ŢĒDŌĒ, ŸŢĒŌMĪŪ

Protrusions in Graphs and their Applications

Protrusion

Protrusion: Definition

Given a graph G and $S \subseteq V(G)$, we define $\partial_G(S)$ as the set of vertices in S that have a neighbor in $V(G) \setminus S$.

Definition

[r-protrusion] Given a graph G, we say that a set $X \subseteq V(G)$ is an r-protrusion of G if $\mathrm{tw}(G[X]) \leq r$ and $|\partial(X)| \leq r$.

Example

Graph G with a 2-protrusion. Does G have a vertex cover of size k?

Example

A vertex cover in G can look like that

or like that

Example

New graph has a vertex cover of size k-2 if and only if G has a vertex cover of size k

Or a bit differently

For any graph G, G+A has a vertex cover of size k if and only if G+B has a vertex cover of size k+2

For any graph G, G+A has a vertex cover of size $k \le G+B$ has a vertex cover of size k+2

How protrusions work for parameterized problem Π

If the size of protrusion X is larger than some constant x (depending only on Π), it is possible to replace X by a protrusion X' of size x' < x such that the solution for Π remains the "same" on the new graph.

[t-Boundaried Graphs]

A t-boundaried graph is a graph G=(V,E) with t distinguished vertices, uniquely labeled from 1 to t.

Gluing G_1 and G_2 : $G_1 \oplus G_2$ the t-boundaried graph obtained by taking the disjoint union of G_1 and G_2 and identifying each vertex of $\partial(G_1)$ with the vertex of $\partial(G_2)$ with the same label.

Equivalence relation $G_1 \equiv_{\Pi} G_2$

For a parameterized problem Π and two t-boundaried graphs G_1 and G_2 , we say that $G_1 \equiv_{\Pi} G_2$ if there exists a constant c such that for every t-boundaried graph G and for every integer k,

• $(G_1 \oplus G, k) \in \Pi$ if and only if $(G_2 \oplus G, k+c) \in \Pi$.

Finite Integer Index [Bodlaender and van Antwerpen-de Fluiter, 2001]

A parameterized problem Π has finite integer index in a graph class $\mathcal G$ if for every t there exists a finite set $\mathcal S$ of t-boundaried graphs such that $\mathcal S\subseteq \mathcal G$ and for any t-boundaried graph G_1 there exists $G_2\in \mathcal S$ such that $G_2\equiv_\Pi G_1$.

Problems with Finite Integer Index

Dominating Set, r-Dominating Set, q-Threshold Dominating SET, EFFICIENT DOMINATING SET, VERTEX COVER, CONNECTED r-Dominating Set, Connected Vertex Cover, MINIMUM-VERTEX FEEDBACK EDGE SET, VERTEX-H-COVERING. MINIMUM MAXIMAL MATCHING, CONNECTED DOMINATING SET, Vertex-S-Covering, Clique-Transversal, Almost-Outerplanar, Feedback Vertex Set, Cycle Domination, Edge Dominating Set, Independent Set. INDUCED d-DEGREE SUBGRAPH, r-SCATTERED SET, MIN LEAF

SPANNING TREE, INDUCED MATCHING, TRIANGLE PACKING, CYCLE PACKING, MAXIMUM FULL-DEGREE SPANNING TREE,

Vertex- \mathcal{H} -Packing, Vertex- \mathcal{S} -Packing...

Why protrusions work:

Lemma (Bodlaender, Fomin, Lokshtanov, Penninks, Saurabh, Thilikos, 2009)

Let Π be a problem that has finite integer index. Then there exists a computable function $\gamma:\mathbb{N}\to\mathbb{N}$ and an algorithm that, given an instance (G,k) and an r-protrusion X of G of size at least $\gamma(r)$, runs in O(|X|) time and outputs an instance (G^*,k^*) such that $|V(G^*)|<|V(G)|,\ k^*\leq k$, and $(G^*,k^*)\in\Pi$ if and only if $(G,k)\in\Pi$.

Some history

Finite Integer Index defined by Bodlaender and van Antwerpen-de Fluiter (2001) and de Fluiter (1997)

Similar to the notion of finite state [Abrahamson and Fellows 1993;

Borie et al. 1992; Courcelle 1990]

Talk overview:

- Compactness
- ► Bidimensionality
- ► Hitting forbidden minors

PART I: PLANAR GRAPHS and

COMPACTNESS

Let r be a (fixed) integer integer.

Claim: For any a > 0 there is b such that every planar graph

- ightharpoonup covered by k balls of radius r
- ▶ with at least bk vertices

has a p-protrusion of size at least a, where p depends only from r.

- Triangulate a graph G
- For each ball, pick a BFS tree rooted in the centre of the ball

- Contract edges of trees
- Remove "useless" parallel edges and loops

- The number of faces in this graph is at most 3k
- Every face corresponds to a protrusion

- Each region is bounded by at most 12r vertices
- Each region is of diameter at most r, and hence of treewidth at most 3r

- Each region is protrusion and every vertex is in a region
- There are at most sk regions, thus if G has more than sak vertices, it has a 12r-protrusion of size more than a

Let G be the set of planar graphs.

Definition

A parameterized problem $\Pi\subseteq \mathcal{G}\times \mathbb{N}$ is *compact* if there exist an integer r such that for all $(G,k)\in \Pi$, there is a planar embedding of G and a set $S\subseteq V(G)$ such that

- $|S| \le r \cdot k$, and
- $\blacktriangleright \mathbf{B}_G^r(S) = V(G).$

 $\mathbf{B}_G^r(S)$ — vertices at distance at most r from S in the vertex-face metrics of the graph.

Example: p-Dominating Set is compact for r = 1.

Theorem [Bodlaender, FF, Lokshtanov, Penninks, Saurabh,

Thilikos, 2009]:

Let Π be a compact problem with FII. Then Π admits a linear kernel on planar graphs.

Proof

Let (G, k) be an instance of Π .

- $lacktriangleq \Pi$ is compact, hence G can be covered by kr balls, each of radius r.
- Pick up a constant a to be larger than the maximum size of a graph from the set of representatives $(\Pi, 12r)$, t-boundaried with $t \leq 12r$.
- ▶ If G has more than $b \cdot k$ vertices, it has a protrusion of size larger than a. Replace protrusion by a graph of size at most a.

An extension

Definition

A parameterized problem $\Pi\subseteq \mathcal{G}\times \mathbb{N}$ is *quasi-compact* if there exist an integer r such that for all $(G,k)\in \Pi$, there is a planar embedding of G and a set $S\subseteq V(G)$ such that $|S|\leq r\cdot k$ and $\mathrm{tw}(G\setminus \mathbf{B}^r_G(S))\leq r$.

 $\mathbf{B}_G^r(S)$ — vertices at distance at most r from S in the vertex-face metrics of the graph.

An extension

Definition

A parameterized problem $\Pi\subseteq \mathcal{G}\times \mathbb{N}$ is *quasi-compact* if there exist an integer r such that for all $(G,k)\in \Pi$, there is a planar embedding of G and a set $S\subseteq V(G)$ such that $|S|\leq r\cdot k$ and $\mathrm{tw}(G\setminus \mathbf{B}^r_G(S))\leq r$.

 $\mathbf{B}_G^r(S)$ — vertices at distance at most r from S in the vertex-face metrics of the graph.

Example: Feedback Vertex Set is quasi-compact for r=1.

[Bodlaender, FF, Lokshtanov, Penninks, Saurabh, Thilikos, 2009]:

Problems with Quasi-compactness + FII admit linear kernels on planar graphs.

[Bodlaender, FF, Lokshtanov, Penninks, Saurabh, Thilikos, 2009]:

Problems with Quasi-compactness + FII admit linear kernels on planar graphs.

Can be extended to graphs of bounded genus

Problems that are Quasi-Compact and FII:

Dominating Set, r-Dominating Set, Vertex Cover, Connected

 $r\text{-}\mathrm{Dominating}$ Set, Connected Vertex Cover, Minimum-Vertex Feedback

EDGE SET, MINIMUM MAXIMAL MATCHING, CONNECTED DOMINATING SET,

Almost Outerplanar, Feedback Vertex Set, Cycle Domination, Edge

DOMINATING SET, CLIQUE TRANSVERSAL, different packing and covering problems...

PART II: Minor-free graphs and

Bidimensionality

Let G be a planar graph with vertex cover k

What we want: Show that there is a set S of size O(k) such that every component of $G\setminus S$ is a protrusion

Let G be a planar graph with vertex cover k

What we want: Show that there is a set S of size O(k) such that every component of $G \setminus S$ is a protrusion

Remark: This follows from the fact that VC is compact, but we want another proof

Fact 1 The treewidth of a planar graph with vertex cover k is $O(\sqrt{k})$

Proof: Excluding grid arguments

Fact 1 The treewidth of a planar graph with vertex cover k is $O(\sqrt{k}) \label{eq:optimization}$

Proof: Excluding grid arguments

Fact 2 Graph of treewidth t has an O(t) balanced separator

Fact 1 + Fact 2: Let G be a planar graph with vertex cover C of size k. There is a separator S of size at most $\alpha \sqrt{k}$ such that

▶ $|C \cap G_1| \le \alpha k$ and $|C \cap G_2| \le (1 - \alpha)k$ for some $1/3 \le \alpha \le 1/2$.

What we know about G_1 :

► $(C \cap G_1) \cup S$ is a vertex cover in $G_1 \cup S$, and the size of this VC is at most $\alpha k + \beta \sqrt{k}$;

 $ightharpoonup N(G_1) \subseteq S$

Apply arguments recursively for $G_1 \cup S$ and $G_2 \cup S$. We stop when for every component G_i , $(C \cap G_i) \cup N(G_i)$ is of constant size.

- ▶ Because $(C \cap G_i) \cup N(G_i)$ is a vertex cover of $G_i \cup N(G_i)$, the treewidth of G_i is constant
- ▶ Thus every G_i is a protrusion.

What about the size of set S?

$$|S| = \mu(k)$$

Recursive formula

$$\max_{1/3 \leq \alpha \leq 1/2} \{ \mu \left(\alpha \cdot k + (\beta \sqrt{k}) \right) + \mu \left((1-\alpha) \cdot k + (\beta \sqrt{k}) \right) + (\beta \sqrt{k} + 1) \}$$

Possible to show that $\mu(k) = O(k)$.

What we have: There is a set S of size $O(k)$ such that every
component of $G \setminus S$ is a protrusion

What we have: There is a set S of size O(k) such that every component of $G\setminus S$ is a protrusion

We want more: If G has sufficiently many vertices, then G has sufficiently large protrusion

Claim

Let G be a planar graph with vertex cover k. If G has more than ak vertices, then G has a protrusion of size at leas b.

Proof: Planar hypergraph arguments.

Conclusion

Vertex cover has a linear kernel on planar graphs

Conclusion

Vertex cover has a linear kernel on planar graphs

But where exactly did we use the properties of planarity and vertex

cover?

Properties we use

- ightharpoonup $\operatorname{tw}(G) = \sqrt{k}$
- lacktriangle A feasible solution on $G_1 \cup S$ can be formed from a general solution on G by adding S

Properties we use

- $lackbox{tw}(G) = O(\sqrt{k})$: Holds for many problems on H-minor-free graphs
- A feasible solution on $G_1 \cup S$ can be formed from a general solution on G by adding S: Separability property, holds for many problems too

Bidimenstionality and Protrusions

FF, Lokshtanov, Saurabh, Thilikos, 2010:

Minor-bidimensionality + Separability on H-minor free graphs yields existence of large protrusions in "YES" instances of large size.

Bidimenstionality and Protrusions

Minor-bidimensionality + Separability on H-minor free graphs yields existence of large protrusions in "YES" instances of large size.

Bidimenstionality and Protrusions

Minor-bidimensionality + Separability on H-minor free graphs yields existence of large protrusions in "YES" instances of large size.

Thus problems with Minor-bidimensionality + Separability + FII admit linear kernels on H-minor-free graphs.

PART III: Hitting Minors

Bizarre Problem

 $p ext{-}\mathsf{Treewidth-}123 ext{-}\mathsf{Deletion}$

Instance: A graph G and a non-negative integer k.

Parameter: k

Question: Does there exist $S \subseteq V(G)$, $|S| \le k$,

such that the treewidth of $G \setminus S$

is at most 123?

Solving Bizarre Problems

- ▶ The treewidth of a YES instance is at most 123 + k.
- Compute (or approximate) treewidth and use dynamic programming.
- lacktriangle With some (very non-trivial) efforts, obtain the running time $2^{2^{O(k\log k)}}n^{O(1)}$

Solving Less Bizarre Problems

- ▶ p-Treewidth-0-Deletion aka p-Vertex Cover, is solvable in time $2^{O(k)}n^{O(1)}$;
- ▶ $p ext{-Treewidth-1-Deletion aka }p ext{-Feedback Vertex Set, is solvable}$ in time $2^{O(k)}n^{O(1)}$

This bounds are tight unless ETH fails

Solving Less Bizarre Problems

- ▶ p-Treewidth-0-Deletion aka p-Vertex Cover, is solvable in time $2^{O(k)}n^{O(1)};$
- ▶ p-Treewidth-1-Deletion aka p-Feedback Vertex Set, is solvable in time $2^{O(k)}n^{O(1)}$
- lacktriangledown p-Treewidth-2-Deletion is solvable in time $2^{2^{O(k\log k)}} n^{O(1)}!!??$

We want to show that

p-Treewidth-123-Deletion is solvable in time $2^{O(k\log k)}n^{O(1)}$

Problem

Let \mathcal{F} be a set of graphs containing at least one planar graph.

p-PLANAR- \mathcal{F} -DELETION

Instance: A graph G and a non-negative integer k.

Parameter:

Question: Does there exist $S \subseteq V(G)$, |S| < k.

such that $G \setminus S$ contains no graph from \mathcal{F}

as a minor?

p-PLANAR- \mathcal{F} -DELETION: Examples

p-Vertex Cover:

p-Feedback Vertex Set:

 $\mathcal{F} = \{K_2\}$

 $\mathcal{F} = \{C_3\}$

p-PLANAR- \mathcal{F} -DELETION: Examples

p-Ратн
width 1 Deletion Set — p-Diamond Hitting Set
 $\mathcal{F} = \{T_2, K_3\}$ — $\mathcal{F} = \{\theta_3\}$

p-Planar- \mathcal{F} -Deletion: Examples

 $p ext{-} ext{Outerplanar Deletion Set}$

$$\mathcal{F} = \{K_{2,3}, K_4\}$$

p-Planar- \mathcal{F} -Deletion: Examples

 $p ext{-}Treewidth-123-Deletion$

Theorem (FF, Lokshtanov, Misra, Saurabh, 2011)

 $p ext{-} ext{PLANAR-}\mathcal{F} ext{-} ext{DELETION}$ is solvable in time $2^{O(k\log k)}n^2$.

Proof: Auxiliary problem

p-Disjoint Planar \mathcal{F} -deletion

Instance: A graph G, $k \ge 0$, and $S \subseteq V(G)$ of size at most

k+1 such that G[S] and $G\setminus S$ contains no graph

from $\mathcal F$ as a minor?

Parameter: 1

Question: Is there $T \subseteq V(G) \setminus S$, $|T| \le k$, such that $G \setminus T$

has no graph from $\mathcal F$ as a minor?

p-Disjoint Planar \mathcal{F} -Deletion

GIVEN:

- S is F-hitting set;
- G[5] has no minor

from F

FIND:

- Tis F-hitting set;
- Tis disjoint from S

Claim

If we manage to solve p-Disjoint Planar \mathcal{F} -Deletion in time $O^*(2^{k\log k})$, we also can solve p-Planar- \mathcal{F} -Deletion in time $O^*(2^{k\log k})$.

Iterative compression

- ▶ Step of iterative compression for p-Planar- \mathcal{F} -Deletion:
- ▶ Given \mathcal{F} -hitting set S of size k+1, to find a \mathcal{F} -hitting set S^* of size k+1, for each partition X,Y of S, solve p-DISJOINT PLANAR \mathcal{F} -DELETION with instance $(G \setminus Y, X, k-|Y|)$.
- ▶ Running time $O^*(2^{k \log k})$.

Lemma

 $p ext{-} ext{Disjoint Planar }\mathcal{F} ext{-} ext{Deletion }\textit{has a polynomial kernel}$

Lemma

 $p ext{-} ext{DISJOINT}$ PLANAR $\mathcal{F} ext{-} ext{DELETION}$ has a polynomial kernel

Remark: Lemma implies an $O^*(2^{k \log k})$ algorithm for p-Disjoint Planar \mathcal{F} -Deletion.

To obtain kernel we need

Fact

Let H be a planar graph. The treewidth of a H-minor-free graph G is at most f(H).

Many big protrusions

Lemma

Let b, s, p be integers. Then there is d such that every graph G with at least dbsp vertices and treewidth b has a partition of the vertex set into parts V_1, \ldots, V_p and U such that each $G[V_i]$ is a 2(b+1)-protrusion of size at least s.

By Fact:

- G\S is of constant treewidth

By Lemma

- There are many big protrusions in G\S

- Protrusion in GNS is not necessarily protrusion in G

What we want

- A hypergraph with vertex set S, and hyperedges formed by the neighbourhoods of protrusions of GNS has a linear amount of large hyperedges

Fact

Let $\mathcal H$ be an n-vertex hypergraph (not necessarily simple) such that its incidence graph $I(\mathcal H)$ does not contain K_h as a minor. Then the number of hyperedges of $\mathcal H$ of size at least h is at most $2^{s_h\sqrt{\log h}}h(h-1)n/2$.

In our case: $\mathcal H$ can be turned into H-minor-free hypergraph by removing at most k hyperedges, thus it has O(k) hyperedges larger than some constant depending on $\mathcal F$ only.

Fact

Let $\mathcal H$ be an n-vertex hypergraph (not necessarily simple) such that its incidence graph $I(\mathcal H)$ does not contain K_h as a minor. Then the number of hyperedges of $\mathcal H$ of size at least h is at most $2^{s_h\sqrt{\log h}}h(h-1)n/2$.

In our case: $\mathcal H$ can be turned into H-minor-free hypergraph by removing at most k hyperedges, thus it has O(k) hyperedges larger than some constant depending on $\mathcal F$ only.

WE HAVE PROTRUSION!!!

Remark: In real life (and real proof) things are a more complicated
because $p ext{-} ext{DISJOINT}$ Planar $\mathcal{F} ext{-} ext{DELETION}$ is not FII, so we have
to go through the annotated kernels and MSOL arguments.

Many thanks for joint searching of protrusions!!.