A Few Words about Knowledge Compilation

Pierre Marquis

Université d’Artois
CRIL UMR CNRS 8188
France

Third Workshop on Kernelization (WorKer 2011), Vienna, September 2nd, 2011
What is ”Knowledge Compilation”?

- A family of approaches for addressing the **intractability of a number of AI problems**
- Is concerned with **pre-processing** pieces of available information for **improving some tasks from a computational point of view**
- Amounts to a **translation** issue:
 - **Off-line phase:** Turn some pieces of information Σ into a **compiled form** $\text{comp}(\Sigma)$
 - **On-line phase:** Exploit the compiled form $\text{comp}(\Sigma)$ (and the remaining pieces of information α) to achieve the task(s) under consideration
Knowledge Compilation: A Recent Research Topic

- Identified as a research topic in AI in the "recent" past (say, 20 years ago)
- The name “knowledge compilation” dates back to the late 80’s/beginning of the 90’s (the purpose was to improve propositional reasoning, especially clausal entailment)
- Many developments from there
 - From the theoretical side (concepts, algorithms, etc.)
 - From the practical side (benchmarks, pieces of software, applications, etc.)
Knowledge Compilation: An Old Idea

- Pre-processing pieces of information for improving computations is an **old idea**!
- Many applications in Computer Science (even before the modern computer era)
- Tables of logarithms (John Napier) date back from the 17th century...
- Indexes for DBs, etc.
- "Improving computations” means (typically) “saving computation time”
What is "Knowledge"?

- Taken in a rather broad sense (and not necessarily as “true belief”)
- Pieces of information and **ways to exploit** them
- Same meaning as “knowledge” in “knowledge representation”
- Pieces of information are typically encoded as formulae Σ, α, \ldots in a **logic-based framework**

$$\langle L, \vdash \rangle$$
What is "Exploiting Knowledge"?

- What are the tasks to be computationally improved via knowledge compilation?
- A domain-dependent issue in general
- Typically combinations of basic queries and transformations
Basic Queries and Transformations

- Queries
 - **Consistency**: Does there exist \(\alpha \) such that \(\Sigma \not\vdash \alpha \) holds?
 - **Sentential Entailment**: Does \(\Sigma \vdash \alpha \) hold?
 - ...

- Transformations
 - **Conditioning**: Make some elementary propositions true (or false) in \(\Sigma \)
 - **Closures under connectives**: Compute a representation in \(L \) of \(\alpha \oplus \beta \) from \(\alpha \in L \) and \(\beta \in L \)
 - **Forgetting**: When defined, compute a representation of the most general consequence w.r.t. \(\vdash \) of \(\Sigma \in L \) not containing some given elementary propositions
 - ...

Example: Consistency-Based Diagnosis
Example: Consistency-Based Diagnosis

- $S = (SD, OBS)$ gathers a **system description** SD and some **observations** OBS
- SD describes the behaviour of the system components and how they are connected

\[
\neg ab \rightarrow inv_1 \Rightarrow (out \rightarrow inv_1 \iff \neg in \rightarrow inv_1) \\
\neg ab \rightarrow inv_2 \Rightarrow (out \rightarrow inv_2 \iff \neg in \rightarrow inv_2) \\
out \rightarrow inv_1 \iff in \rightarrow inv_2
\]

- OBS describes the inputs and outputs of the system

\[
in \rightarrow inv_1 \land \neg out \rightarrow inv_2
\]

- Δ is a **consistency-based (c-b) diagnosis** for S iff it is a conjunction of ab-literals such that $\Delta \land SD \land OBS$ is consistent

\[
ab \rightarrow inv_1, ab \rightarrow inv_2, ab \rightarrow inv_1 \land ab \rightarrow inv_2
\]
Example: Consistency-Based Diagnosis

- Generating the **consistency-based diagnoses** of a system $S = (SD, OBS)$ for many observations OBS

$$mod(\exists (PS \setminus AB). (SD \mid OBS))$$

$$\exists (PS \setminus AB). (SD \mid OBS) \equiv (\exists (PS \setminus AB). SD) \mid OBS \equiv ab - inv_1 \lor ab - inv_2$$

- The task can be viewed as a combination of **conditioning**, **forgetting** and **model enumeration**

- Forgetting **FO** and model enumeration **ME** are NP-hard in the general case
When is Knowledge Compilation Useful?

Two conditions are necessary:

- At least one of the tasks under consideration is computationally hard (NP-hard)
- Some pieces of information are more subject to change than others
- The archetypal inference problem: a set of pairs \(\{ \langle \Sigma, \alpha \rangle \} \)
 - A “knowledge” base \(\Sigma \) (the fixed part)
 - Queries \(\alpha \) about it: \(\alpha_1, \ldots, \alpha_n \) (the varying part)
- Pre-processing \(\Sigma \) before answering queries makes sense if \(\Sigma \) does not often change and \(n \) is sufficiently large
- Some queries/transformations of interest become “less intractable”, provided that the computational effort spent during the off-line phase is “reasonable”
Example: Consistency-Based Diagnosis

- Fixed part $\Sigma = SD$, varying part $\alpha = OBS$ (and Δ)
- Forgetting FO and model enumeration ME are NP-hard in the general case
- If conditioning CO, forgetting FO and model enumeration ME are easy (i.e. in P) from $comp(\Sigma)$, then if $comp(\Sigma)$ is “small enough”, the computational effort spent in generating it can be balanced over many OBS (and Δ)
In the Following: Two Central Issues

- How to evaluate at the problem level whether KC can prove useful?
 - Is consistency-based diagnosis compilable (to P)?
- How to choose a target language for the KC purpose?
 - Into which language should $\text{comp}(SD)$ be represented?
Evaluating KC at the problem level

Intuition: A (decision) problem is compilable to a complexity class \(C \) if it is in \(C \) once the fixed part \(\Sigma \) of any instance has been pre-processed, i.e., turned off-line into a data structure of size polynomial in \(|\Sigma| \)

Several compilability classes organized into hierarchies (which echo PH)

Enable to classify problems as compilable to \(C \), or as non-compilable to \(C \) (usually under standard assumptions of complexity theory)
Decision Problems = Languages L of Pairs

- $\langle \Sigma, \alpha \rangle \in L$
- Σ: The fixed part
- α: The varying part
- **Examples:**

 CLAUSE ENTAILMENT = $\{\langle \Sigma, \alpha \rangle \mid \Sigma$ a propositional formula and α a clause s.t. $\Sigma \models \alpha\}$

 C-B DIAGNOSIS = $\{\langle \Sigma = SD, \alpha = (OBS, \Delta) \rangle \mid \Delta$ is a c-b diagnosis for $(SD, OBS)\}$
C = a complexity class closed under polynomial reductions and admitting complete problems for such reductions

A language of pairs L belongs to compC if and only if there exists a polysize function comp and a language of pairs $L' \in C$ such that for every pair $\langle \Sigma, \alpha \rangle, \langle \Sigma, \alpha \rangle \in L$ iff $\langle \text{comp}(\Sigma), \alpha \rangle \in L'$

For every admissible complexity class C, we have the inclusion $C \subseteq \text{compC}$
Membership to compC: Follow the definition!
Non-membership to compC: A more complex issue in general
Classes C/poly are useful
Advice-Taking Turing Machines

- An **advice-taking Turing machine** is a Turing machine that has associated with it a special “advice oracle” A, which can be any function (not necessarily a recursive one).
- On input s, a special “advice tape” is automatically loaded with $A(|s|)$ and from then the computation proceeds as normal, based on the two inputs, s and $A(|s|)$.
An advice-taking Turing machine uses \textit{polynomial advice} if its advice oracle \(A\) is \textit{polysize}.

If \(C\) is a class of languages defined in terms of resource-bounded Turing machines, then \(C/poly\) is the class of languages defined by Turing machines with the same resource bounds but augmented by polynomial advice.

\(C/poly\) contains all languages \(L\) for which there exists a polysize function \(A\) from \(N\) to the set of strings s.t. the language \(\{\langle A(|s|), s\rangle \mid s \in L\}\) belongs to \(C\).
P/poly vs. PH

Karp and Lipton [ACM STOC’98], Yap [TCS83]

- If $\text{NP} \subseteq \text{P/poly}$ then $\Pi_2^p = \Sigma_2^p$ (hence PH collapses at the second level)
- If $\text{NP} \subseteq \text{coNP/poly}$ then $\Pi_3^p = \Sigma_3^p$ (hence PH collapses at the third level)
CLAUSE ENTAILMENT \(\not\in \text{compP} \)

... unless PH collapses at the second level (Kautz and Selman [AAAI’92])

- Let \(n \) be any non-negative integer
- Let \(\Sigma_{\text{max}} \) be the CNF formula

\[
\bigwedge_{\gamma_i \in 3 \times C_n} \neg \text{holds}_i \lor \gamma_i
\]

- \(3 - C_n \) is the set of all 3-literal clauses that can be generated from \(\{x_1, \ldots, x_n\} \) and the \(\text{holds}_i \) are new variables, not among \(\{x_1, \ldots, x_n\} \)
- \(|\Sigma_{\text{max}}| \in \mathcal{O}(n^3) \)
CLAUSE ENTAILMENT $\notin \text{compP}$

- Each 3-CNF formula α_n built up from the set of variables $\{x_1, \ldots, x_n\}$ is in bijection with the subset S_{α_n} of the variables holds_i s.t. γ_i is a clause of α_n if and only if $\text{holds}_i \in S_{\alpha_n}$
- α_n is unsatisfiable iff

$$\Sigma_n^{\text{max}} \models \gamma_{\alpha_n} = \bigvee_{\text{holds}_i \in S_{\alpha_n}} \neg \text{holds}_i$$
CLAUSE ENTAILMENT $\not\in \text{compP}$

- Assume that we have a polysize compilation function comp such that for any $\text{CNF } \Sigma$ and any clause γ, determining whether $\text{comp}(\Sigma) \models \gamma$ belongs to P
- Then 3-SAT would be in P/poly:
 - Let α be a 3-CNF formula
 - If $|\text{Var}(\alpha)| = n$, then the machine loads
 $$A(n) = \text{comp}(\Sigma_n^{\text{max}})$$
 - Finally it determines in polynomial time whether
 $\text{comp}(\Sigma_n^{\text{max}}) \models \gamma_{\alpha}$
- Since 3-SAT is complete for NP, this would imply NP \subseteq P/poly
- Similarly, C-B DIAGNOSIS $\not\in \text{compP}$ unless PH collapses at the second level
The Impact of the Language of Varying Parts

- If for each fixed part Σ, there are only \textit{polynomially many} possible varying parts α, then the corresponding language of pairs L belongs to compP

- During the off-line phase, consider successively every α and store it in a lookup-table $\text{comp}(\Sigma)$ whenever $\langle \Sigma, \alpha \rangle$ belongs to L

- For every Σ, $|\text{comp}(\Sigma)|$ is polynomially bounded in the size of Σ and determining on-line whether $\langle \Sigma, \alpha \rangle \in L$ amounts to a lookup operation
Example: LITERAL ENTAILMENT $\in \text{compP}$

- $\{\langle \Sigma, \alpha \rangle \mid \alpha \in L_{\text{Var}(\Sigma)}, \Sigma \models \alpha \} \in \text{compP}$
- Only the literals occurring in Σ have to be considered during the off-line phase
- LITERAL ENTAILMENT is coNP-complete: intractable when viewed “all-at-once”, tractable as a language of pairs
A Sufficient, yet Non-Necessary Restriction

- The fact that only polynomially many varying parts α are possible is **not a necessary condition** for the membership to compP
- $\text{TERM ENTAILMENT} \in \text{compP}$
- A **separability property** at the query level (the dual of the disjunctive one)

\[
\Sigma \models \alpha_1 \land \ldots \land \alpha_n \text{ iff } \forall i \in 1 \ldots n, \Sigma \models \alpha_i
\]

- Can be extended to the K-CNF ENTAILMENT problem
compC-Reductions are not General Enough!

- A notion of comp-reduction suited to the compilability classes compC has been pointed out
- The existence of complete problems for such classes has been proven
- Many non-compilability results from the literature cannot be rephrased as compC-completeness results
- E.g. it is unlikely that CLAUSE ENTAILMENT is compcoNP-complete (this would imply P = NP)
- There is a need for more general compilability classes: nu-compC
nu-compC

- C = a complexity class closed under polynomial reductions and admitting complete problems for such reductions
- A language of pairs L belongs to nu-compC if and only if there exists a **binary polysize function** $comp$ and a language of pairs $L' \in C$ such that for all $\langle \Sigma, \alpha \rangle \in L$, we have:
 $$\langle \Sigma, \alpha \rangle \in L \text{ iff } \langle comp(\Sigma, |\alpha|), \alpha \rangle \in L'$$
- “nu” stands for “non-uniform”, which indicates that the compiled form of Σ may also **depend on the size of the varying part** α
Links between Compilability Classes

For each admissible C:

- $C \subseteq \text{compC} \subseteq \text{nu-compC}$
- $C \subseteq \text{C/poly} \subseteq \text{nu-compC}$
- Under reasonable assumptions on C, all those inclusions are strict ones
For each admissible C:

- A notion of **non-uniform comp-reduction** suited to the compilability classes nu-compC has also been pointed out (it includes the notion of (uniform) comp-reduction)
- The existence of **complete problems** for such classes has been proven
- **CLAUSE ENTAILMENT** is nu-compcoNP-complete
Compilability Hierarchies

For each admissible C:

- Inclusions of compilability classes $C/poly$, $compC$, $nu-compC$ similar to those holding in PH exist.

- It is strongly believed that the corresponding compilability hierarchies are proper: if one of them collapses, then PH collapses as well.

- For instance, if CLAUSE ENTAILMENT is in $nu-compP$, then PH collapses.
In order to show that a problem is not in compC, it is enough to prove that it is nu-compC’-hard, where C’ is located ”higher” than C in the polynomial hierarchy.

Complete problems for any nu-compC class can be derived from complete problems for C.

Hence nu-compC-complete problems appear as a very interesting tool for proving non- compilability results.
Further Readings

Compilability of a number of AI problems: diagnosis, planning, abduction, belief revision, closed-world reasoning, paraconsistent inference from belief bases, etc.

- Liberatore [PhD98, KR’98, ACM TOCL00, IJIS05]
- Cadoli *et al.* [AIJ99, Inf.Comp.02]
- Liberatore and Schaerf [ACM TCL07]
- Nebel [JAIR00]
- Coste and Marquis [AMAI02]
- Darwiche and Marquis [AIJ04]
- Chen [IJCAI’05]
- ...

Darwiche and Marquis [IJCAI’01, JAIR02]
A **multi-criteria evaluation** of target languages for propositional KC

- **Queries:** operations returning information from a compiled form without changing it
- **Transformations:** operations modifying the compiled form
- **Succinctness:** the ability of a language to represent information using little space
- ...
Queries

Decision or functions problems / properties of fragments

- **CO** (consistency)
- **CE** (clause entailment: implicates)
- **VA** (validity)
- **EQ** (equivalence)
- **SE** (sentential entailment)
- **IM** (implicants)
- **CT** (model counting)
- **ME** (model enumeration)
- ...
Transformations

Function problems / properties of fragments

- **CD** conditioning
- $\land C$ ($\land BC$) (closure under \land)
- $\lor C$ ($\lor BC$) (closure under \lor)
- $\neg C$ (closure under \neg)
- **FO** (SFO) (forgetting)
- ...
Queries and Transformations are not Independent

Let L be a propositional language

- If a language L satisfies SE, then it also satisfies CE and EQ
- If L satisfies ME, then it satisfies CO
- If L satisfies CO and CD, then it satisfies CE
- If L satisfies CT, then it satisfies CO and VA
- If L satisfies CO, $\land C$ and $\neg C$, then it satisfies SE
- If L satisfies VA, $\lor C$ and $\neg C$, then it satisfies SE
- If L contains L_{PS} and satisfies $\land C$ and $\lor BC$, then it does not satisfy CO unless $P = NP$
- If L satisfies FO, then it satisfies CO
- ...
Succinctness

Succinctness captures **the ability of a language to represent information using little space**

- L₁ is at least as succinct as L₂, denoted L₁ ≤ₚ L₂, iff there exists a polynomial p such that for every formula α ∈ L₂, there exists an equivalent formula β ∈ L₁ where |
|β| ≤ p(|α|)

- A pre-order ≤ₚ over propositional languages
Many Languages in the KC Map

- **"Flat" Languages**
 - CNF
 - DNF
 - PI (prime implicates)
 - IP (prime implicants)
 - MODS
 - ...

- **"Nested" Languages**
 - DNNF
 - d-DNNF
 - OBDD<
 - ...

Figure: A DNNF formula.
d-DNNF

Figure: A d-DNNF formula.
Figure: On the left part, a formula in the \text{OBDD}_< language. On the right part, a more standard notation for it.
“Positive” results

- DNNF satisfies CO, CE, ME, CD, FO, ∨C
- d-DNNF satisfies CO, VA, CE, IM, CT, ME, CD
- OBDD_ satisfies CO, VA, CE, IM, EQ, CT, ME, CD, SFO, ∧BC, ∨BC, ¬C
- DNF satisfies CO, CE, ME, CD, FO, ∧BC, ∨C
- PI satisfies CO, VA, CE, IM, EQ, SE, ME, CD, FO, ∨BC
- IP satisfies CO, VA, CE, IM, EQ, SE, ME, CD, ∧BC
- MODS satisfies CO, VA, CE, IM, EQ, SE, CT, ME, CD, FO, ∧BC
DNNF satisfies FO

An inductive characterization:

- $\exists X. false \equiv false$
- $\exists X. true \equiv true$
- $\exists X. I \equiv true$ if $\text{var}(I) \in X$, $\equiv I$ otherwise
- $\exists X. (\alpha_1 \lor \ldots \lor \alpha_n) \equiv (\exists X. \alpha_1) \lor \ldots \lor (\exists X. \alpha_n)$
- $\exists X. (\alpha_1 \land \ldots \land \alpha_n) \equiv (\exists X. \alpha_1) \land \ldots \land (\exists X. \alpha_n)$ since $\alpha_1 \land \ldots \land \alpha_n$ is decomposable
Polytime Reductions, Queries and Transformations

- If L_2 is polytime reducible to L_1 and L_1 satisfies a given query QU then L_2 satisfies QU
- If L_2 is polytime reducible to L_1 and L_2 does not satisfy a given query QU unless $P = NP$ then L_1 does not satisfy QU unless $P = NP$
- There is no similar results for transformations TR in the general case
 - $OBDD_{<}$ is polytime reducible to $DNNF$
 - $DNNF$ satisfies FO
 - $OBDD_{<}$ does not satisfy FO
“Negative” results

- DNNF does not satisfy any of VA, IM, EQ, SE, CT, ∧BC, ¬C unless P = NP
- VA: the validity problem for DNF formulae is coNP-complete
- ...

Fragments, Queries and Transformations
The Succinctness of Propositional Fragments

- \(\text{DNNF} \prec_s \text{d-DNNF} \prec_s \text{OBDD} \prec_s \text{MODS} \)
- \(\text{CNF} \not
prec_s \text{DNF} \)
- \(\text{DNNF} \not
prec^* \text{CNF} \)
- ...
Succinctness vs. Non-Succinctness Results

Different kinds of proof

- **DNNF \(\leq_S \) DNF**: Easy since DNNF \(\supseteq \) DNF
- **DNF \(\not\leq_S \) DNNF**: Combinatorial arguments

 \[
 \bigwedge_{i=0}^{n-1} (\neg x_{2i} \lor x_{2i+1}) \in \text{DNNF}
 \]

- **DNNF \(\not\leq^* \) CNF**: Exploit non-compilability results!
 - DNNF satisfies CE
 - CLAUSE ENTAILMENT from CNF formulae \(\Sigma \) is not in compP unless PH collapses
Taking Advantage of the KC Map

- **Identify** the queries and transformations required by the application
- **Select** the fragments satisfying them
- **Choose** one of the most succinct fragments among the selected ones
Example: Consistency-Based Diagnosis

Generating the **consistency-based diagnoses** of a system

- **ME, FO, CD** are required
- **DNNF, DNF, PI, MODS** offer them
- **DNNF** and **PI** are the most succinct ones among them
- **Explain the success of DNNF and PI** for model-based diagnosis?
Further Readings

- Waechter and Haenni [KR’06] (PDAG)
- Fargier and Marquis [AAAI’06] (DDG)
- Subbarayan et al. [AAAI’07] (tree-of-BDDs)
- Fargier and Marquis [IJCAI’09] (tree-of-C)
- Pipatsrisawat and Darwiche [AAAI’08] (DNNF\(\tau \))
- Mateescu et al. [JAIR08] (AOMDD)
- Darwiche [IJCAI’11] (SDD)
- Fargier and Marquis [ECAI’08, AAAI’08, IJCAI’11] (closure principles)

...
Conclusion

A Few Words about ...

- Knowledge compilation
 - The compilability issue
 - The KC map
KC in AI: Other Topics

(see the ECAI’08 tutorial notes on my Web page for references)

- KC for reasoning under inconsistency
- KC for closed-world reasoning and default reasoning
- KC languages based on other formal settings, like propositional epistemic logic, CSPs, Bayesian networks, valued CSPs, description logics, etc.
- Applications of KC to diagnosis
- Applications of KC to planning
- ...
Some Issues for Further Work

- The **decomposition of other problems** (from AI or considered by other communities) into queries and transformations.

- The **development of KC maps** for more expressive settings than propositional logic

- The **design of additional compilers** and their evaluation on benchmarks.

- The **successful exploitation of KC for other applications**

- ...
A Few Words about Knowledge Compilation

Pierre Marquis

Université d’Artois
CRIL UMR CNRS 8188
France

Third Workshop on Kernelization (WorKer 2011), Vienna, September 2nd, 2011