Protrusions in Graphs and their Applications




Protrusion

Rest of the graph




Protrusion: Definition

Given a graph G and S C V(G), we define 0z (.S) as the set of
vertices in S that have a neighbor in V(G) \ S.

Definition

[r-protrusion] Given a graph G, we say that a set X C V(G) is an

r-protrusion of G if tw(G[X]) <r and [9(X)| <.

)

D(X), Rest of the graph

H




Example

Graph G with a 2-protrusion. Does (G have a verlex
cover of size .é 7



Example

A vertex cover in &G can or like that
look like that



Example

AT EN

Necw graph has a vertex cover of Size k=2 i and only i G
has a vertex cover of Size K



Or a bit differently

7 \

For any graph G, G+A has a vertex cover of size £ if and
on/y £ GHB has a verlex cover of Size f+2



For any graph G, G+A has a vertex cover of size £ <=2 G+B
Aas a vertex cover of Size k+2



How protrusions work for parameterized problem II

If the size of protrusion X is larger than some constant x
(depending only on II), it is possible to replace X by a protrusion

X' of size ' < x such that the solution for II remains the “same’

on the new graph.

Rest of the graph

Rest of the graph




[t-Boundaried Graphs]
A t-boundaried graph is a graph G = (V, E) with ¢ distinguished
vertices, uniquely labeled from 1 to ¢.

Gluing GG and G3: G1 @ G4 the t-boundaried graph obtained by
taking the disjoint union of G; and G5 and identifying each vertex

of 9(G1) with the vertex of 9(G2) with the same label.

o«
@

G1® G2



Equivalence relation G =11 Go

For a parameterized problem II and two ¢-boundaried graphs G
and GGo, we say that G = G if there exists a constant ¢ such

that for every t-boundaried graph G and for every integer k,

» (G1® G, k) eIl if and only if (G2 ® G,k +¢) €11



Finite Integer Index [Bodlaender and van Antwerpen-de Fluiter, 2001]

A parameterized problem II has finite integer index in a graph class
G if for every t there exists a finite set S of t-boundaried graphs
such that § C G and for any t-boundaried graph G| there exists
Go € S such that Gy =1 G



Problems with Finite Integer Index

DOMINATING SET, 7-DOMINATING SET, g-THRESHOLD DOMINATING
SET, EFFICIENT DOMINATING SET, VERTEX COVER, CONNECTED
r-DOMINATING SET, CONNECTED VERTEX COVER,
MINIMUM-VERTEX FEEDBACK EDGE SET, VERTEX-H-COVERING,
MINIMUM MAXIMAL MATCHING, CONNECTED DOMINATING SET,
VERTEX-S-COVERING, CLIQUE-TRANSVERSAL,
ALMOST-OUTERPLANAR, FEEDBACK VERTEX SET, CYCLE
DOMINATION, EDGE DOMINATING SET, INDEPENDENT SET,
INDUCED d-DEGREE SUBGRAPH, r-SCATTERED SET, MIN LEAF
SPANNING TREE, INDUCED MATCHING, TRIANGLE PACKING, CYCLE
PackiNG, MAXIMUM FULL-DEGREE SPANNING TREE,

VERTEX-H-PACKING, VERTEX-S-PACKING...



Why protrusions work:

Lemma (Bodlaender, Fomin, Lokshtanov, Penninks, Saurabh,

Thilikos, 2009)

Let IT be a problem that has finite integer index. Then there exists
a computable function v : N — N and an algorithm that, given an
instance (G, k) and an r-protrusion X of G of size at least (),
runs in O(|X|) time and outputs an instance (G*, k*) such that

IV(G*)| < |[V(G)|, k* <k, and (G*,k*) € I if and only if

(G, k) e II.
-




Some history

Finite Integer Index defined by Bodlaender and van Antwerpen-de
Fluiter (2001) and de Fluiter (1997)
Similar to the notion of finite state [Abrahamson and Fellows 1993;

Borie et al. 1992; Courcelle 1990]



Talk overview:

» Compactness
» Bidimensionality

» Hitting forbidden minors



PART I: PLANAR GRAPHS and
COMPACTNESS



Let r be a (fixed) integer integer.

Claim: For any a > 0 there is b such that every planar graph
» covered by k balls of radius r
» with at least bk vertices

has a p-protrusion of size at least a, where p depends only from r.



Sketch of the proof

- Tr'/‘anﬂa/az‘e a grazh 1<

- For each ball, pick a BFS Zree rocted in 2the centre of the
ball



Sketch of the proof

- Contract edges of trees

- ( emcve "wseless” para/ e/ ec/geS and /00/95



Sketch of the proof

— The number of faces in this graph is @ most 34

- &ery face corresponds to a protrusion



Sketch of the proof

- éach reg/on rs bownded Ay al most 12r verdices

- bach region is of diameter a@ rmost r, and hence of
Zreccwidth at most 3r



Sketch of the proof

- fach reg/on 15 protrusion and every vertex is in a

region

- There are a@ most 3£ reﬁfon\s , 2hus if G has more Lhan 3ak
vertices, it has a \12r-protrusion of Size more than a



Let G be the set of planar graphs.

Definition
A parameterized problem II C G x N is compact if there exist an
integer r such that for all (G, k) € II, there is a planar embedding

of G and a set S C V() such that
» [S| <r-k, and
» B (S) =V(Q).
B{.(S) — vertices at distance at most r from S in the vertex-face

metrics of the graph.

Example: p-DOMINATING SET is compact for r = 1.



Theorem [Bodlaender, FF, Lokshtanov, Penninks, Saurabh,
Thilikos, 2009]:
Let II be a compact problem with Fll. Then II admits a linear

kernel on planar graphs.



Proof

Let (G, k) be an instance of II.

» II is compact, hence GG can be covered by kr balls, each of

radius 7.

» Pick up a constant a to be larger than the maximum size of a
graph from the set of representatives (II, 12r), t-boundaried
with ¢ < 12r.

» If G has more than b - k vertices, it has a protrusion of size

larger than a. Replace protrusion by a graph of size at most a.



An extension

Definition

A parameterized problem IT C G x N is quasi-compact if there
exist an integer 7 such that for all (G, k) € 11, there is a planar
embedding of G and a set S C V() such that |S| < r -k and
tw(G \ Bg(9)) <.

B/, (S5) — vertices at distance at most r from S in the vertex-face

metrics of the graph.



An extension

Definition

A parameterized problem IT C G x N is quasi-compact if there
exist an integer 7 such that for all (G, k) € 11, there is a planar
embedding of GG and a set S C V() such that |S| <7 -k and
tw(G \ Bg(9)) <.

B/, (S5) — vertices at distance at most r from S in the vertex-face
metrics of the graph.

Example: FEEDBACK VERTEX SET is quasi-compact for = 1.



[Bodlaender, FF, Lokshtanov, Penninks, Saurabh, Thilikos, 2009]:
Problems with Quasi-compactness + Fll admit linear kernels on

planar graphs.



[Bodlaender, FF, Lokshtanov, Penninks, Saurabh, Thilikos, 2009]:
Problems with Quasi-compactness + Fll admit linear kernels on
planar graphs.

Can be extended to graphs of bounded genus



Problems that are Quasi-Compact and FlI:

DOMINATING SET, 7-DOMINATING SET, VERTEX COVER, CONNECTED
r-DOMINATING SET, CONNECTED VERTEX COVER, MINIMUM-VERTEX FEEDBACK
EDGE SET, MINIMUM MAXIMAL MATCHING, CONNECTED DOMINATING SET,
ALMOST OUTERPLANAR, FEEDBACK VERTEX SET, CYCLE DOMINATION, EDGE

DoMINATING SET, CLIQUE TRANSVERSAL, different packing and covering problems...



PART II: Minor-free graphs and
Bidimensionality



Another approach: Vertex Cover in planar graphs

Let G be a planar graph with vertex cover k
What we want: Show that there is a set S of size O(k) such that

every component of G\ S is a protrusion



Another approach: Vertex Cover in planar graphs

Let G be a planar graph with vertex cover k
What we want: Show that there is a set S of size O(k) such that
every component of G\ S is a protrusion

Remark: This follows from the fact that VC is compact, but we

want another proof



Another approach: Vertex Cover in planar graphs

Fact 1 The treewidth of a planar graph with vertex cover k is
O(k)

Proof: Excluding grid arguments



Another approach: Vertex Cover in planar graphs

Fact 1 The treewidth of a planar graph with vertex cover k is
O(Vk)

Proof: Excluding grid arguments

Fact 2 Graph of treewidth ¢ has an O(t) balanced separator



Fact 1 + Fact 2: Let GG be a planar graph with vertex cover C' of

size k. There is a separator S of size at most av/k such that

» |[CNGy| <akand |[CNGyl < (1—a)k for some
1/3<a<1/2.

B




What we know about Gi:

» (CNG1)US is a vertex cover in G1 U S, and the size of this

VC is at most ok + BVE;

» N(G1)C S

B




Apply arguments recursively for Gy U S and G2 U .S. We stop when

for every component G;, (C' N G;) U N(G;) is of constant size.

» Because (C'NG;) UN(G;) is a vertex cover of G; U N(G;),

the treewidth of G; is constant

» Thus every GG, is a protrusion.

-
T

L




What about the size of set S7

S| = p(k)

Recursive formula

max {u(a-k+(BVE))+u ((1- )b+ (BVE) ) +(BVE+1)}

1/3<a<1/2

Possible to show that u(k) = O(k).



What we have: There is a set S of size O(k) such that every

component of G\ S is a protrusion



What we have: There is a set S of size O(k) such that every
component of G\ S is a protrusion
We want more: If G has sufficiently many vertices, then G has

sufficiently large protrusion



Claim

Let G be a planar graph with vertex cover k. If G has more than
ak vertices, then GG has a protrusion of size at leas b.

Proof: Planar hypergraph arguments.



Conclusion

Vertex cover has a linear kernel on planar graphs



Conclusion

Vertex cover has a linear kernel on planar graphs
But where exactly did we use the properties of planarity and vertex

cover?



Properties we use

> tw(G) = Vk
» A feasible solution on G; U S can be formed from a general

solution on GG by adding S



Properties we use

» tw(G) = O(Vk): Holds for many problems on H-minor-free
graphs

» A feasible solution on G; U S can be formed from a general
solution on GG by adding S: Separability property, holds for

many problems too



Bidimenstionality and Protrusions

FF, Lokshtanov, Saurabh, Thilikos, 2010:
Minor-bidimensionality + Separability on H-minor free graphs
yields existence of large protrusions in “YES" instances of large

size.



Bidimenstionality and Protrusions

Minor-bidimensionality 4+ Separability on H-minor free graphs
yields existence of large protrusions in “YES” instances of large

size.



Bidimenstionality and Protrusions

Minor-bidimensionality 4+ Separability on H-minor free graphs
yields existence of large protrusions in “YES” instances of large
size.

Thus problems with Minor-bidimensionality + Separability + FlI

admit linear kernels on H-minor-free graphs.



PART Ill: Hitting Minors



Bizarre Problem

p-Treewidth-123-Deletion

Instance: A graph G and a non-negative integer k.
Parameter: k
Question: Does there exist S C V(G), |S| <k,
such that the treewidth of G\ S

is at most 1237




Solving Bizarre Problems

» The treewidth of a YES instance is at most 123 + k.
» Compute (or approximate) treewidth and use dynamic
programming.

» With some (very non-trivial) efforts, obtain the running time

220(k log k) no(l)



Solving Less Bizarre Problems

» p-Treewidth-0-Deletion aka p-Vertex Cover, is solvable in time

20(k)n0(1);

» p-Treewidth-1-Deletion aka p-Feedback Vertex Set, is solvable

in time 20(k),0(1)

This bounds are tight unless ETH fails



Solving Less Bizarre Problems

» p-Treewidth-0-Deletion aka p-Vertex Cover, is solvable in time

20(14:)”0(1);
» p-Treewidth-1-Deletion aka p-Feedback Vertex Set, is solvable
in time 20()p00M)

. . . . . O(klogk
» p-Treewidth-2-Deletion is solvable in time 22 (Hloel) o) 1177



We want to show that

p-Treewidth-123-Deletion is solvable in time 20(klogk),O(1)



Problem

Let F be a set of graphs containing at least one planar graph.

p-PLANAR-F-DELETION

Instance: A graph G and a non-negative integer k.
Parameter: k
Question: Does there exist S C V(G), |S| <k,
such that G \ S contains no graph from F

as a minor?




p-PLANAR-F-DELETION: Examples

p-VERTEX COVER: p-FEEDBACK VERTEX SET:

F = {K>} F={Cs}



p-PLANAR-F-DELETION: Examples

p-PATHWIDTH 1 DELETION SET  p-DIAMOND HITTING SET

F ={T5, K3} F =103}



p-PLANAR-F-DELETION: Examples

p-OUTERPLANAR DELETION SET

F ={Ks3, K4}



p-PLANAR-F-DELETION: Examples

p-TREEWIDTH-123-DELETION



Theorem (FF, Lokshtanov, Misra, Saurabh, 2011)

p-PLANAR-F-DELETION is solvable in time 20(klogk)p2.



Proof: Auxiliary problem

p-DI1SJOINT PLANAR F-DELETION

Instance: A graph G, k >0, and S C V(G) of size at most
k + 1 such that G[S] and G\ S contains no graph
from F as a minor?

Parameter: k
Question: Isthere T CV(G)\ S, |T| < k, such that G\ T

has no graph from F as a minor?




p-DISJOINT PLANAR F-DELETION

GIVEN: FIND:
-Sis ﬁ-h/‘z‘z‘/rg set; - 715 F-hitting set;
- GLS] Aas no runor -7 s a//‘\?/'ofnz‘ from S

fror F



Claim

If we manage to solve p-DISJOINT PLANAR F-DELETION in time
O*(2k1°e k) 'we also can solve p-PLANAR-F-DELETION in time

O*(2klogk)_



lterative compression

» Step of iterative compression for p-PLANAR-F-DELETION:

» Given F-hitting set S of size k + 1, to find a F-hitting set S*
of size k + 1, for each partition X, Y of S, solve p-DISJOINT

PLANAR F-DELETION with instance (G \Y, X,k — |Y]).

> Running time O*(2F108k),



Lemma

p-DISJOINT PLANAR F-DELETION has a polynomial kernel



Lemma

p-DISJOINT PLANAR F-DELETION has a polynomial kernel

Remark: Lemma implies an O*(2¥1°8%) algorithm for p-DISJOINT

PLANAR F-DELETION.



To obtain kernel we need

Fact

Let H be a planar graph. The treewidth of a H-minor-free graph

G is at most f(H).



Many big protrusions

Lemma

Let b, s, p be integers. Then there is d such that every graph G
with at least dbsp vertices and treewidth b has a partition of the
vertex set into parts Vi, ..., V, and U such that each G|V;] is a

2(b + 1)-protrusion of size at least s.



- 6\5 IS of constant Zreecoid? A
By Lemma

- There are many 5{9 Protrusions in A\S



— Protrusion in (O\S /s rnot nedeS\Sar//y

protrusion in &G



What we want

Hypergraph arguments:

- A Aypergraph cith verdex set S, and
Ayperedges Formed éy Zhe ne/lg/wéoarhooaﬂs of”
protrusions of G\S Aas a linear amount of

/ arge /7}//8/‘30{935



Fact

Let H be an n-vertex hypergraph (not necessarily simple) such
that its incidence graph I(H) does not contain K}, as a minor.
Then the number of hyperedges of H of size at least h is at most
osnvIoghp(h — 1)n /2.

In our case: ‘H can be turned into H-minor-free hypergraph by
removing at most k hyperedges, thus it has O(k) hyperdges larger

than some constant depending on F only.



Fact

Let H be an n-vertex hypergraph (not necessarily simple) such
that its incidence graph I(H) does not contain K}, as a minor.
Then the number of hyperedges of H of size at least h is at most
2snvVI08hp (B — 1)n /2.

In our case: ‘H can be turned into H-minor-free hypergraph by
removing at most k hyperedges, thus it has O(k) hyperdges larger
than some constant depending on F only.

WE HAVE PROTRUSION!!!



Remark: In real life (and real proof) things are a more complicated
because p-DI1SJOINT PLANAR F-DELETION is not Fll, so we have

to go through the annotated kernels and MSOL arguments.



Mdny Z/‘]dn,é s for ‘/.OI‘/?Z pegarl liga Lo p)‘ofl‘é{éfoh\s 11,
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