Kernels for Below-Upper-Bound Parameterizations of the Hitting Set and Directed Dominating Set Problems

Gregory Gutin

Royal Holloway, University of London Joint work with Mark Jones and Anders Yeo

WorKer 2011, Vienna TCS **412** (2011), 5744–5751

イロト イポト イラト イラト

Outline

- 2 Hypergraph Terminology and Notation
- **3** Results on HitSet(m k, k)
- **4** Results on HitSet(n k, k) and HitSet(n k, k + d)

5 Open Problem

・ロン ・回 と ・ ヨ と ・ ヨ と

Outline

1 Results on Parameterizations of Hitting Set Problem

- 2 Hypergraph Terminology and Notation
- **3** Results on HitSet(m k, k)
- **4** Results on HitSet(n k, k) and HitSet(n k, k + d)

5 Open Problem

Generic Hitting Set Problem

HITSET(p,κ) Instance: A set V, a collection \mathcal{F} of subsets of V. Parameter: κ . Question: Does (V, \mathcal{F}) have a hitting set S of size at most p? (A subset S of V is called a hitting set if $S \cap F \neq \emptyset$ for each $F \in \mathcal{F}$.)

In what follows, n stands for the size of V and m for the size of \mathcal{F} .

イロト イポト イヨト イヨト

Applications

- software testing, Jones and Harrold (2003)
- computer networks, Kuhn, Rickenbach, Wattenhofer, Welzl and Zollinger (2005)
- bioinformatics, Ruchkys and Song (2002)
- medicine, Vazquez (2009)
- medicine, Mellor, Prieto, Mathieson and Moscato (2010) [they use an Abu-Khzam-like kernelization]

イロト イヨト イヨト イヨト

Known Results

- $s = \max\{|F|: F \in \mathcal{F}\}$
 - HITSET(p,p) is W[2]-complete (Paz and Moran, 1981)
 - For HITSET(p, p + s):
 - Kernel of size $\leq s^p$ (see Downey and Fellows, 1999)
 - Kernel of size $O(sp^ss!)$ (Flum and Grohe, 2006)
 - Kernel of order $\leq (2s-1)p^{s-1} + p$ (Abu-Khzam, 2010)
 - Dom, Lokshtanov and Saurabh, 2009:
 - HITSET(p,p + s), HITSET(p,p + m) and HITSET(p,p + n) have no poly kernels unless coNP⊆NP/poly
 - HITSET(p, p + m) and HITSET(p, p + n) are fpt

Our Results

- HITSET(m − k,k) has a kernel with ≤ k4^k vertices and sets and it has no poly kernel unless coNP⊆NP/poly
- HITSET(n k, k) is W[1]-complete
- HITSET(n − k,k + d) has a poly kernel, where d is the degeneracy [defined later] of (V, F)
- Linear Kernel for Directed Nonblocker (I'll not speak of it)

イロト イヨト イヨト イヨト

Outline

1 Results on Parameterizations of Hitting Set Problem

2 Hypergraph Terminology and Notation

- **3** Results on HitSet(*m k*,*k*)
- 4 Results on HitSet(n k, k) and HitSet(n k, k + d)

Open Problem

Edges Sharing Common Vertices

For a hypergraph $H = (V, \mathcal{F})$ and a vertex $v \in V$:

- $\mathcal{F}[v]$ is the set of edges containing v.
- The degree of v is $d(v) = |\mathcal{F}[v]|$.
- For a subset T of vertices, $\mathcal{F}[T] = \bigcup_{v \in T} \mathcal{F}[v]$.

・ロン ・回と ・ヨン・

Deletions

For a hypergraph $H = (V, \mathcal{F})$, a vertex v, an edge e and a set $X \subset V$:

- H e: delete e and all isolated vertices.
- H v: delete v and v from any edge.
- $H \ominus X$: delete all edges hit by X and all isolated vertices.

Hypergraph Degeneracy

- A hypergraph H = (V, F) is d-degenerate if, for all X ⊂ V, the subhypergraph H ⊙ X contains a vertex of degree at most d.
- The *degeneracy* deg(*H*) of a hypergraph *H* is the smallest *d* for which *H* is *d*-degenerate.
- deg(H) can be calculated in linear time:
 - Set d := 0.
 - while H nonempty choose a vertex v of minimum degree and set d := max{d, d(v)} and H := H ⊙ {v}.

・ロン ・回と ・ヨン ・ヨン

Outline

Hypergraph Terminology and Notation

3 Results on HitSet(m - k, k)

4 Results on HitSet(n - k, k) and HitSet(n - k, k + d)

5 Open Problem

・ロン ・回と ・ヨン ・ヨン

Three Reduction Rules

Red. Rule 1 If there exist distinct $e, e' \in \mathcal{F}$ such that $e \subseteq e'$, set H := H - e' and k := k - 1.

Red. Rule 2 If there exist $u, v \in V$ such that $u \neq v$ and $\mathcal{F}[u] \subseteq \mathcal{F}[v]$, set H := H - u.

Red. Rule 3 If there exist $v \in V$, $e \in \mathcal{F}$ such that $\mathcal{F}[v] = \{e\}$ and $e = \{v\}$, then delete v and e.

Lemma

Let $(H = (V, \mathcal{F}), k)$ be a hypergraph reduced by Rules 1, 2 and 3 and $\mathcal{F} \neq \emptyset$. Then for all $v \in V$, $d(v) \ge 2$, and for all $e \in \mathcal{F}$, $|e| \ge 2$.

Mini-hitting Set

Definition

A mini-hitting set is a set $S_{\text{MINI}} \subseteq V$ such that $|S_{\text{MINI}}| \leq k$ and $|\mathcal{F}[S_{\text{MINI}}]| \geq |S_{\text{MINI}}| + k$.

Lemma (Mini-hit Lemma)

A reduced hypergraph $H = (V, \mathcal{F})$ has a hitting set of size at most m - k iff it has a mini-hitting set. Moreover,

- Given a mini-hitting set S_{MINI} , we can construct a hitting set S with $|S| \le m k \text{ s.t. } S_{\text{MINI}} \subseteq S$ in polynomial time.
- ② Given a hitting set *S* with $|S| \le m k$, we can construct a mini-hitting set *S*_{MINI} s.t. *S*_{MINI} ⊆ *S* in polynomial time.

イロト イポト イヨト イヨト 三国

Greedy Algorithm

Start with $S^* = \emptyset$. While $|\mathcal{F}[S^*]| < |S^*| + k$ and there exists $v \in V$ with $|\mathcal{F}[v] \setminus \mathcal{F}[S^*]| > 1$, do the following: Pick a vertex $v \in V$ s.t. $|\mathcal{F}[v] \setminus \mathcal{F}[S^*]|$ is as large as possible, and add v to S^* .

Let $\mathcal{C} = \mathcal{F}[S^*]$.

Lemma

Suppose S^* is not a mini-hitting set. Then we have the following:

$$|\mathcal{C}| < 2k.$$

2 For all
$$v \in V$$
, $|\mathcal{C}[v]| \ge 1$.

3 For all $v \in V$, $d(v) \leq k$.

<ロ> (日) (日) (日) (日) (日)

æ

 $\begin{array}{c} \mbox{Results on Parameterizations of Hitting Set Problem} \\ \mbox{Hypergraph Terminology and Notation} \\ \mbox{Results on HitSet}(n-k,k) \\ \mbox{Results on HitSet}(n-k,k+a) \\ \mbox{Open Problem} \end{array}$

Kernel

Red. Rule 4: For any $C' \subseteq C$, let $V(C') = \{v \in V : C[v] = C'\}$. If |V(C')| > k, pick a vertex $v \in V(C')$ and set H := H - v.

Theorem

HITSET(m - k,k) has a kernel with at most $k4^k$ vertices and at most $k4^k$ edges.

Proof: Let (H, k) be an instance irreducible by the four reduction rules and let $H = (V, \mathcal{F})$. The number of possible subsets $\mathcal{C}' \subseteq \mathcal{C}$ is $2^{|\mathcal{C}|} < 2^{2k}$. Therefore by Rule 4 $n = |V| < k2^{2k} = k4^k$. To bound $m = |\mathcal{F}|$ recall that $d(v) \leq k$ for all $v \in V$, and $|e| \geq 2$ for all $e \in \mathcal{F}$. It follows that $|\mathcal{F}| \leq k|V|/2 < k^22^{2k-1}$. This can be improved.

・ロン ・回 と ・ ヨ と ・ ヨ と

No Poly Kernel

Theorem

HITSET(m - k, k) does not have a polynomial kernel, unless $coNP \subseteq NP/poly$.

Proof: Reduction from HITSET(p, m + p).

・ロト ・回ト ・ヨト ・ヨト

æ

Outline

- Results on Parameterizations of Hitting Set Problem
- 2 Hypergraph Terminology and Notation
- **3** Results on HitSet(m k, k)
- 4 Results on HitSet(n k, k) and HitSet(n k, k + d)

Open Problem

・ロン ・回と ・ヨン ・ヨン

W[1]-hardness

Theorem

HITSET(n - k, k) is W[1]-complete.

Proof: Reduction from (Graph) Independence Set.

If we let the parameter be $k + \max_{e \in \mathcal{F}} |e|$, the problem is still W[1]-hard.

◆□ > ◆□ > ◆臣 > ◆臣 > ○

HitSet(n - k, k + d)

$$d=\deg(H).$$

Lemma

The chromatic number of a d-degenerate hypergraph is at most d + 1.

Red. Rule 5: If there exist $v \in V$, $e \in \mathcal{F}$ such that $e = \{v\}$, then replace $H = (V, \mathcal{F})$ by $H \odot \{v\}$. Keep k the same.

(日) (同) (E) (E) (E)

Kernel for HitSet(n - k, k + d)

Theorem

HITSET(n - k, k + d) admits a kernel with less than (d + 1)k vertices and d(d + 1)k edges.

Proof (for vertices): Using Rule 5 as long as possible, we reduce $H = (V, \mathcal{F})$ to a *d*-degenerate hypergraph with no edge of cardinality 1. By the previous lemma, $\chi(H) \leq d + 1$. Thus, there is an independent set S s.t. $|S| \geq |V|/(d+1)$. But T is a hitting set of H iff $V \setminus T$ is an independent set. Thus, if $|V|/(d+1) \geq k$, the answer to HITSET(n - k, k + d) is YES. Otherwise, |V| < (d+1)k.

(日) (同) (E) (E) (E)

Kernel for HitSet(n - k, k + d) cont'd

Proof (for edges): To prove that $|\mathcal{F}| < d(d+1)k$, choose a vertex v of minimum degree and observe that $d(v) \leq d$. Now delete v from V and $\mathcal{F}[v]$ from \mathcal{F} , and choose a vertex v of minimum degree again, and observe that $d(v) \leq d$. Continuing this procedure we will delete all edges in \mathcal{F} and thus $|\mathcal{F}| \leq d|V| < d(d+1)k$.

Outline

- Results on Parameterizations of Hitting Set Problem
- Particular State Provide Automatic Providence Provide Automatic Provide Automatic
- **3** Results on HitSet(*m k*,*k*)
- **4** Results on HitSet(n k, k) and HitSet(n k, k + d)

5 Open Problem

・ロン ・回と ・ヨン ・ヨン

Independent Set Parameterized Above Tight Lower Bound

For a hypergraph H, let $\alpha(H)$ be the maximum size of an independent set of H. If H is d-degenerate then $\chi(H) \leq d+1$ and $\alpha(H) \geq n/(d+1)$. **Open Problem:** What is the complexity of deciding whether for a d-degenerate hypergraph H we have $\alpha(H) \geq n/(d+1) + \kappa$, where

 κ is the parameter?

This problem is open even for graphs. However, it's easy (a linear kernel) if H is a graph and $d = \Delta(H)$: by Brooks' Theorem, $\chi(H) \leq d$ unless one of the connectivity components of H is K_{d+1} or d = 2 and one of the connectivity components of H is an odd cycle.