Clique Cover

Graph transformation theory

Partial Clique Cover

Confluent Data Reduction for Edge Clique Cover: A Bridge Between Graph Transformation and Kernelization

Hartmut Ehrig Claudia Ermel <u>Falk Hüffner</u> Rolf Niedermeier Olga Runge

Technische Universität Berlin

2 September 2011

Partial Clique Cover

Interaction of data reduction rules

- Kernelizations typically use a set of data reduction rules
- Up to now, little research on interaction of reduction rules

Partial Clique Cover

Interaction of data reduction rules

- Kernelizations typically use a set of data reduction rules
- Up to now, little research on interaction of reduction rules

Definition

A set of data reduction rules is called **confluent** if any order of application yields the same instance.

Partial Clique Cover

Why is confluence interesting?

If a kernel is confluent,

- it is "robust";
- in an implementation, we can optimize for speed of application.

Why is confluence interesting?

If a kernel is confluent,

- it is "robust";
- in an implementation, we can optimize for speed of application.
- If a kernel is not confluent,
 - it has "slack": some orders might lead to worse results;
 - investigating this might lead to improved rules.

Why is confluence interesting?

If a kernel is confluent,

- it is "robust";
- in an implementation, we can optimize for speed of application.
- If a kernel is not confluent,
 - it has "slack": some orders might lead to worse results;
 - investigating this might lead to improved rules.

Further, insights on the interaction between rules can lead to faster kernelizations.

Clique Cover

Clique Cover

Graph transformation theory

Partial Clique Cover

Clique Cover

Clique Cover

Clique Cover

Graph transformation theory

Partial Clique Cover

Clique Cover

Clique Cover

Clique Cover

Graph transformation theory

Partial Clique Cover

Clique Cover

Clique Cover

Clique Cover

Graph transformation theory

Partial Clique Cover

Clique Cover

Clique Cover

Clique Cover

Graph transformation theory

Partial Clique Cover

Clique Cover

Clique Cover

Graph transformation theory

Partial Clique Cover

Data reduction for Clique Cover

Rule 1

Delete isolated vertices.

Clique Cover

Graph transformation theory

Partial Clique Cover

Data reduction for Clique Cover

Rule 1

Delete isolated vertices.

Rule 2

Delete isolated edges.

Clique Cover

Graph transformation theory

Partial Clique Cover

Data reduction for Clique Cover

Rule 1

Delete isolated vertices.

Rule 2

Delete isolated edges.

Rule 3

Delete one of two twins.

Clique Cover

Graph transformation theory

Partial Clique Cover

Data reduction for Clique Cover

Rule 1

Delete isolated vertices.

Rule 2

Delete isolated edges.

Rule 3

Delete one of two twins.

Clique Cover

Graph transformation theory

Partial Clique Cover

Kernelization for Clique Cover

Theorem ([Gyárfás 1990, Gramm et al. 2008])

Rules 1 to 3 yield a kernel with at most 2^k *vertices.*

Clique Cover

Graph transformation theory

Partial Clique Cover

Confluence of Clique Cover kernel

Theorem

Rules 1 to 3 are confluent.

Clique Cover

Graph transformation theory

Partial Clique Cover

Confluence of Clique Cover kernel

Theorem

Rules 1 to 3 are confluent.

Clique Cover

Graph transformation theory

Partial Clique Cover

Confluence of Clique Cover kernel

Theorem

Rules 1 to 3 are confluent.

Clique Cover

Graph transformation theory

Partial Clique Cover

Confluence of Clique Cover kernel

Corollary

A 2^k-vertex kernel for CLIQUE COVER can be found in linear time.

Partial Clique Cover

Graph transformation theory

- Started in the early 1970s
- Generalizes Chomsky grammars (on strings) and term rewriting systems (on trees) to graphs
- Used to model operational sematics of changing networks

Clique Cover

Graph transformation theory

Partial Clique Cover

Clique Cover

Graph transformation theory

Partial Clique Cover

Clique Cover reduction as graph transformation

Clique Cover

Graph transformation theory

Partial Clique Cover

Clique Cover reduction as graph transformation

Clique Cover

Graph transformation theory

Partial Clique Cover

Clique Cover reduction as graph transformation

H. Ehrig et al. (TU Berlin)

Confluent Data Reduction

Clique Cover

Graph transformation theory

Partial Clique Cover

Local confluence

Newman's lemma [Newman 1942]

To show confluence of a system of data reduction rules, it is sufficient to show local confluence.

Clique Cover

Graph transformation theory

Partial Clique Cover

Critical pair analysis

Theorem ([Plump 2005])

To show confluence of a system of data reduction rules on directed graphs, it is sufficient to consider critical pairs, that is, rule applications that conflict and have minimal context.

Confluence of critical pair $(G \rightarrow G_1, G \rightarrow G_2)$

Clique Cover

Graph transformation theory

Partial Clique Cover

Critical pair analysis with AGG

Clique Cover

Graph transformation theory

Partial Clique Cover •00000

Partial Clique Cover

Clique Cover

Graph transformation theory

Partial Clique Cover

Data reduction for Partial Clique Cover

Rule 4

Delete vertices incident only on covered edges.

Clique Cover

Graph transformation theory

Partial Clique Cover

Data reduction for Partial Clique Cover

Rule 4

Delete vertices incident only on covered edges.

Rule 5

Delete isolated edges.

Clique Cover

Graph transformation theory

Partial Clique Cover

Data reduction for Partial Clique Cover

Rule 4

Delete vertices incident only on covered edges.

Rule 5

Delete isolated edges.

Rule 6

Delete one of two twins when connections are labelled identically.

Clique Cover

Graph transformation theory

Partial Clique Cover

Data reduction for Partial Clique Cover

Rule 4

Delete vertices incident only on covered edges.

Rule 5

Delete isolated edges.

Rule 6

Delete one of two twins when connections are labelled identically.

Clique Cover

Graph transformation theory

Partial Clique Cover

Kernel for Partial Clique Cover?

Clique Cover

Graph transformation theory

Partial Clique Cover

Kernel for Partial Clique Cover?

Theorem

Rules 4 to 6 yield a kernel with at most 2^{k+c} *vertices, where c is the number of covered edges.*

Clique Cover

Graph transformation theory

Partial Clique Cover

Confluence of Partial Clique Cover rules

Theorem

Rules 4 to 6 are confluent.

Partial Clique Cover

Future work and open questions

Kernelizations

- Analyze more kernelizations for confluence
- Does it make non-existence proofs easier when only asking for confluent problem kernels?
- Does confluence help subsequent solution strategies that build on top of the kernel?

Future work and open questions

Kernelizations

- Analyze more kernelizations for confluence
- Does it make non-existence proofs easier when only asking for confluent problem kernels?
- Does confluence help subsequent solution strategies that build on top of the kernel?

Graph transformation theory

- Extend critical pair theory to undirected graphs
- Extend critical pair theory to rule schemes
- Extend software tools with this

Clique Cover

Graph transformation theory

Partial Clique Cover

Future work and open questions

Clique Cover

- Is PARTIAL CLIQUE COVER in FPT wrt. k?
- If so, does it have a singly-exponential kernel wrt. k?

