
Vienna
Worker 2011 

 FEDOR V. FOMIN

Protrusions in Graphs and their Applications



Protrusion

X
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    <r

Protrusion: Definition

Given a graph G and S ⊆ V (G), we define ∂G(S) as the set of

vertices in S that have a neighbor in V (G) \ S.

Definition

[r-protrusion] Given a graph G, we say that a set X ⊆ V (G) is an

r-protrusion of G if tw(G[X]) ≤ r and |∂(X)| ≤ r.

Protrusion: Definition

Given a graph G and S ⊆ V (G), we define ∂G(S) as the set of

vertices in S that have a neighbor in V (G) \ S.

Definition

[r-protrusion] Given a graph G, we say that a set X ⊆ V (G) is an

r-protrusion of G if tw(G[X]) ≤ r and |∂(X)| ≤ r.



Protrusion: Definition

Given a graph G and S ⊆ V (G), we define ∂G(S) as the set of

vertices in S that have a neighbor in V (G) \ S.

Definition

[r-protrusion] Given a graph G, we say that a set X ⊆ V (G) is an

r-protrusion of G if tw(G[X]) ≤ r and |∂(X)| ≤ r.

X
Rest of the graph

tw(G[X])<r
    <r

Protrusion: Definition

Given a graph G and S ⊆ V (G), we define ∂G(S) as the set of

vertices in S that have a neighbor in V (G) \ S.

Definition

[r-protrusion] Given a graph G, we say that a set X ⊆ V (G) is an

r-protrusion of G if tw(G[X]) ≤ r and |∂(X)| ≤ r.

Protrusion: Definition

Given a graph G and S ⊆ V (G), we define ∂G(S) as the set of

vertices in S that have a neighbor in V (G) \ S.

Definition

[r-protrusion] Given a graph G, we say that a set X ⊆ V (G) is an

r-protrusion of G if tw(G[X]) ≤ r and |∂(X)| ≤ r.



Example

Graph G with a 2-protrusion. Does G have a vertex 
cover of size k?



Example

A vertex cover in G can 
look like that

or like that



Example

New graph has a vertex cover of size k-2 if and only if  G  
has a vertex cover of size k



Or a bit differently

For any graph G, G+A has a vertex cover of size k if and 
only if  G+B  has a vertex cover of size k+2

A B

G



For any graph G, G+A has a vertex cover of size k <=> G+B  
has a vertex cover of size k+2 

A
B

G



How protrusions work for parameterized problem Π

If the size of protrusion X is larger than some constant x

(depending only on Π), it is possible to replace X by a protrusion

X ′ of size x′ < x such that the solution for Π remains the “same”

on the new graph.
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[t-Boundaried Graphs]

A t-boundaried graph is a graph G = (V,E) with t distinguished

vertices, uniquely labeled from 1 to t.

Gluing G1 and G2: G1 ⊕G2 the t-boundaried graph obtained by

taking the disjoint union of G1 and G2 and identifying each vertex

of ∂(G1) with the vertex of ∂(G2) with the same label.
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Gluing by ⊕

Let G1 and G2 be two t-boundaried graphs. We denote by

G1 ⊕G2 the t-boundaried graph obtained by taking the disjoint

union of G1 and G2 and identifying each vertex of ∂(G1) with the

vertex of ∂(G2) with the same label; that is, we glue them together

on the boundaries. In G1 ⊕G2 there is an edge between two

labeled vertices if there is an edge between them in G1 or in G2.
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Equivalence relation G1 ≡Π G2

For a parameterized problem Π and two t-boundaried graphs G1

and G2, we say that G1 ≡Π G2 if there exists a constant c such

that for every t-boundaried graph G and for every integer k,

I (G1 ⊕G, k) ∈ Π if and only if (G2 ⊕G, k + c) ∈ Π.



Finite Integer Index [Bodlaender and van Antwerpen-de Fluiter, 2001]

A parameterized problem Π has finite integer index in a graph class

G if for every t there exists a finite set S of t-boundaried graphs

such that S ⊆ G and for any t-boundaried graph G1 there exists

G2 ∈ S such that G2 ≡Π G1.



Problems with Finite Integer Index

Dominating Set, r-Dominating Set, q-Threshold Dominating

Set, Efficient Dominating Set, Vertex Cover, Connected

r-Dominating Set, Connected Vertex Cover,

Minimum-Vertex Feedback Edge Set, Vertex-H-Covering,

Minimum Maximal Matching, Connected Dominating Set,

Vertex-S-Covering, Clique-Transversal,

Almost-Outerplanar, Feedback Vertex Set, Cycle

Domination, Edge Dominating Set, Independent Set,

Induced d-Degree Subgraph, r-Scattered Set, Min Leaf

Spanning Tree, Induced Matching, Triangle Packing, Cycle

Packing, Maximum Full-Degree Spanning Tree,

Vertex-H-Packing, Vertex-S-Packing...



Why protrusions work:

Lemma (Bodlaender, Fomin, Lokshtanov, Penninks, Saurabh,

Thilikos, 2009)

Let Π be a problem that has finite integer index. Then there exists

a computable function γ : N→ N and an algorithm that, given an

instance (G, k) and an r-protrusion X of G of size at least γ(r),

runs in O(|X|) time and outputs an instance (G∗, k∗) such that

|V (G∗)| < |V (G)|, k∗ ≤ k, and (G∗, k∗) ∈ Π if and only if

(G, k) ∈ Π.
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Some history

Finite Integer Index defined by Bodlaender and van Antwerpen-de

Fluiter (2001) and de Fluiter (1997)

Similar to the notion of finite state [Abrahamson and Fellows 1993;

Borie et al. 1992; Courcelle 1990]



Talk overview:

I Compactness

I Bidimensionality

I Hitting forbidden minors



PART I: PLANAR GRAPHS and

COMPACTNESS



Let r be a (fixed) integer integer.

Claim: For any a > 0 there is b such that every planar graph

I covered by k balls of radius r

I with at least bk vertices

has a p-protrusion of size at least a, where p depends only from r.



Sketch of the proof

- For each ball, pick a BFS tree rooted in the centre of the 
ball

- Triangulate a graph G



Sketch of the proof

- Remove "useless" parallel edges and loops

- Contract edges of trees



Sketch of the proof

- Every face corresponds to a protrusion

- The number of faces in this graph is at most 3k



Sketch of the proof

- Each region is of diameter at most r, and hence of 
treewidth at most 3r

- Each region is bounded by at most 12r vertices



Sketch of the proof

- There are at most 3k regions, thus if G has more than 3ak 
vertices, it has a 12r-protrusion of size more than a 

- Each region is protrusion and every vertex is in a 
region



Let G be the set of planar graphs.

Definition

A parameterized problem Π ⊆ G × N is compact if there exist an

integer r such that for all (G, k) ∈ Π, there is a planar embedding

of G and a set S ⊆ V (G) such that

I |S| ≤ r · k, and

I Br
G(S) = V (G).

Br
G(S) — vertices at distance at most r from S in the vertex-face

metrics of the graph.

Example: p-Dominating Set is compact for r = 1.



Theorem [Bodlaender, FF, Lokshtanov, Penninks, Saurabh,

Thilikos, 2009]:

Let Π be a compact problem with FII. Then Π admits a linear

kernel on planar graphs.



Proof

Let (G, k) be an instance of Π.

I Π is compact, hence G can be covered by kr balls, each of

radius r.

I Pick up a constant a to be larger than the maximum size of a

graph from the set of representatives (Π, 12r), t-boundaried

with t ≤ 12r.

I If G has more than b · k vertices, it has a protrusion of size

larger than a. Replace protrusion by a graph of size at most a.



An extension

Definition

A parameterized problem Π ⊆ G × N is quasi-compact if there

exist an integer r such that for all (G, k) ∈ Π, there is a planar

embedding of G and a set S ⊆ V (G) such that |S| ≤ r · k and

tw(G \Br
G(S)) ≤ r.

Br
G(S) — vertices at distance at most r from S in the vertex-face

metrics of the graph.

Example: Feedback Vertex Set is quasi-compact for r = 1.
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planar graphs.

Can be extended to graphs of bounded genus
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Problems that are Quasi-Compact and FII:

Dominating Set, r-Dominating Set, Vertex Cover, Connected

r-Dominating Set, Connected Vertex Cover, Minimum-Vertex Feedback

Edge Set, Minimum Maximal Matching, Connected Dominating Set,

Almost Outerplanar, Feedback Vertex Set, Cycle Domination, Edge

Dominating Set, Clique Transversal, different packing and covering problems...



PART II: Minor-free graphs and

Bidimensionality



Another approach: Vertex Cover in planar graphs

Let G be a planar graph with vertex cover k

What we want: Show that there is a set S of size O(k) such that

every component of G \ S is a protrusion

Remark: This follows from the fact that VC is compact, but we

want another proof
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Another approach: Vertex Cover in planar graphs

Fact 1 The treewidth of a planar graph with vertex cover k is

O(
√
k)

Proof: Excluding grid arguments



Another approach: Vertex Cover in planar graphs

Fact 1 The treewidth of a planar graph with vertex cover k is

O(
√
k)

Proof: Excluding grid arguments

Fact 2 Graph of treewidth t has an O(t) balanced separator



Fact 1 + Fact 2: Let G be a planar graph with vertex cover C of

size k. There is a separator S of size at most α
√
k such that

I |C ∩G1| ≤ αk and |C ∩G2| ≤ (1− α)k for some

1/3 ≤ α ≤ 1/2.

G1 G2

S



What we know about G1:

I (C ∩G1) ∪ S is a vertex cover in G1 ∪ S, and the size of this

VC is at most αk + β
√
k;

I N(G1) ⊆ S

G1 G2

S



Apply arguments recursively for G1 ∪ S and G2 ∪ S. We stop when

for every component Gi, (C ∩Gi) ∪N(Gi) is of constant size.

I Because (C ∩Gi) ∪N(Gi) is a vertex cover of Gi ∪N(Gi),

the treewidth of Gi is constant

I Thus every Gi is a protrusion.

G1 G2

S



What about the size of set S?

|S| = µ(k)

Recursive formula

max
1/3≤α≤1/2

{µ
(
α · k + (β

√
k)

)
+µ

(
(1− α) · k + (β

√
k)

)
+(β
√
k+1)}

Possible to show that µ(k) = O(k).



What we have: There is a set S of size O(k) such that every

component of G \ S is a protrusion

We want more: If G has sufficiently many vertices, then G has

sufficiently large protrusion



What we have: There is a set S of size O(k) such that every

component of G \ S is a protrusion

We want more: If G has sufficiently many vertices, then G has

sufficiently large protrusion



Claim

Let G be a planar graph with vertex cover k. If G has more than

ak vertices, then G has a protrusion of size at leas b.

Proof: Planar hypergraph arguments.



Conclusion

Vertex cover has a linear kernel on planar graphs

But where exactly did we use the properties of planarity and vertex

cover?
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Properties we use

I tw(G) =
√
k

I A feasible solution on G1 ∪ S can be formed from a general

solution on G by adding S



Properties we use

I tw(G) = O(
√
k): Holds for many problems on H-minor-free

graphs

I A feasible solution on G1 ∪ S can be formed from a general

solution on G by adding S: Separability property, holds for

many problems too



Bidimenstionality and Protrusions

FF, Lokshtanov, Saurabh, Thilikos, 2010:

Minor-bidimensionality + Separability on H-minor free graphs

yields existence of large protrusions in “YES” instances of large

size.
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Minor-bidimensionality + Separability on H-minor free graphs

yields existence of large protrusions in “YES” instances of large

size.

Thus problems with Minor-bidimensionality + Separability + FII

admit linear kernels on H-minor-free graphs.



PART III: Hitting Minors



Bizarre Problem

p-Treewidth-123-Deletion

Instance: A graph G and a non-negative integer k.

Parameter: k

Question: Does there exist S ⊆ V (G), |S| ≤ k,

such that the treewidth of G \ S

is at most 123?



Solving Bizarre Problems

I The treewidth of a YES instance is at most 123 + k.

I Compute (or approximate) treewidth and use dynamic

programming.

I With some (very non-trivial) efforts, obtain the running time

22O(k log k)
nO(1)



Solving Less Bizarre Problems

I p-Treewidth-0-Deletion aka p-Vertex Cover, is solvable in time

2O(k)nO(1);

I p-Treewidth-1-Deletion aka p-Feedback Vertex Set, is solvable

in time 2O(k)nO(1)

This bounds are tight unless ETH fails



Solving Less Bizarre Problems

I p-Treewidth-0-Deletion aka p-Vertex Cover, is solvable in time

2O(k)nO(1);

I p-Treewidth-1-Deletion aka p-Feedback Vertex Set, is solvable

in time 2O(k)nO(1)

I p-Treewidth-2-Deletion is solvable in time 22O(k log k)
nO(1)!!??



We want to show that

p-Treewidth-123-Deletion is solvable in time 2O(k log k)nO(1)



Problem

Let F be a set of graphs containing at least one planar graph.

p-Planar-F-Deletion

Instance: A graph G and a non-negative integer k.

Parameter: k

Question: Does there exist S ⊆ V (G), |S| ≤ k,

such that G \ S contains no graph from F

as a minor?



p-Planar-F-Deletion: Examples

p-Vertex Cover: p-Feedback Vertex Set:

F = {K2} F = {C3}



p-Planar-F-Deletion: Examples

p-Pathwidth 1 Deletion Set p-Diamond Hitting Set

F = {T2,K3} F = {θ3}



p-Planar-F-Deletion: Examples

p-Outerplanar Deletion Set

F = {K2,3,K4}



p-Planar-F-Deletion: Examples

p-Treewidth-123-Deletion



Theorem (FF, Lokshtanov, Misra, Saurabh, 2011)

p-Planar-F-Deletion is solvable in time 2O(k log k)n2.



Proof: Auxiliary problem

p-Disjoint Planar F-deletion

Instance: A graph G, k ≥ 0, and S ⊆ V (G) of size at most

k + 1 such that G[S] and G \ S contains no graph

from F as a minor?

Parameter: k

Question: Is there T ⊆ V (G) \ S, |T | ≤ k, such that G \ T

has no graph from F as a minor?



p-Disjoint Planar F-deletion

S, |S|=k+1

GIVEN:
- S is F-hitting set;
- G[S] has no minor 
from F

T, |T|=k

FIND:
- T is F-hitting set;
- T is disjoint from S



Claim

If we manage to solve p-Disjoint Planar F-deletion in time

O∗(2k log k), we also can solve p-Planar-F-Deletion in time

O∗(2k log k).



Iterative compression

I Step of iterative compression for p-Planar-F-Deletion:

I Given F-hitting set S of size k + 1, to find a F-hitting set S∗

of size k + 1, for each partition X,Y of S, solve p-Disjoint

Planar F-deletion with instance (G \ Y,X, k − |Y |).

I Running time O∗(2k log k).



Lemma

p-Disjoint Planar F-deletion has a polynomial kernel

Remark: Lemma implies an O∗(2k log k) algorithm for p-Disjoint

Planar F-deletion.



Lemma

p-Disjoint Planar F-deletion has a polynomial kernel

Remark: Lemma implies an O∗(2k log k) algorithm for p-Disjoint

Planar F-deletion.



To obtain kernel we need

Fact

Let H be a planar graph. The treewidth of a H-minor-free graph

G is at most f(H).



Many big protrusions

Lemma

Let b, s, p be integers. Then there is d such that every graph G

with at least dbsp vertices and treewidth b has a partition of the

vertex set into parts V1, . . . , Vp and U such that each G[Vi] is a

2(b+ 1)-protrusion of size at least s.



S, |S|=k+1

By Fact:
- G\S is of constant treewidth
By Lemma
- There are many big protrusions in G\S

U

Prot
rus

ions
 of 

G\S



S, |S|=k+1

However:
- Protrusion in G\S is not necessarily 
protrusion in G

U

Prot
rus

ions
 of 

G\S



What we want

S

Hypergraph arguments:
- A hypergraph with vertex set S, and 
hyperedges formed by the neighbourhoods of 
protrusions of G\S has a linear amount of 
large hyperedges



Fact

Let H be an n-vertex hypergraph (not necessarily simple) such

that its incidence graph I(H) does not contain Kh as a minor.

Then the number of hyperedges of H of size at least h is at most

2sh
√

log hh(h− 1)n/2.

In our case: H can be turned into H-minor-free hypergraph by

removing at most k hyperedges, thus it has O(k) hyperdges larger

than some constant depending on F only.

WE HAVE PROTRUSION!!!
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2sh
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In our case: H can be turned into H-minor-free hypergraph by
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than some constant depending on F only.

WE HAVE PROTRUSION!!!



Remark: In real life (and real proof) things are a more complicated

because p-Disjoint Planar F-deletion is not FII, so we have

to go through the annotated kernels and MSOL arguments.



Many thanks for joint searching of protrusions!!! 
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