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Interaction of data reduction rules

Kernelizations typically use a set of data reduction rules
Up to now, little research on interaction of reduction rules

Definition
A set of data reduction rules is called confluent if any order ofapplication yields the same instance.
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Why is confluence interesting?

If a kernel is confluent,
it is “robust”;
in an implementation, we can optimize for speed ofapplication.

If a kernel is not confluent,
it has “slack”: some orders might lead to worse results;
investigating this might lead to improved rules.

Further, insights on the interaction between rules can lead tofaster kernelizations.
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Clique Cover

Clique Cover
Input: An undirected graph G = (V , E )and an integer k > 0.
Question: Is there a set of at most kcliques in G such that each edge in Ehas both its endpoints in at least one ofthe selected cliques?
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Data reduction for Clique Cover

Rule 1
Delete isolated vertices.

Rule 2
Delete isolated edges.
Rule 3
Delete one of two twins.
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Kernelization for Clique Cover

Theorem ([Gyárfás 1990, Gramm et al. 2008])
Rules 1 to 3 yield a kernel with at most 2k vertices.
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Confluence of Clique Cover kernel
Theorem
Rules 1 to 3 are confluent.
Proof
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Confluence of Clique Cover kernel

Corollary
A 2k -vertex kernel for CLIQUE COVER can be found in lineartime.
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Graph transformation theory

Started in the early 1970s
Generalizes Chomsky grammars (on strings) and termrewriting systems (on trees) to graphs
Used to model operational sematics of changing networks

H. Ehrig et al. (TU Berlin) Confluent Data Reduction 9/20



Introduction Clique Cover Graph transformation theory Partial Clique Cover

Reduction rules in graph transformation theory
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Clique Cover reduction as graph transformation
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Local confluence
Newman’s lemma [Newman 1942]
To show confluence of a system of data reduction rules, it issufficient to show local confluence.

G

G1 G2

G3
Confluence

∗ ∗

∗ ∗

G

G1 G2

G3
Local confluence
∗ ∗
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Critical pair analysis
Theorem ([Plump 2005])
To show confluence of a system of data reduction rules ondirected graphs, it is sufficient to consider critical pairs, that is,rule applications that conflict and have minimal context.

G

G1 G2

G3
Confluence of critical pair (G → G1,G → G2)

∗ ∗
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Critical pair analysis with AGG
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Partial Clique Cover
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Data reduction for Partial Clique Cover

Rule 4
Delete vertices incident only on coverededges.

Rule 5
Delete isolated edges.
Rule 6
Delete one of two twins whenconnections are labelled identically.
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Kernel for Partial Clique Cover?

b1 b3
c1 c7

Theorem
Rules 4 to 6 yield a kernel with at most 2k+c vertices, where cis the number of covered edges.
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Confluence of Partial Clique Cover rules
Theorem
Rules 4 to 6 are confluent.
Proof
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Future work and open questions
Kernelizations

Analyze more kernelizations for confluence
Does it make non-existence proofs easier when onlyasking for confluent problem kernels?
Does confluence help subsequent solution strategies thatbuild on top of the kernel?

Graph transformation theory
Extend critical pair theory to undirected graphs
Extend critical pair theory to rule schemes
Extend software tools with this
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Future work and open questions

Clique Cover
Is PARTIAL CLIQUE COVER in FPT wrt. k ?
If so, does it have a singly-exponential kernel wrt. k ?
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