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Graph cut problems

For many graph cut problems, the existence of polynomial
kernels is/was unknown:

Multiway Cut – separate terminals T by removing k vertices
Directed Feedback Vertex Set – hit all directed cycles
Multicut – fulfill all cut requests (si , ti) using k vertices

Also related problems (graph cut problems in disguise):
Graph Bipartization (OCT) – hit all odd cycles
Almost 2-SAT, a.k.a. 2-CNF Deletion – remove k
variables/clauses to make F satisfiable
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Graph cut problems

Many found attackable by matroid theory:

This talk:
Graph Bipartization (OCT)

Other problems:
Almost 2-SAT, a.k.a. 2-CNF Deletion
Multiway Cut – restricted cases
Directed Feedback Vertex Set – unknown
Multicut – unknown
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Matroids

Matroid theory is for the concept of dependence what group
theory is for symmetry — (unknown)

A matroid M = (U, I), I ⊆ 2U , is an independence system with
independent sets I satisfying:

1. The empty set is independent
2. A subset of an independent set is independent
3. Augmentation property: If A,B are independent and |B| > |A|,

then there is some b ∈ B − A such that A + b is independent

Rank r(X ): Size of largest independent subset of X
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Examples

Canonical examples:
1. Graphic matroids: Let G = (V ,E) be a graph.

– M = (E , I), I contains cycle-free edge sets
– Rank: number of vertices minus number of components

2. Linear matroids M = (U, I):
– U is a collection of vectors in Fd for some field F
– Independence concept is linear independence
– Rank: dimension

Linear matroids more conveniently represented by d × |U| matrix.
Many tools work only for linear matroids (our matroids are linear).
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Gammoids

Let G = (V ,E) be a graph. Say that T ⊆ V is linked into S if
there are |T | vertex-disjoint paths from S to T (not only internally
vertex-disjoint).

The gammoid defined by G and S is M = (V , I) where:
I contains all sets linked into S
The rank r(X ) equals the size of an (S,X )-cut
Augmentation property: see next slide

Also works for digraphs.
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Gammoids: augmentation property

Let G = (V ,E), S ⊂ V , A and B linked into S, with |B| > |A|.
There exists a vertex v ∈ B − A such that A + v is linked into S.

S A

1. Let C be the minimum (S,A)-cut closest to S. Claim:
if A + v is dependent then C cuts v from S.

– A + v dependent⇒ cut (S,A + v) of size < |A|+ 1
– A independent⇒ cut has size |A| = |C|, dominated by C

2. |B| paths from S to B, |B| > |C| ⇒ some b ∈ B is not cut by C.
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Gammoids: small representation

1. Let G = (V ,E), S,T ⊂ V . We can represent the subsets of T
which are linked into S in space O(|S| · |T | · |S| log |T |).

2. Source-free form: Let G = (V ,E), X ⊆ V a set of terminals.
We can represent the flow from S to T in G − R for arbitrary
S,T ,R ⊆ X in space O(|X |3).

Still works for digraphs. Randomized polynomial time with
one-sided error (underestimates flow only).
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OCT algorithm

Recall OCT iterative compression algorithm1 (Gi = G[v1, . . . , vi ])
1. Start with graph G1, empty solution X = ∅
2. For i = 2 . . . n:

2.1 Have solution X of size k for Gi−1
2.2 X ′ = X + vi is solution of size k + 1 for Gi
2.3 Use X ′ to find optimal solution for Gi

1Reed, Smith, Vetta 2004
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OCT algorithm

Recall OCT iterative compression algorithm2 (Gi = G[v1, . . . , vi ])
1. Start with graph G1, empty solution X = ∅
2. For i = 2 . . . n:

2.* Compress X + vi to optimal solution X

Kernelization order:
1. Create approximate solution X (size kc)
2. Feed X to compression step
3. Kernelize resulting graph cut problem

2Reed, Smith, Vetta 2004
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OPTc approximation

1. Run FPT algorithm with parameter k = log n (3knO(1) → nO(1))
2. Run O(

√
log n)-approximation;3 observe log n < k

O(OPT1.5) = O(k1.5)-sized solution.

3Agarwal, Charikar, Makarychev, Makarychev, STOC 2005
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Algorithm sketch (compression step)

Let u–v be a normal edge (u 6= v ), u–v an equality edge (u = v ).

1. a
b

c
d

X = {a,d}. Partition G − X as
U ∪ V = {b} ∪ {c}

2. a
b

c
d Negate U: Toggle crossing edges

3.
a

ā

b

c

d

d̄
Split X into positive, negative copies

4. Search for cuts that for x ∈ X delete x and x̄ , or split x 6= x̄
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OCT kernel, summary

1. Use known tools to get solution X with |X | = O(k3/2)

2. Create cut problem on auxiliary graph, terminals X ′

3. Encode terminal cuts over X ′ into O(|X |3)-size description
4. Yields a O(k4.5)-sized instance description (compression,

a.k.a. generalized kernel/bikernel)

(True (direct) kernel by NP-hardness.)
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Direct kernels

Terminal Cuts Compression
Input: Graph G = (V ,E), sets S,T ⊂ V

Parameter: |S|+ |T |
Task: Reduce G to a small graph G′ while preserving

sizes of (A,B)-cuts, A ⊆ S, B ⊆ T

Would give direct (combinatorial?) kernels for our problems.
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Strategy: Irrelevant vertices

Terminal Cuts Compression
Reduce size of G while preserving (A,B)-cuts, A ⊆ S, B ⊆ T

A vertex v is essential if for some A,B,
every minimum (A,B)-cut uses v
Otherwise irrelevant

Claim
There are at most k4 essential vertices (and we can find them).

An irrelevant vertex may be removed (lifted) (then iterate).

September 3, 2011 19/22



Matroids 1: Encoding Terminal Cuts Application: OCT kernel *Matroids 2: Irrelevant vertices

Strategy: Irrelevant vertices

Terminal Cuts Compression
Reduce size of G while preserving (A,B)-cuts, A ⊆ S, B ⊆ T

A vertex v is essential if for some A,B,
every minimum (A,B)-cut uses v
Otherwise irrelevant

Claim
There are at most k4 essential vertices (and we can find them).

An irrelevant vertex may be removed (lifted) (then iterate).

September 3, 2011 19/22



Matroids 1: Encoding Terminal Cuts Application: OCT kernel *Matroids 2: Irrelevant vertices

Case: Almost 2-SAT kernel

Digraph Pair Cut
Input: Digraph D = (V ,A), source vertex s, integer k ,

set of pairs P ⊆
(V

2

)
Parameter: k

Problem: Remove k vertices such that for every pair
{u, v} ∈ P, either u or v is not reachable from s

Claim 1: Digraph Pair Cut has Õ(k4) kernel
Claim 2 (omitted): This gives a polynomial kernel for
Almost 2-SAT
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Digraph Pair Cut

Algorithm:
1. Let T = ∅, X = ∅
2. While any pair is reachable and |X | < k :

({u, v} reachable: both u and v reachable from s in G − X )
2.1 Find reachable pair {u, v}
2.2 Branch on (T = T + u) or (T = T + v)
2.3 Let X be the min-(s,T )-cut closest to s

Claims
There are only k2 non-irrelevant pairs P ′ ⊆ P for step 2.1

We can encode the problem into terminal cuts, size Õ(k2|P ′|).
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Conclusions

Parameterized graph cut problems (still) include many open
problems for polynomial kernelization
Matroid theory gives very powerful tools for these problems

– Encode a problem compactly (as a matrix), in small space
– Detect irrelevant vertices/objects to remove
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