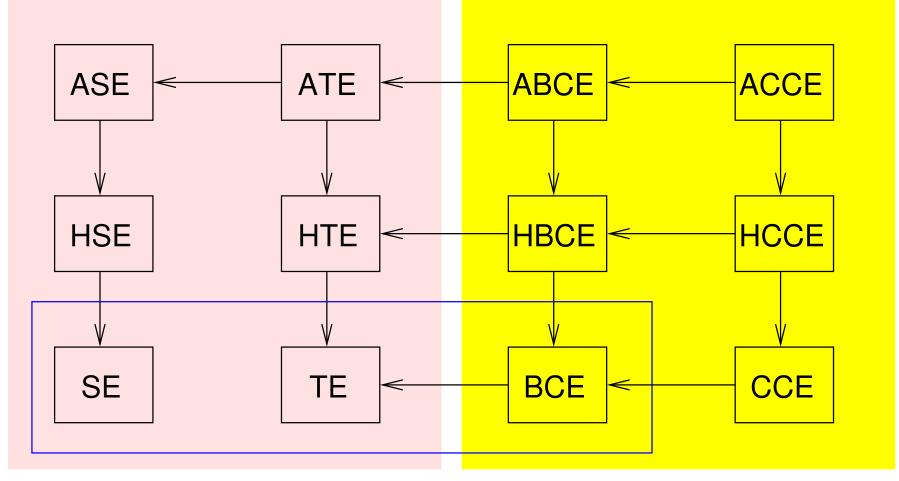
	encoding			b			be			beb			bebe			е		
	Т	V	С	Т	V	С	Т	V	С	Т	V	С	Т	V	С	Т	V	С
SU	0	46	256	2303	29	178	1042	11	145	1188	111	145	569	111	144	2064	111	53
ΑT	12	9	27	116	7	18	1735	1	8	1835	1	6	34	1	6	244	1	9
ΑP	10	9	20	94	7	18	1900	1	6	36	1	6	34	1	6	1912	1	6
AM	190	1	8	42	1	7	178	1	7	675	1	7	68	1	7	48	1	8
AN	9	3	10	50	3	10	1855	1	6	36	1	6	34	1	6	1859	1	6
ΗТ	147	121	347	1648	117	277	2641	18	118	567	181	18	594	181	116	3240	231	40
ΗP	130	121	286	1398	117	277	2630	18	118	567	181	18	595	181	116	2835	191	19
HM	6961	16	91	473	16	84	621	12	78	374	12	77	403	12	76	553	15	90
ΗN	134	34	124	573	34	122	1185	17	102	504	171	01	525	171	00	1246	171	03
ΒТ	577	442 ⁻	1253	57994	420 ⁻	1119	7023	57	321	1410	563	310	1505	522	294	8076	643	363
ΒP	542	442 ⁻	1153	5461 4	420 ⁻	1119	7041	57	321	1413	563	310	1506	522	294	7642	573	322
BM	10024	59	311	1252	58	303	1351	53	287	1135	532	286	1211	522	280	1435	553	303
BN	13148	196	643	2902	193	635	4845	108	508	2444	1075	504	2250	1055	500	5076	1145	518

A = H =	Sat competition AIG competition HW model checking competition bit-vector SMT competition	Μ	= =	plain Tseitin encoding Plaisted Greenbaum MiniCirc encoding NiceDAGs
B =	bit-vector SMT competition	Ν	=	NiceDAGs

H = hidden, A = asymmetric,

SE = subsumption elimination, T = tautology elimination

BC = blocked clause elimination, CC = covered clause elimination



logically equivalent

satisfiability equivalent

[self-subsuming resolution] [EénBiere SAT'05] $\frac{A \lor x \quad \overline{x} \lor B}{A}$ a valid resolution, e.g. $B \subseteq$ if $A \lor x$ and $B \lor \bar{x}$ are two clauses in a CNF and A, then replace the clause $A \lor x$ by A, in essence **removing** x from $A \lor x$

example: if both $a \lor b \lor x$ and $b \lor \overline{x}$ are in a CNF remove x from first clause

[asymmetric literal addition] [HeuleJärvisaloBiere LPAR'10] Definition $\frac{A \lor x \quad \bar{x} \lor B}{A}$ a valid resolution, e.g. $B \subseteq A$, if *A* and $B \lor \bar{x}$ are two clauses in a CNF and then replace the clause A by $A \lor x$, in essence adding x to A

example: if both $a \lor b$ and $b \lor \overline{x}$ are in a CNF add x to first clause

Definition

Definition [asymmetric tautology / blocked clause] [HeuleJärvisaloBiere LPAR'10] apply asymmetric literal addition to a clause w.r.t. to fixed CNF as long as possible, if the result is a tautological / blocked then remove clause (otherwise keep original)

Definition hidden = only use binary side clauses $\bar{x} \lor B$

Fact AHTE can be simulated by asymmetric branching / distillation and BCP

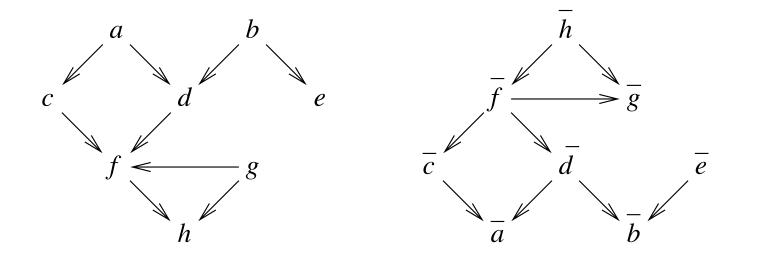
Fact HTE can be implemented much faster by iterating over all literals instead of iterating over all clauses (partially implemented in Lingeling)

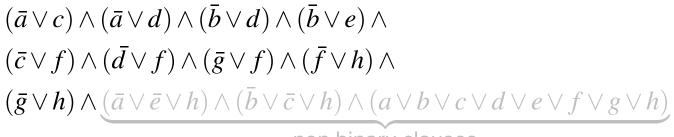
Fact HTE after equivalence reasoning and failed literal probing until completion on binary clauses only is confluent and BCP preserving

see our long and short LPAR'10 papers for more details

Preprocessing and Inprocessing Techniques in SAT

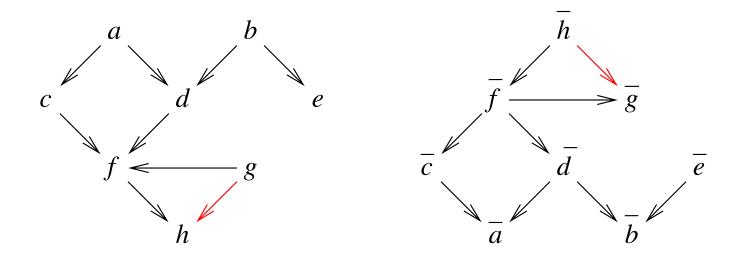
- SAT solvers applied to huge formulas
 - million of variables
 - fastests solvers use preprocessing/inprocessing
 - need cheap and effective inprocessing techniques for millions of variables
- this talk:
 - unhiding redundancy in large formulas
 - almost linear randomized algorithm
 - using the binary implication graph
 - fast enough to be applied to learned clauses
- see our SAT'11 paper for more details





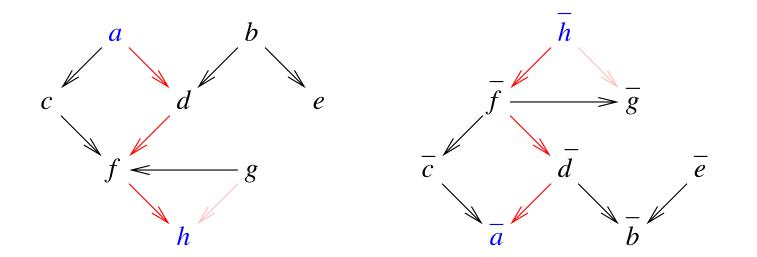
non binary clauses

Preprocessing and Inprocessing Techniques in SAT



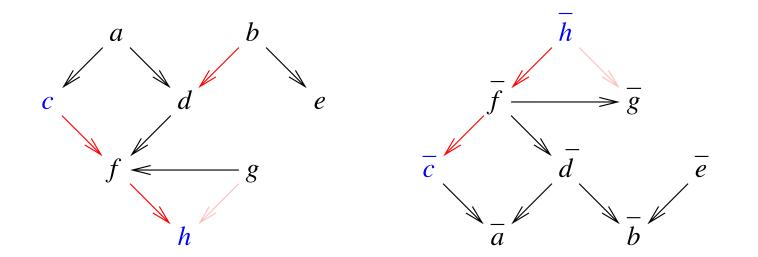
 $(\bar{a} \lor c) \land (\bar{a} \lor d) \land (\bar{b} \lor d) \land (\bar{b} \lor e) \land$ $(\bar{c} \lor f) \land (\bar{d} \lor f) \land (\bar{g} \lor f) \land (\bar{f} \lor h) \land$ $(\bar{g} \lor h) \land (\bar{a} \lor \bar{e} \lor h) \land (\bar{b} \lor \bar{c} \lor h) \land (a \lor b \lor c \lor d \lor e \lor f \lor g \lor h)$ TRD $g \to f \to h$

[HeuleJärvisaloBiere LPAR'2010]



Preprocessing and Inprocessing Techniques in SAT

[HeuleJärvisaloBiere LPAR'2010]



 $\begin{aligned} (\bar{a} \lor c) \land (\bar{a} \lor d) \land (\bar{b} \lor d) \land (\bar{b} \lor e) \land \\ (\bar{c} \lor f) \land (\bar{d} \lor f) \land (\bar{g} \lor f) \land (\bar{f} \lor h) \land \\ (\bar{b} \lor \bar{c} \lor h) \land (a \lor b \lor c \lor d \lor e \lor f \lor g \lor h) \\ & \mathsf{HTE} \\ c \to f \to h \end{aligned}$

Preprocessing and Inprocessing Techniques in SAT

$$\frac{C \lor l \qquad D \lor \overline{l}}{D} \qquad C \subseteq D$$

$$a \setminus (b \setminus (1) = a \setminus (b \setminus (a))$$

 $\dots (a \lor b \lor l)(a \lor b \lor c \lor \overline{l}) \cdots$

 \Downarrow

[EénBiere-SAT'05]

 $\begin{array}{ccc}
a \lor b \lor l & a \lor b \lor c \lor \overline{l} \\
\hline
a \lor b \lor c
\end{array}$

32/48

resolvent D subsumes second antecedent $D \lor \overline{l}$

assume given CNF contains both antecedents

if *D* is added to CNF then $D \vee \overline{l}$ can be removed

which in essence *removes* \overline{l} from $D \lor \overline{l}$... $(a \lor b \lor l)(a \lor b \lor c) \ldots$

used in SATeLite preprocessor

now common in many SAT solvers

Preprocessing and Inprocessing Techniques in SAT

hidden literal addition (HLA) uses SSR in reverse order

assume given CNF contains resolvent and first antecedent $\dots (a \lor b \lor l)(a \lor b \lor c) \dots$

```
we can replace D by D \vee \overline{l}
```

which in essence *adds* \overline{l} to *D*, repeat HLA until fix-point

keep remaining non-tautological clauses after removing added literals again

HTE = assume $C \lor l$ is a binary clauses

more general versions in the paper

 $\dots (a \lor b \lor l) (a \lor b \lor c \lor \overline{l}) \dots$

remove clauses with a literal implied by negation of another literal in the clause

HTE confluent and BCP preserving

modulo equivalent variable renaming

[HeuleJärvisaloBiere SAT'11]

better explained on binary implication graph

remove literal from a clause which implies another literal in the clause

 $\dots (\bar{a} \lor b)(\bar{b} \lor c)(a \lor c \lor d) \dots \quad \Rightarrow \quad \dots (\bar{a} \lor b)(\bar{b} \lor c)(c \lor d) \dots$

related work before all uses BCP:

- asymmetric branching implemented in MiniSAT but switched off by default
- distillation

[JinSomenzi'05][HanSomenzi DAC'07]

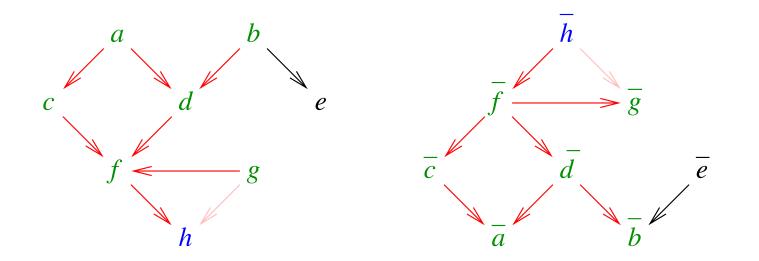
• vivification

[PietteHamadiSais ECAl'08]

• caching technique in CryptoMiniSAT

HTE/HLE only uses the binary implication graph!

[HeuleJärvisaloBiere SAT'11]



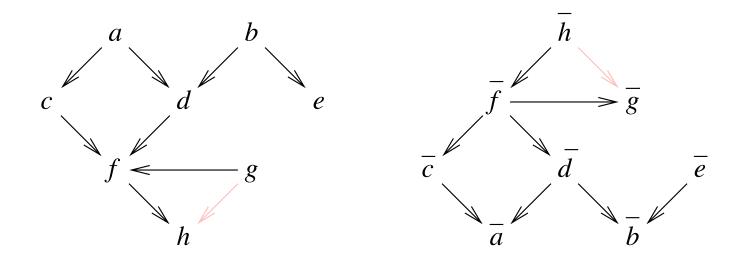
$\begin{array}{l} (\bar{a} \lor c) \land (\bar{a} \lor d) \land (\bar{b} \lor d) \land (\bar{b} \lor e) \land \\ (\bar{c} \lor f) \land (\bar{d} \lor f) \land (\bar{g} \lor f) \land (\bar{f} \lor h) \land \end{array}$

$(a \lor b \lor c \lor d \lor e \lor f \lor g \lor h)$

HLE all but *e* imply *h* also *b* implies *e*

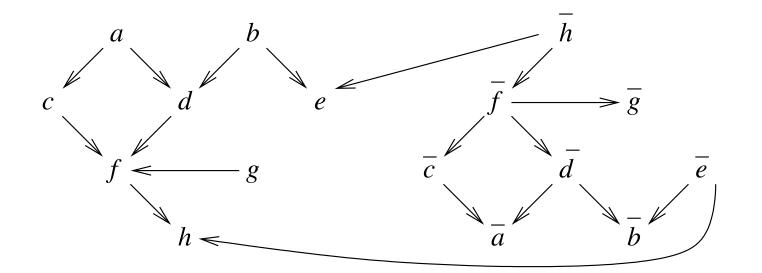
35/48

[HeuleJärvisaloBiere SAT'11]



$$(\bar{a} \lor c) \land (\bar{a} \lor d) \land (\bar{b} \lor d) \land (\bar{b} \lor e) \land (\bar{c} \lor f) \land (\bar{d} \lor f) \land (\bar{g} \lor f) \land (\bar{f} \lor h) \land (e \lor h)$$

[HeuleJärvisaloBiere SAT'11]



 $\begin{array}{l} (\bar{a} \lor c) \land (\bar{a} \lor d) \land (\bar{b} \lor d) \land (\bar{b} \lor e) \land \\ (\bar{c} \lor f) \land (\bar{d} \lor f) \land (\bar{g} \lor f) \land (\bar{f} \lor h) \land \\ (e \lor h) \end{array}$

Preprocessing and Inprocessing Techniques in SAT

Armin Biere – FMV – JKU Linz

actually quite old technique

... [Freeman PhdThesis'95] [LeBerre'01] ...

assume literal l, BCP, if conflict, add unit \overline{l}

rather costly to run until completion

conjecture: at least quadratic

one BCP is linear and also in practice can be quite expensive

need to do it for all variables and restart if new binary clause generated

useful in practice: lift common implied literals for assumption l and assumption \bar{l}

even on BIG (FL2) conjectured to be quadratic

[VanGelder'05]

 $\dots (\bar{a} \lor b)(\bar{b} \lor c)(\bar{c} \lor d)(\bar{d} \lor \bar{a}) \dots \Rightarrow \text{ add unit clause } \bar{a}$

subsumed by running one HLA until completion

[AspvallPlassTarjan'79] [Li'00] [Val'01] [Brafman'04] [VanGelder'05]

decompose BIG into strongly connect components (SCCs)

if there is an *l* with *l* and \overline{l} in the same component \Rightarrow *unsatisfiable*

otherwise replace all literals by a "representative"

linear algorithm can be applied routinely during garbage collection

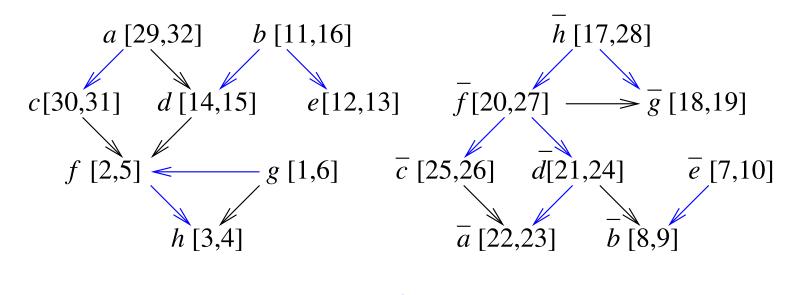
but as with failed literal preprocessing may generate new binary clauses

 $\dots (\bar{a} \lor b)(\bar{b} \lor c)(\bar{c} \lor a)(a \lor b \lor c \lor d) \dots \implies \dots (a \lor d) \dots$

Time Stamping

[HeuleJärvisaloBiere SAT'11]

DFS tree with discovered and finished times: [dsc(l), fin(l)]



tree edges

parenthesis theorem: l ancestor in DFS tree of k iff $[dsc(k), fin(k)] \subseteq [dsc(l), fin(l)]$ well known

ancestor relationship gives necessary conditions for (transitive) implication:

- if $[\operatorname{dsc}(k), \operatorname{fin}(k)] \subseteq [\operatorname{dsc}(l), \operatorname{fin}(l)]$ then $l \to k$
- if $[\operatorname{dsc}(\overline{l}), \operatorname{fin}(\overline{l})] \subseteq [\operatorname{dsc}(\overline{k}), \operatorname{fin}(\overline{k})]$ then $l \to k$

Unhiding: Applying Time Stamping to TRD/HTE/HLE/FL2/...

- time stamping in previous example does not cover $b \rightarrow h$ $[11, 16] = [\operatorname{dsc}(b), \operatorname{fin}(b)] \not\subseteq [\operatorname{dsc}(h), \operatorname{fin}(h)] = [3, 4]$ $[17, 28] = [\operatorname{dsc}(\bar{h}), \operatorname{fin}(\bar{h})] \not\subseteq [\operatorname{dsc}(\bar{b}), \operatorname{fin}(\bar{b})] = [8, 9]$
- in example still both HTE "unhidden", HLE works too (since $b \rightarrow e$)
- "coverage" heavily depends on DFS order
- as solution we propose multiple randomized DFS rounds/phases
- so we approximate a quadratic problem (reachability) randomly by a linear algorithm
- if BIG is a tree *one* time stamping covers everything

42/48

Unhiding (formula F) stamp := 01 foreach literal l in BIG(F) do 2 dsc(l) := 0; fin(l) := 03 prt(l) := l; root(l) := l4 foreach $r \in \operatorname{RTS}(F)$ do 5 stamp := Stamp(r, stamp) 6 foreach literal l in BIG(F) do 7 if dsc(l) = 0 then 8 stamp := Stamp(l, stamp)9 **return** *Simplify*(*F*) 10

Stamp (literal *l*, integer *stamp*)

1
$$stamp := stamp + 1$$

2 $dsc(l) := stamp$
3 $foreach (\bar{l} \lor l') \in F_2 do$
4 $if dsc(l') = 0$ then
5 $prt(l') := l$
6 $root(l') := root(l)$
7 $stamp := Stamp(l', stamp)$
8 $stamp := stamp + 1$
9 $fin(l) := stamp$
10 $return stamp$

Simplify (formula F)

1 foreach $C \in F$

2
$$F := F \setminus \{C\}$$

if UHTE(C) then continue

$$F := F \cup \{ UHLE(C) \}$$

5 return F

3

4

UHTE (clause C) $l_{\text{pos}} :=$ first element in $S^+(C)$ 1 $l_{\text{neg}} := \text{first element in } S^-(C)$ 2 while true 3 if $dsc(l_{neg}) > dsc(l_{pos})$ then 4 if l_{pos} is last element in $S^+(C)$ then return false 5 $l_{\text{pos}} :=$ next element in $S^+(C)$ 6 else if $fin(l_{neg}) < fin(l_{pos})$ or (|C| = 2 and $(l_{pos} = \overline{l}_{neg})$ or $prt(l_{pos}) = l_{neg})$ then 7 if l_{neg} is last element in $S^{-}(C)$ then return false 8 $l_{\text{neg}} := \text{next element in } S^-(C)$ 9 else return true 10

- $S^+(C)$ sequence of literals in C ordered by dsc()
- $S^{-}(C)$ sequence of negations of literals in C ordered by dsc()

$O(|C|\log|C|)$

Unhiding HLE

UHLE (clause C) *finished* := finish time of first element in $S^+_{rev}(C)$ 1 foreach $l \in S^+_{rev}(C)$ starting at second element 2 if fin(l) > finished then $C := C \setminus \{l\}$ 3 else finished := fin(l)4 *finished* := finish time of first element in $S^{-}(C)$ 5 foreach $\overline{l} \in S^{-}(C)$ starting at second element 6 if $fin(\overline{l}) < finished$ then $C := C \setminus \{l\}$ 7 else finished := $fin(\overline{l})$ 8 return C 9

 $S_{rev}^+(C)$ reverse of $S^+(C)$

$O(|C|\log|C|)$

Preprocessing and Inprocessing Techniques in SAT

Armin Biere – FMV – JKU Linz

45/48

		Stamp (literal l, integer stamp)
1	BSC	stamp := stamp + 1
2	BSC	dsc(l) := stamp; obs(l) := stamp
3	ELS	flag := true // l represents a SCC
4	ELS	<i>S</i> .push(<i>l</i>) // push <i>l</i> on SCC stack
5	BSC	for each $(\overline{l} \lor l') \in F_2$
6	TRD	if $dsc(l) < obs(l')$ then $F := F \setminus \{(\overline{l} \lor l')\}$; continue
7	FLE	if $dsc(root(l)) \leq obs(\overline{l'})$ then
8	FLE	$l_{\text{failed}} := l$
9	FLE	while $dsc(l_{failed}) > obs(\overline{l'})$ do $l_{failed} := prt(l_{failed})$
10	FLE	$F := F \cup \{(\bar{l}_{\text{failed}})\}$
11	FLE	if $dsc(\overline{l}') \neq 0$ and $fin(\overline{l}') = 0$ then continue
12	BSC	if $dsc(l') = 0$ then
13	BSC	$\operatorname{prt}(l') := l$
	BSC	$\operatorname{root}(l') := \operatorname{root}(l)$
	BSC	stamp := Stamp(l', stamp)
	ELS	if $fin(l') = 0$ and $dsc(l') < dsc(l)$ then
17	ELS	dsc(l) := dsc(l'); flag := false // l is equivalent to l'
18	OBS	obs(l') := stamp // set last observed time attribute
19	ELS	if $flag$ = true then // if l represents a SCC
	BSC	stamp := stamp + 1
	ELS	do
22	ELS	<i>l</i> ' := <i>S</i> .pop() // get equivalent literal
23	ELS	dsc(l') := dsc(l) // assign equal discovered time
24	BSC	fin(l') := stamp // assign equal finished time
	ELS	while $l' \neq l$
26	BSC	return stamp

46/48

- implemented as one inprocessing phase in our SAT solver Lingeling beside variable elimination, distillation, blocked clause elimination, probing, ...
- bursts of randomized DFS rounds and sweeping over the whole formula
- fast enough to be applicable to large learned clauses as well unhiding is particullary effective for learned clauses
- beside UHTE and UHLE we also have added hyper binary resolution UHBR not useful in practice

Lingeling 571 on SAT'09 Competition Application Benchmarks

[HeuleJärvisaloBiere SAT'11]

configuration	sol	sat	uns	unhd	simp	elim
adv.stamp (no uhbr)	188	78	110	7.1%	33.0%	16.1%
adv.stamp (w/uhbr)	184	75	109	7.6%	32.8%	15.8%
basic stamp (no uhbr)	183	73	110	6.8%	32.3%	15.8%
basic stamp (w/uhbr)	183	73	110	7.4%	32.8%	15.8%
no unhiding	180	74	106	0.0%	28.6%	17.6%

configuration	hte	stamp	redundant	hle	redundant	units	stamp
adv.stamp (no uhbr)	22	64%	59%	291	77.6%	935	57%
adv.stamp (w/uhbr)	26	67%	70%	278	77.9%	941	58%
basic stamp (no uhbr)	6	0%	52%	296	78.0%	273	0%
basic stamp (w/uhbr)	7	0%	66%	288	76.7%	308	0%
no unhiding	0	0%	0%	0	0.0%	0	0%

similar results for crafted and SAT'10 Race instances

- preprocessing is important for SAT solvers
- hard kernels do occur in practice
- inprocessing provides additional benefits
- new class of clause elimination procedures
- even quadratic algorithms are most of the time too expensive