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Overview on the talk

e The differential of a graph
e Classical complexity

e Parameterized complexity
e Kernel results

e Measure and Conquer: Exact algorithms
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How to influence a small network
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Conflicting requirements:
— large influence

— small budget

Aim: Find the important
points to influence as many
as possible at small costs.
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The differential as a simplified model

— Buy influence points S
— They “earn” you their
neighbors.

— Net gain: |B(S)| — |S].
Aim: Maximize net gain.
Example net gain: 8.
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Our Problem: Finding a small differential set

A set S delivering the largest 9(.S) is called a 9-set, and we set 9(I") to 9(S).
Motivation from viral marketing

J. L. Mashburn, T. W. Haynes, S. M. Hedetniemi, S. T. Hedetniemi, P. J. Slater, Differentials in graphs, Utilitas
Mathematica 69 (2006) 43—-54.
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Determining the differential of a graph
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— Differential set S
Example value: 8.

Let us delete the outermost
three vertices. ..
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Determining the differential of a graph
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— The set S

Example value: 5.

All vertices are eitherin S
or neighbors of S-vertices.
Is this optimal?
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Determining the differential of a graph

— Differential set S
Example value: 6.

The white vertex is not in
B(S)!
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An alternative definition

Call any star S; with d > 2 a big star.

Given the graph ' = (V, E), a big star packing is a vertex-disjoint collection
S=4{X;|1<i<k}ofbigstars X; C V.

0(S) = Y ses (|S| — 2): The differential of a big star packing.

SP(I",S) reads as: “S is a big star packing of I"'”

Proposition: (") = max{9(S) : SP(I',S)}.
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Can you see the stars?
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Overview on the talk

e The differential of a graph
e Classical complexity

e Parameterized complexity
e Kernel results

e Measure and Conquer: Exact algorithms
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NP-hardness results | for special graph classes.

1. MDS on split graphs is NP-complete.
2. MDS on cubic graphs is NP-complete.

The reductions use variants of the following problem:
3-DIMENSIONAL MATCHING WITH MAXIMUM DEGREE THREE (3DM3)
Given: Three sets X,Y, Z with | X| = |Y| = |Z] = ¢q, and a relation R C
X XY x Z,such that, foreachv € G = X UY U Z, there are at most three
triples in R that contain v

a positive integer k
Question: Are there at least k triples r1, ..., 7, In R such that each element of
(G occurs exactly once in one of the triples?

Known to be NP-hard for £ = ¢ (perfect matching, SDPM3).
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3-DIMENSIONAL MATCHING WITH MAXIMUM DEGREE THREE

X Y

N

3-DIMENSIONAL MATCHING
— The blue will do.

— Each element partic-
ijpates in at most three
triples.

(0 (O

D000 0O:-
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A simple graph representation for the split graph case
Split graphs: Vertex set can be split into a clique and an independent set.

Given: G = X UY U Zwith | X|=|Y|=|Z] =q,arelation RC X XY x Z,
such that ...; where k£ = ¢ (perfect matching).

Constructed split graph: ' = (V, E) withV = GU Rand E = E1 U E», where
FEi1 ={v(z,y,2) :ve G (x,y,2z) € Riv e {x,y,2z}} and

By = {(z,y,2)(«,y,2") 1 (x,9,2) € R, («,¢/,2") € R\ {(=,y,2)}}.

Theorem: MDS on split graphs is NP-complete.
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Cubic graph representations are more complicated

The previous construction is “nearly cubic”, apart from:

(1) The 3DPMS instance might contain elements in G that occur less than thrice
in R. ~» Separate construction of a “normal form 3DPM3”, called 3DPM3’

(2) The edge set E»> destroys cubicity.

= Need for a special gadget for the relation triples (z,y, 2) € R:

y

Theorem: MDS on cubic graphs is NP-complete.
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Overview on the talk

e The differential of a graph
e Classical complexity

e Parameterized complexity
e Kernel results

e Measure and Conquer: Exact algorithms
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Recalling MAXSNP

Introduced in: c. H. Papadimitriou, M. Yannakakis, Optimization, approximation, and complexity classes,
Journal of Computer and System Sciences 43 (1991) 425-440.

A syntactically defined approximation complexity class.
MAXSNP is closed under L-reductions.

All MAXSNP-complete problems are constant-factor approximable, but unlikely
to possess approximation schemes.

Well-known MAXNP-complete problems:
— MAX 3DM3
— MAX IS-B (independent set on graphs whose degree is bounded by B > 3)
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MAX DIF and MAXSNP: Our results

e MAX DIF in split graphs is MAXSNP-hard.

e MAX DIF in subcubic graphs is MAXSNP-complete.

e For any d > 3, the problem MAX DIF, restricted to graphs of maximum
degree d, is MAXSNP-complete.

The hardness reductions start from MAX 3DM3.
Membership in MAXSNP is shown by a reduction using MAX |S-B.

A Linear Kernel for the Differential of a Graph, WorKer 2011 19/7]



Consequences for Parameterized Complexity
L. Cai, J. Chen, On fixed-parameter tractability and approximability of NP optimization problems,

Journal of Computer and System Sciences 54 (1997) 465—474.

Corollary: For any d > 3, the problem £-MDS, restricted to graphs of maximum
degree d, is in FPT.

L. Cai, D. Juedes, On the existence of subexponential parameterized algorithms, Journal of
Computer and System Sciences 67 (2003) 789-807.

Corollary: For any d > 3, there is no algorithm running in time O*(Qo(k)) that
decides, given a graph ' = (V, E) of maximum degree d and a parameter k, if
o(IM) > k and also produces a witness set S C V with 9(S) > k together with
a possible YES-answer, unless 3-SAT can be deterministically solved in time
O(2°(n)) where n is the number of variables occurring in an input formula.
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Overview on the talk

e The differential of a graph
e Classical complexity

e Parameterized complexity
e Kernel results

e Measure and Conquer: Exact algorithms
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Parameterized complexity in a nutshell | Problems with a parameter k&

Running time O(f(k)p(n))
Complexity class: FPT
Standard approaches: kernelization and search-trees; this could be combined

Kernelization: pol.-time reduction (I, k) — (I, k") s.t. max{|I’|, K’} < g(k).
Direct answers (YES or NO) can be integrated on top.

Well-known: A parameterized problem is in FPT iff it admits a kernelization.
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A Combinatorial kernel for k--MDS

Theorem (B&F 2011): In a connected graph I of order n, n > 3, 9(I") > %1
This suggests the following kernelization:

1. Remove all isolated vertices and edges.

2. If the remaining graph "’ has order at least 5k, then answer YES.

3. Otherwise, I has at most 5k vertices.

This kernel is of a purely combinatorial nature and
hence, it looks a bit like cheating: it involves no “real algorithmics”.
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Our combinatorial result |

The structure behind stars:

D: star centers
B(D): neighbors of star centers, but not in D
C(D): the remaining vertices

Combinatorial trick: Consider D with (D) = o(I") s.t. |D| is minimum.

(@) forallv € D, dp(p) (v) > 2, (big star packing)
(b) forallv € B(D), Sc(D) (v) < 2, (otherwise, form a new star)

(c) forallv e C(D), Sc(D) (v) < 1. (otherwise, form a new star)
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Our combinatorial result Il

Small stars may attain the bound but do not violate it:
@ e
Similar reasoning for other cases

~» An S» star in S(D) can have at most two “neighbors” in C' (D).
~» 5k bound confirmed in this case.

O
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Our combinatorial result lll: Big stars S
Worst case example (this attains the 5k for d > 2):
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Comments

The many leaves in the worst-case example are necessary. We have shown:

Theorem: For any connected graph I of order n that has minimum degree two,
o(I") > 32 apart from five exceptional graphs listed below, where 8(I") = n/4

11’
@

or (") = n/5.
Red dotted edges may be present or not.

We have found NO kernel exploit for this.
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Overview on the talk

e The differential of a graph
e Classical complexity
e Parameterized complexity

e Measure and Conquer: Exact algorithms
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A colorful situation in the search tree

A Linear Kernel for the Differential of a Graph, WorKer 2011

: undecided, nothing known

(- in the differential set
@ influenced

@: influenced; decided not to go into
the differential set

@: not influenced; decided not to go
into the differential set

e
O+ @

NE

Branch on () or @ vertices as long as
there are () or @ vertices.

Possible transitions:
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Measure and Conquer | MAXIMUM DIFFERENTIAL SET

Algorithm 1 A simple algorithm for MAXIMUM DIFFERENTIAL SET
1: if possible choose a v € ) such that IN(v) N (@ U ‘)| > 3; then
2:  Binary branch on v (i.e., set v in one branch, @ in the other)
3: else if possible choose a v € @ such that IN(v) N (@ U ‘)| > 4; then
4:  Binary branch on wv.
5. else
6: Solve the remaining instance using an INDEPENDENT SET algorithm.

Very similar to the DOMINATING SET algorithm as shown in:
H. F,, D. Raible, Searching trees: an essay, in: J. Chen, S. B. Cooper (Eds.), Theory and Applications of Models of
Computation TAMC, Vol. 5532 of LNCS, Springer, 2009, pp. 59-70.
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DIFFERENTIAL SET: Analysis of the branching process in steps 2 and 4.
Use the measure p = || + w - (@] + |@)) < n

Let n, = [N(v) N and ne = |N(v) N @).

If v goes into the DS in step 2, we first reduce i by one as v vanishes.

~» Vertices in N(v) N " will be influenced and hence moved to the set @.
~» 1 is reduced by no - (1 — w).

Similarly, vertices from N(v) N @ are influenced, so they disappear from L.

~» (4 1S reduced by new.
If v is not put into DS, reduce 1 by (1 — w): v is moved from 10 @.

~» branching vector:

(1+n(1-w)+ new, (1 —w)) (1)

where n-, + ng > 3 due to step 1.
A similar analysis for step 4 yields (where n- + ng > 4 due to step 3):

(w+no(1 —w) + new,w) (2)
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DIFFERENTIAL SET: Analysis of the branching process in steps 2 and 4.
Unfortunately, depending on n- and ng we have an infinite number of branching
vectors. ~» Consider only the worst case branches.

For (1) these are the ones with n + ng = 3 and for (2) no + ne = 4.

~» a finite set of recurrences R (w), ..., Rg(w) depending on w.

Now, choose w in a way such that the maximum root of the evolving characteristic
polynomials is minimum. In this case we easily see that w := 0.5.

Then the worst case branching vector for both cases is (2.5,0.5).

~> The number of leaves of the search tree evolving from this branching vector
can be bounded by O*(1.7549+).

Thus, our algorithm the 2™-barrier using a simple measure.
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Solving the remaining cases with INDEPENDENT SET

In step 6, we create an INDEPENDENT SET instance G; = (V7, Ej), where
Vi={ve@: NN (u@)| =3 ufve : |IN@w)N (L u@®)| =2}

u,v € V7 are said to be in conflict if N[u] N N[v] N (@ U ‘) = (.

Let E; = {{u,v} : u,v € V7 and they are in conflict}.

Finding a maximum independent set in G is equivalent to finding a maximum
differential set in the remaining subgraph in step 6.

(1) The running time of the algorithm finding a maximum independent set in a
graph of order n’ is ©O*(1.2 1n’) (a brief history of this result can be found in F. V. Fomin, D. Kratsch,

Exact Exponential Algorithms, Texts in Theoretical Computer Science, Springer, 2010.).

(2) n' < |‘| + |©| < wﬁl = 2u. Hence, the time of step 6 is O*(1.47H).

Theorem: MDS can be solved in time O(1.755™) on arbitrary graphs of order n.
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Algorithmic parameterized consequence

Corollary: k-DS can be solved in time ©*(16.65%), using polynomial space only.

Can we do better?
Yes, we can!

However, we seem to be forced to mix kernelization ideas with branching.
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Pending path rules

Py,: Path on n vertices

A path subgraph is called pending if it is connected only via a bridge to the re-
maining graph (component). It is end-pending if the path vertex that is endpoint
of that bridge is also endpoint of the path. The bridge endpoint that is not on the
path is called a path-connecting vertex.

Pending P3 Rule: Remove an end-pending P3 and decrement the parameter.

Lemma: If the Pending P35 Rule does not apply, then we know the following:
e The only end-pending paths are P;- and P»>-paths.

e There are no pending P, for n > 6.
e Pending P, for n = 3, 4,5 are not end-pending.

e Path connecting vertices not belonging to some path are of degree > 3.
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Reduction rules

1. We can savely remove all isolated vertices and isolated edges.

2. Mark all path-connecting vertices that have at least two Py - or P>-neighbors.
3. Merge all marked vertices and replace the (at least two) path neighbors by four
new neigbors w, x, y, z with (only further) edges wx, yz, updating the parameter
k accordingly. Finally, unmark the marked vertex again.

Comments on correctness:

Marking should mean that (w.l.0.g.), a marked vertex should be put into the differential set.
Assume that, after merging, the only remaining marked vertex = has ¢ > 2 “path neighbors’
(P1-paths or P,-paths are counted).

Hence, when putting x (finally) into the differential set, k can be decreased by at least ¢ — 1 due
to these path neighbors.

Similarly, putting = into the differential set after the surgery decreases k by three.

So, we should update k as k := k — ¢ + 4.

In the unmarked instance, = should be in a maximum differential set.
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What do we get? A new way of using M&C!

Let (G, k) be the reduced instance.

If we shave off all leaves L and P>-paths P, we get a graph G’ with §(G") > 2.
If [V (G")| > 4k, we can return YES.

Otherwise, |V (G")| < 1—31k

If |L| > 2k, we can form at least k S>-stars, so return YES.

Otherwise, |P| + |L| < 2k.

If P = (), we start our branching algorithm with at most 3.6 - k _-vertices and
at most 2k @-vertices. Hence, the measure is at most 4.6 - .

~+ Running time: ©*(13.75%).

This might also motivate a refined measure, as w is playing a new role now.
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P

We like to count end-pending P-’s also only by w = .5. This is justified by the following new
branching rule on a P»>-path x — y pending at z via the bridge y=.
This new branching rule is performed before the other branchings.

Either y € D (in that case, we can remove z, vy, z) or z € D, which allows to remove y, z. Doing

this branching first, we can assume that z is a (_-vertex. In the second branch, = becomes .
Hence, thisis a (1.5, 1.5)-branch, with a nice branching number of 1.5875.

After this first branching phase, we can of course color neighbors of O by ® or ® 10 be consis-
tent with the situation of the usual branching.

Comments on correctness:

Consider an optimum solution D where z ¢ D. If z € C(D), then D is not optimum, as we can
add y to D, yielding a new Sx-star. If z € B(D) because of an S>-star, we can replace that
Sp-star vwz by zyz, i.e., D' = (D — w) + y gives the same differential. As we have no pendant
Ps-paths, vwz is no pendant Ps-path. If z € B(D) because of an S;-star with d > 2, we can
turn this into an S;_1-star by adding the star xzyz, i.e., D’ = D + y gives the same differential.
In conclusion, if z ¢ D, we can assume y € D.
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Subcubic graphs 1

Theorem: (B/F 2011) Let I be a subcubic graph of order n > 12 and minimum
degree § > 2. If ' does not have any pendant subgraph isomorphic to ¢ as
drawn below (pendant from the central vertex v;), then o(I") > 27”

Since v; isin D U B(D) for any optimal D, these graphs can be preprocessed
by reduction rules.
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Subcubic graphs 2

Doing the “shaving” as before, we can derive a bound of 3.5 - k for the “core”.
This core has hence (using results by Fomin / Haie) pathwidth of roughly %k
Putting back the pending paths, this estimate will not change.

On graphs of pathwidth at most d, the differential of a graph can be computed in
time ©*(3%). Hence, we derive:

.
Corollary: On subcubic graphs, it can be decided in time (roughly) (9*(3ﬁk),
i.e., in time ©*(1.8982%), if a given graph has a differential of at least .
However, this approach uses exponential space.
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A small catch

Merging of vertices doomed to be in the differential set is not possible.
However, we can do the following:

A P53 or P4 or Ps pending at a non-endpoint can be first replaced by a P35 pending
at its midpoint and then (temporarily) be removed, decrementing the parameter.

This “rule” might trigger new rule applications.
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A conceptual thought

We cannot claim to have derived a kernel in the classical sense, or at least
this kernel (that we could obtain by putting back all paths that we cut off) looks
uninteresting.

Rather, we construct an auxiliary graph with the property that a YES in the aux-
iliary graph implies a YES of the original instance.

Otherwise, we can bound some “important vertices” (what we called core above)
so that these yield a bound on the pathwidth of the original (!) graph.

Notice that the pending P3 considered on the previous slide can be “integrated”
Into the core, as the 3 vertices per parameter point are a good ratio.
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Polynomial space

The pathwidth-based algorithm can be modified to use polynomial space only, at
the expense of a bigger running time of ©*(3.61%). Dyn.Prog. base 9, not 3

Notice that alternatively, we can refine our M&C analysis.
The second branch is never used, so we can modify / simplify our measure:

p3=| 4w @ <n

Moreover, we could analyze the neighborhood further, for instance, if a () vertex has three @
neighbors v1, vo, v3, then each of these v; must have one O neighbor wu; different from v, as
otherwise v can be put into the differential set as a reduction rule. Even with these wu;, when
v is NOT put into the differential set, then all u; (which might be identical) are to be put in the
differential set. This gives a branching vector of (1 4+ 3w, 2 + w) in this case.

Other branches would be (4,1 —w), (3 4+ w,1 —w) or (2 + 2w, 1 — w). With this analysis,
w = 0.15 ist best, yielding a branching number of 1.6119. P # () is also o.k.

This quick analysis would yield an O*(1.62") exact and an O0*(8.57%) param-
eterized algorithm;however, this is amenable to improved analysis of local situations.
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Further achievements

Similar (bad) complexity results for determining the minimum o set.
MAXSNP-classification for the related enclaveless number computation.

This parameter is also known as nonblocker:

F. Dehne, M. Fellows, H. F., E. Prieto, and F. Rosamond. NONBLOCKER: parameterized algorithmics for MINIMUM
DOMINATING SET. In J. Stuller, J. Wiedermann, G. Tel, J. Pokorny, and M. Bielikova, editors, Software Seminar

SOFSEM, volume 3831 of LNCS, pages 237—-245. Springer, 2006.
Again, we only know of a combinatorial kernel.

Our exact algorithm transfers to the vertex-weighted case, bringing the problem
closer to reality.

Also the kernel result transfers.
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Questions 1

These apply both to k-MDS as to k-EN (nonblocker).

e Can we derive better kernels with more algorithmic arguments?
The derived bounds are provably optimal as combinatorial results.

Although the YES can be easily testified, see our combinatorial proof.

e Can we obtain better parameterized algorithms?
For example, by genuinely FPT Measure&Conquer?

e Better kernels for smaller graph classes, for instance with degree bounds?
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Questions 2

What other types of combinatorial results can be used to obtain kernel, or more
generally, FPT results?

Ex.: Lozin / Rautenbach used Ramsey theory (no good constants to be expected....)

Can we make use, e.g., of the Moore bound?
Graphs of bounded diameter d and maximum degree A can only exist if the # vertices is bounded
by a function fyore(d, A).
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How to use the Moore bound
Closing the day with VERTEX COVER...

After applying Buss’s rule, we know that A(G) < k.

Not hard to see: If G admits a VC of size k, then d(G) < 2k.

~» If G contains more than fyqore(2k, k) vertices, then NO.
Hence, we have a kernel (of size fyioore (2K, k)).

Unfortunately, fyoore(d, &) = 1 + A(XZ3(A - 1)D).
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Thanks for your attention !

Theoretische

Informatik Trier
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