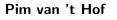
Parameterized Complexity of Vertex Deletion into Perfect Graph Classes



University of Bergen

joint work with

╬ Pinar Heggernes Bart M. P. Jansen Yngve Villanger

University of Bergen Utrecht University Stefan Kratsch 📃 Utrecht University University of Bergen

WorKer 2011

Vienna, Austria, September 2–4, 2011

Parameterized Complexity of Vertex Deletion into Perfect Graph Classes

Pim van 't Hof 💳

University of Bergen 🕇

joint work with

╬ Pinar Heggernes Bart M. P. Jansen Stefan Kratsch 📃 Utrecht University Yngve Villanger

University of Bergen Utrecht University

University of Bergen

WorKer 2011

Vienna, Austria, September 2–4, 2011

\mathcal{F} -Vertex Deletion

Input	: A graph G and an integer k .
Question	: Is there a set $S \subseteq V(G)$ with $ S \leq k$ such that $G - S$
	is a member of \mathcal{F} ?

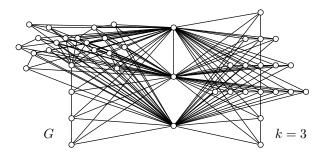
$\mathcal{F} ext{-}\mathrm{Deletion}$

 $\begin{array}{ll} \textit{Input} & : \text{ A graph } G \text{ and an integer } k.\\ \textit{Question} & : \text{ Is there a set } S \subseteq V(G) \text{ with } |S| \leq k \text{ such that } G-S\\ & \text{ is a member of } \mathcal{F}? \end{array}$

$\mathcal{F} ext{-}\mathrm{Deletion}$

 $\begin{array}{ll} \textit{Input} & : \text{ A graph } G \text{ and an integer } k.\\ \textit{Question} & : \text{ Is there a set } S \subseteq V(G) \text{ with } |S| \leq k \text{ such that } G-S\\ & \text{ is a member of } \mathcal{F}? \end{array}$

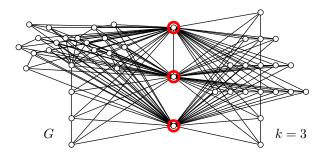
Example: $\mathcal{F} = \text{class of forests.}$



$\mathcal{F} ext{-}\mathrm{Deletion}$

 $\begin{array}{ll} \textit{Input} & : \text{ A graph } G \text{ and an integer } k.\\ \textit{Question} & : \text{ Is there a set } S \subseteq V(G) \text{ with } |S| \leq k \text{ such that } G-S\\ & \text{ is a member of } \mathcal{F}? \end{array}$

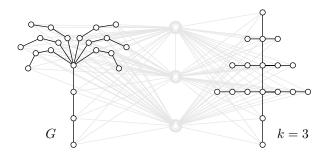
Example: $\mathcal{F} = \text{class of forests.}$



$\mathcal{F} ext{-}\mathrm{Deletion}$

 $\begin{array}{ll} \textit{Input} & : \text{ A graph } G \text{ and an integer } k.\\ \textit{Question} & : \text{ Is there a set } S \subseteq V(G) \text{ with } |S| \leq k \text{ such that } G-S\\ & \text{ is a member of } \mathcal{F}? \end{array}$

Example: $\mathcal{F} = \text{class of forests.}$



$\mathcal{F} ext{-}\mathrm{Deletion}$

${\cal F}$	problem
edgeless	Vertex Cover
acyclic	Feedback Vertex Set
bipartite	Odd Cycle Transversal
planar	Planar Deletion
chordal	CHORDAL DELETION

$\mathcal{F} ext{-}\mathrm{Deletion}$

 $\begin{array}{ll} \textit{Input} & : \text{ A graph } G \text{ and an integer } k.\\ \textit{Question} & : \text{ Is there a set } S \subseteq V(G) \text{ with } |S| \leq k \text{ such that } G-S\\ & \text{ is a member of } \mathcal{F}? \end{array}$

Theorem (Lewis & Yannakakis, 1980)

 \mathcal{F} -DELETION is NP-hard for every non-trivial, hereditary graph class \mathcal{F} .

$\mathcal{F} ext{-}\mathrm{Deletion}$

 $\begin{array}{ll} \textit{Input} & : \text{ A graph } G \text{ and an integer } k.\\ \textit{Question} & : \text{ Is there a set } S \subseteq V(G) \text{ with } |S| \leq k \text{ such that } G-S\\ & \text{ is a member of } \mathcal{F}? \end{array}$

Theorem (Lewis & Yannakakis, 1980)

 \mathcal{F} -DELETION is NP-hard for every non-trivial, hereditary graph class \mathcal{F} .

\mathcal{F} -Deletion

Input : A graph G and an integer k.

$$\begin{array}{ll} \textit{Question} & : \text{ Is there a set } S \subseteq V(G) \text{ with } |S| \leq k \text{ such that } G-S \\ & \text{ is a member of } \mathcal{F}? \end{array}$$

$\mathcal{F} ext{-}\mathrm{Deletion}$

 $\begin{array}{ll} \textit{Input} & : \text{ A graph } G \text{ and an integer } k.\\ \textit{Question} & : \text{ Is there a set } S \subseteq V(G) \text{ with } |S| \leq k \text{ such that } G-S\\ & \text{ is a member of } \mathcal{F}? \end{array}$

Theorem (Lewis & Yannakakis, 1980)

 \mathcal{F} -DELETION is NP-hard for every non-trivial, hereditary graph class \mathcal{F} .

\mathcal{F} -Deletion

 $\begin{array}{ll} \textit{Input} & : \text{ A graph } G \text{ and an integer } k. \\ \textit{Parameter}: k. \\ \textit{Question} & : \text{ Is there a set } S \subseteq V(G) \text{ with } |S| \leq k \text{ such that } G-S \\ & \text{ is a member of } \mathcal{F}? \end{array}$

When is \mathcal{F} -DELETION fixed-parameter tractable (FPT)?

${\cal F}$	problem
edgeless	Vertex Cover
acyclic	Feedback Vertex Set
bipartite	Odd Cycle Transversal
planar	Planar Deletion
chordal	CHORDAL DELETION

When is \mathcal{F} -DELETION fixed-parameter tractable (FPT)?

${\cal F}$	problem
edgeless	Vertex Cover
acyclic	Feedback Vertex Set
bipartite	Odd Cycle Transversal
planar	Planar Deletion
chordal	CHORDAL DELETION

Theorem (Cai, 1996)

 \mathcal{F} -DELETION is FPT for every graph class \mathcal{F} that can be characterized by a finite set of forbidden induced subgraphs.

When is \mathcal{F} -DELETION fixed-parameter tractable (FPT)?

${\cal F}$	problem
edgeless	Vertex Cover
acyclic	Feedback Vertex Set
bipartite	Odd Cycle Transversal
planar	Planar Deletion
chordal	CHORDAL DELETION

Theorem (Cai, 1996)

 \mathcal{F} -DELETION is FPT for every graph class \mathcal{F} that can be characterized by a finite set of forbidden induced subgraphs.

Theorem (corollary of Robertson & Seymour, 1995, 2004)

 \mathcal{F} -DELETION is FPT for every minor-closed graph class \mathcal{F} .

Theorem (Lokshtanov, 2008)

WHEEL-FREE DELETION is W[2]-hard.

Theorem (Lokshtanov, 2008)

WHEEL-FREE DELETION is W[2]-hard.

"...it would be interesting to see whether all of the "popular" graph classes, such as permutation graphs, AT-free graphs and perfect graphs, turn out to have fixed parameter tractable graph modification problems, or if some of these graph modification problems turn out to be hard for W[t] for some t."

Theorem (Lokshtanov, 2008)

WHEEL-FREE DELETION is W[2]-hard.

Theorem

PERFECT DELETION is W[2]-hard.

Theorem (Lokshtanov, 2008)

WHEEL-FREE DELETION is W[2]-hard.

Theorem

PERFECT DELETION is W[2]-hard.

Strong Perfect Graph Theorem (Chudnovsky et al., 2006)

A graph is perfect if and only if it is (odd hole,odd antihole)-free.

Theorem

PERFECT DELETION is W[2]-hard.

Proof (sketch). "Hit" all odd holes and odd antiholes.

Proof (sketch). Reduction from HITTING SET (k).

HITTING SET (k)

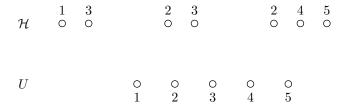
Input : A set U, a family \mathcal{H} of subsets of U, and an integer k. Parameter : k. Question : Is there a set $U' \subseteq U$ with $|U'| \leq k$ that contains a vertex from every set in \mathcal{H} ?

Theorem (Downey & Fellows, 1999)

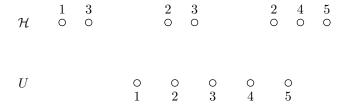
HITTING SET (k) is W[2]-complete.

Proof (sketch). Reduction from HITTING SET (k).

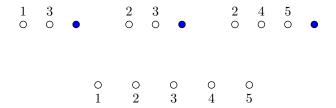
Given instance (U, \mathcal{H}, k) of HITTING SET



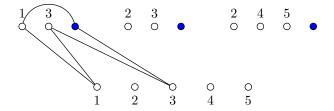
Proof (sketch). Reduction from HITTING SET (k).



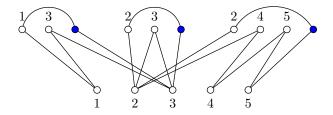
Proof (sketch). Reduction from HITTING SET (k).



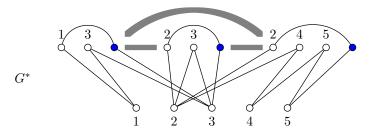
Proof (sketch). Reduction from HITTING SET (k).



Proof (sketch). Reduction from HITTING SET (k).

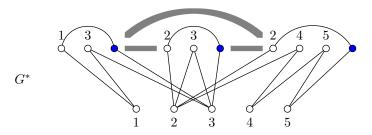


Proof (sketch). Reduction from HITTING SET (k).



Proof (sketch). Reduction from HITTING SET (k).

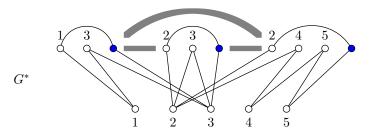
Given instance (U, \mathcal{H}, k) of HITTING SET, create graph G^* :



• The only holes in G^* are the ones corresponding to sets in \mathcal{H} .

Proof (sketch). Reduction from HITTING SET (k).

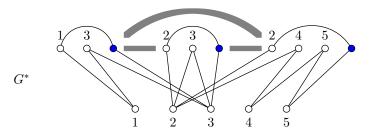
Given instance (U, \mathcal{H}, k) of HITTING SET, create graph G^* :



- The only holes in G^* are the ones corresponding to sets in \mathcal{H} .
- Any antihole in G^* has length 5.

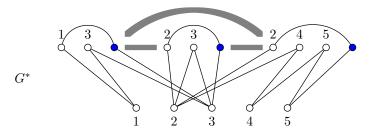
Pim van 't Hof (University of Bergen) et al. Vertex Deletion into Perfect Graph Classes

Proof (sketch). Reduction from HITTING SET (k).

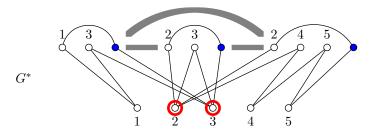


- The only holes in G^* are the ones corresponding to sets in \mathcal{H} .
- Any antihole in G^* is a hole of length 5.

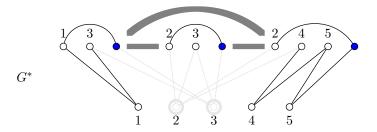
Proof (sketch). Reduction from HITTING SET (k).



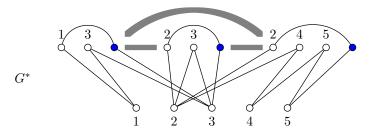
Proof (sketch). Reduction from HITTING SET (k).



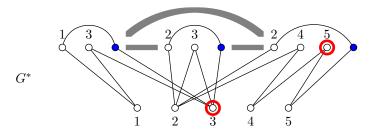
Proof (sketch). Reduction from HITTING SET (k).



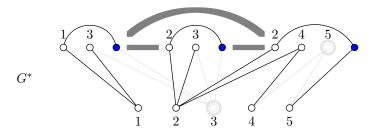
Proof (sketch). Reduction from HITTING SET (k).



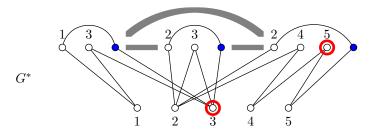
Proof (sketch). Reduction from HITTING SET (k).



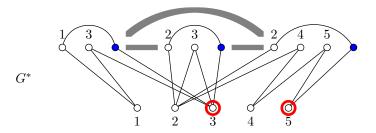
Proof (sketch). Reduction from HITTING SET (k).



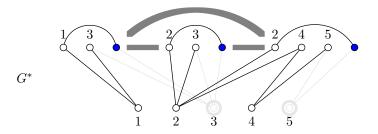
Proof (sketch). Reduction from HITTING SET (k).



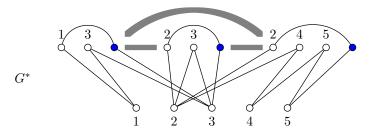
Proof (sketch). Reduction from HITTING SET (k).



Proof (sketch). Reduction from HITTING SET (k).



Proof (sketch). Reduction from HITTING SET (k).



PERFECT DELETION is W[2]-hard.

PERFECT DELETION is W[2]-hard.

Theorem (Marx, 2010)

CHORDAL DELETION is FPT.

PERFECT DELETION is W[2]-hard.

Theorem (Marx, 2010)

CHORDAL DELETION is FPT.

perfect \iff (odd hole,odd antihole)-free chordal \iff (C_4 ,hole)-free

PERFECT DELETION is W[2]-hard.

Theorem (Marx, 2010)

CHORDAL DELETION is FPT.

perfect	\iff	(odd hole,odd antihole)-free
weakly chordal	\iff	(hole,antihole)-free
chordal	\iff	$(C_4,hole) ext{-free}$

PERFECT DELETION is W[2]-hard.

Theorem (Marx, 2010)

CHORDAL DELETION is FPT.

perfect	\iff	(odd hole,odd antihole)-free
weakly chordal	\iff	(hole,antihole)-free
chordal	\iff	$(C_4,hole) ext{-free}$

 $\mathsf{chordal} \ \subset \ \mathsf{weakly} \ \mathsf{chordal} \ \subset \ \mathsf{perfect}$

PERFECT DELETION is W[2]-hard.

Theorem (Marx, 2010)

CHORDAL DELETION is FPT.

perfect	\iff	(odd hole,odd antihole)-free
weakly chordal	\iff	(hole,antihole)-free
chordal	\iff	$(C_4,hole) ext{-free}$

PERFECT DELETION is W[2]-hard.

Theorem (Marx, 2010)

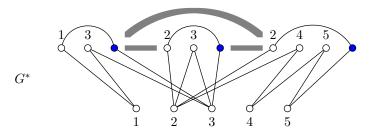
CHORDAL DELETION is FPT.

perfect	\iff	(odd hole,odd antihole)-free
weakly chordal	\iff	(hole,antihole)-free
chordal	\iff	$(C_4,hole) ext{-free}$

PERFECT DELETION is W[2]-hard.

Theorem (Marx, 2010)

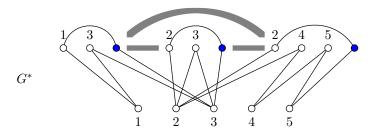
CHORDAL DELETION is FPT.



PERFECT DELETION is W[2]-hard.

Theorem (Marx, 2010)

CHORDAL DELETION is FPT.



• Every hole or antihole in G^* is an odd hole.

PERFECT DELETION is W[2]-hard.

Theorem (Marx, 2010)

CHORDAL DELETION is FPT.

Corollary

WEAKLY CHORDAL DELETION is W[2]-hard.

\mathcal{F}	$\mathcal{F} ext{-} ext{Deletion is}$
edgeless	FPT
acyclic	FPT
bipartite	FPT
chordal	FPT
planar	FPT
claw-free	FPT
cograph	FPT
split	FPT
outerplanar	FPT
bounded tw	FPT
wheel-free	W[2]-hard

${\cal F}$	$\mathcal{F} ext{-} ext{Deletion is}$
edgeless	FPT
acyclic	FPT
bipartite	FPT
chordal	FPT
planar	FPT
claw-free	FPT
cograph	FPT
split	FPT
outerplanar	FPT
bounded tw	FPT
wheel-free	W[2]-hard
perfect	W[2]-hard
weakly chorda	I W[2]-hard

Kernelization

Pim van 't Hof (University of Bergen) et al. Vertex Deletion into Perfect Graph Classes

Input	: /	A graph G , a set $X \subseteq V(G)$ such that $G - X$ is in \mathcal{F} ,
	ä	and an integer k.
Parameter	:	X .
Question	:	Is there a set $S\subseteq X$ with $ S \leq k$ such that $G-S$
		is a member of \mathcal{F} ?

Input	A graph G, a set $X \subseteq V(G)$ such that $G - Z$	X is in \mathcal{F} ,
	and an integer k.	
Parameter	X .	
Question	Is there a set $S\subseteq X$ with $ S \leq k$ such that	G-S
	is a member of \mathcal{F} ?	

Input	A graph G, a set $X \subseteq V(G)$ such that $G - Z$	X is in \mathcal{F} ,
	and an integer k.	
Parameter	X .	
Question	Is there a set $S\subseteq X$ with $ S \leq k$ such that	G-S
	is a member of \mathcal{F} ?	

Input	A graph G, a set $X \subseteq V(G)$ such that $G - Z$	X is in \mathcal{F} ,
	and an integer k.	
Parameter	X .	
Question	Is there a set $S\subseteq X$ with $ S \leq k$ such that	G-S
	is a member of \mathcal{F} ?	

Input	A graph G, a set $X \subseteq V(G)$ such that $G - Z$	X is in \mathcal{F} ,
	and an integer k.	
Parameter	X .	
Question	Is there a set $S\subseteq X$ with $ S \leq k$ such that	G-S
	is a member of \mathcal{F} ?	

Input	: A graph G , a set $X\subseteq V(G)$ such that $G-X$ is in \mathcal{I}	F,
	and an integer k.	
Parameter	: X .	
Question	: Is there a set $S\subseteq X$ with $ S \leq k$ such that $G-S$	
	is a member of \mathcal{F} ?	

Input	: A graph G, a set $X \subseteq V(G)$ such that $G - X$ is in \mathcal{F} ,
	and an integer k .
Parameter	r: X .
Question	: Is there a set $S\subseteq X$ with $ S \leq k$ such that $G-S$
	is a member of \mathcal{F} ?

Input	: A graph G , a set $X \subseteq V(G)$ such that $G - X$ is in \mathcal{F} ,
	and an integer k.
Parameter	X .
Question	: Is there a set $S\subseteq X$ with $ S \leq k$ such that $G-S$
	is a member of \mathcal{F} ?

Observation

RESTRICTED \mathcal{F} -DELETION is FPT for every graph class \mathcal{F} that can be recognized in polynomial time.

Input	: A graph G , a set $X \subseteq V(G)$ such that $G - X$ is in \mathcal{F} ,
	and an integer k.
Parameter	X .
Question	: Is there a set $S\subseteq X$ with $ S \leq k$ such that $G-S$
	is a member of \mathcal{F} ?

Observation

RESTRICTED \mathcal{F} -DELETION is FPT for every graph class \mathcal{F} that can be recognized in polynomial time.

What about polynomial kernels?

Input	: A graph G, a set $X \subseteq V(G)$ such that $G - X$ is in \mathcal{F} ,
	and an integer k .
Parameter	r: X .
Question	: Is there a set $S\subseteq X$ with $ S \leq k$ such that $G-S$
	is a member of \mathcal{F} ?

\mathcal{F}	Restricted \mathcal{F} -Deletion	polynomial kernel
chordal	FPT	
weakly chordal	FPT	
perfect	FPT	

Input	: A graph G, a set $X \subseteq V(G)$ such that $G - X$ is in \mathcal{F} ,
	and an integer k .
Parameter	r: X .
Question	: Is there a set $S\subseteq X$ with $ S \leq k$ such that $G-S$
	is a member of \mathcal{F} ?

\mathcal{F}	Restricted \mathcal{F} -Deletion	polynomial kernel
chordal	FPT	yes
weakly chordal	FPT	
perfect	FPT	

Input	: A graph G , a set $X \subseteq V(G)$ such that $G - X$ is in \mathcal{F} ,
	and an integer k.
Parameter	$\therefore X .$
Question	: Is there a set $S \subseteq X$ with $ S \leq k$ such that $G - S$
	is a member of \mathcal{F} ?

\mathcal{F}	Restricted \mathcal{F} -Deletion	polynomial kernel
chordal	FPT	yes
weakly chordal	FPT	no*
perfect	FPT	no*

*assuming NP \nsubseteq coNP/poly

Input	: A graph G , a set $X \subseteq V(G)$ such that $G - X$ is in \mathcal{F} ,
	and an integer k.
Parameter	$\therefore X .$
Question	: Is there a set $S \subseteq X$ with $ S \leq k$ such that $G - S$
	is a member of \mathcal{F} ?

\mathcal{F}	Restricted \mathcal{F} -Deletion	polynomial kernel
chordal	FPT	yes
weakly chordal	FPT	no*
perfect	FPT	no*

*assuming NP \nsubseteq coNP/poly

Neither RESTRICTED PERFECT DELETION nor RESTRICTED WEAKLY CHORDAL DELETION admits a polynomial kernel, unless $NP \subseteq coNP/poly$.

Proof (sketch).

Neither RESTRICTED PERFECT DELETION nor RESTRICTED WEAKLY CHORDAL DELETION admits a polynomial kernel, unless $NP \subseteq coNP/poly$.

Proof (sketch). Reduction from HITTING SET, once more.

Neither RESTRICTED PERFECT DELETION nor RESTRICTED WEAKLY CHORDAL DELETION admits a polynomial kernel, unless $NP \subseteq coNP/poly$.

Proof (sketch). Reduction from HITTING SET, once more.

HITTING SET (k)Input: A set U, a family \mathcal{H} of subsets of U, and an integer k.Parameter : k.Question: Is there a set $U' \subseteq U$ with $|U'| \leq k$ that contains a vertex from every set in \mathcal{H} ?

Theorem (Downey & Fellows, 1999)

HITTING SET (k) is W[2]-complete.

Neither RESTRICTED PERFECT DELETION nor RESTRICTED WEAKLY CHORDAL DELETION admits a polynomial kernel, unless $NP \subseteq coNP/poly$.

Proof (sketch). Reduction from HITTING SET, once more.

HITT	fing Set (U)
Inpu	t : A set U , a family ${\mathcal H}$ of subsets of U , and an integer k .
Para	meter : $ U $.
Ques	stion $\ :$ Is there a set $U'\subseteq U$ with $ U' \leq k$ that contains a
	vertex from every set in \mathcal{H} ?

Theorem (Dom, Lokshtanov & Saurabh, 2009)

HITTING SET (|U|) does not admit a polynomial kernel, unless $NP \subseteq coNP/poly$.

Input	: A graph G , a set $X \subseteq V(G)$ such that $G - X$ is in \mathcal{F} ,		
	and an integer k.		
Parameter : $ X $.			
Question	: Is there a set $S\subseteq X$ with $ S \leq k$ such that $G-S$		
	is a member of \mathcal{F} ?		

\mathcal{F}	Restricted \mathcal{F} -Deletion	polynomial kernel
chordal	FPT	yes
weakly chordal	FPT	no*
perfect	FPT	no*

*assuming NP \nsubseteq coNP/poly

Input	: A graph G , a set $X \subseteq V(G)$ such that $G - X$ is in \mathcal{F} ,		
	and an integer k.		
Parameter : $ X $.			
Question	: Is there a set $S\subseteq X$ with $ S \leq k$ such that $G-S$		
	is a member of \mathcal{F} ?		

\mathcal{F}	Restricted \mathcal{F} -Deletion	polynomial kernel
chordal	FPT	yes
weakly chordal	FPT	no*
perfect	FPT	no*

*assuming NP \nsubseteq coNP/poly

Restricted \mathcal{F} -Deletion

Input	: A graph G , a set $X \subseteq V(G)$ such that $G - X$ is in \mathcal{F} ,
	and an integer k.
Parameter	$\therefore X .$
Question	: Is there a set $S\subseteq X$ with $ S \leq k$ such that $G-S$
	is a member of \mathcal{F} ?

\mathcal{F}	Restricted \mathcal{F} -Deletion	polynomial kernel
chordal	FPT	yes
weakly chordal	FPT	no*
perfect	FPT	no*

*assuming NP \nsubseteq coNP/poly

RESTRICTED CHORDAL DELETION

Input : A graph G, a set $X \subseteq V(G)$ such that $G - X$ is	
chordal, and an integer k .	
Parameter : X .	
Question : Is there a set $S \subseteq X$ with $ S \le k$ such that $G - S$	
is chordal?	

Theorem

RESTRICTED CHORDAL DELETION admits a kernel with $O(|X|^4)$ vertices.

ANNOTATED RESTRICTED CHORDAL DELETION

Input : A graph G, a set $X \subseteq V(G)$ such that $G - X$ is
chordal, a set of critical pairs $C \subseteq {X \choose 2}$, and an integer
<i>k</i> .
Parameter : $ X $.
Question : Is there a set $S \subseteq X$ with $ S \le k$ such that $G - S$
is chordal, and S contains at least one vertex of each
pair in C ?

ANNOTATED RESTRICTED CHORDAL DELETION

	A graph G , a set $X \subseteq V(G)$ such that $G - X$ is
(chordal, a set of critical pairs $C \subseteq {X \choose 2}$, and an integer
i i	<i>k</i> .
Parameter :	X .
Question :	Is there a set $S \subseteq X$ with $ S \leq k$ such that $G - S$
	is chordal, and S contains at least one vertex of each
1	pair in C ?

ANNOTATED RESTRICTED CHORDAL DELETION

Input	: A graph G , a set $X \subseteq V(G)$ such that $G - X$ is
	chordal, a set of critical pairs $C \subseteq {X \choose 2}$, and an integer
	<i>k</i> .
Parameter	r: X .
Question	: Is there a set $S\subseteq X$ with $ S \leq k$ such that $G-S$
	is chordal, and S contains at least one vertex of each
	pair in C ?

Theorem

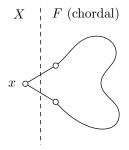
ANNOTATED RESTRICTED CHORDAL DELETION admits a kernel with $O(|X|^4)$ vertices.

Rule 1

If there is a vertex $x \in X$ such that $G[\{x\} \cup V(F)]$ is not chordal, then reduce to the instance $(G - \{x\}, X \setminus \{x\}, C', k)$, where C' is obtained from C by deleting all pairs which contain v.

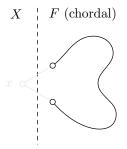
Rule 1

If there is a vertex $x \in X$ such that $G[\{x\} \cup V(F)]$ is not chordal, then reduce to the instance $(G - \{x\}, X \setminus \{x\}, C', k)$, where C' is obtained from C by deleting all pairs which contain v.



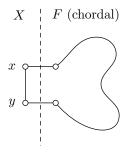
Rule 1

If there is a vertex $x \in X$ such that $G[\{x\} \cup V(F)]$ is not chordal, then reduce to the instance $(G - \{x\}, X \setminus \{x\}, C', k)$, where C' is obtained from C by deleting all pairs which contain v.

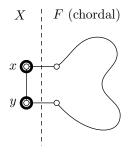


Rule 2

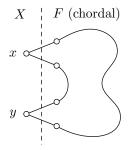
Rule 2



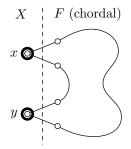
Rule 2



Rule 2



Rule 2

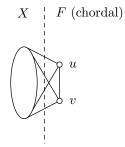


Rule 3

If there is an edge $uv \in E(F)$ such that $N_G(u) \cap X = N_G(v) \cap X$, then reduce to the instance (G/uv, X, C, k).

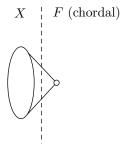
Rule 3

If there is an edge $uv \in E(F)$ such that $N_G(u) \cap X = N_G(v) \cap X$, then reduce to the instance (G/uv, X, C, k).



Rule 3

If there is an edge $uv \in E(F)$ such that $N_G(u) \cap X = N_G(v) \cap X$, then reduce to the instance (G/uv, X, C, k).



If (G, X, C, k) is a reduced instance with respect to Rules 1–3, and P is an induced path in F, then P contains at most 2|X| + 1 vertices.

Proof (sketch). Let $P = p_1 \cdots p_t$ be an induced path in F.

If (G, X, C, k) is a reduced instance with respect to Rules 1–3, and P is an induced path in F, then P contains at most 2|X| + 1 vertices.

Proof (sketch). Let $P = p_1 \cdots p_t$ be an induced path in F.

An edge $p_i p_{i+1}$ of P is promoted by a vertex $x \in X$ if x is adjacent to exactly one of the vertices p_i, p_{i+1} .

If (G, X, C, k) is a reduced instance with respect to Rules 1–3, and P is an induced path in F, then P contains at most 2|X| + 1 vertices.

Proof (sketch). Let $P = p_1 \cdots p_t$ be an induced path in F.

An edge $p_i p_{i+1}$ of P is promoted by a vertex $x \in X$ if x is adjacent to exactly one of the vertices p_i, p_{i+1} .

• Every edge of P is promoted by some vertex in X.

If (G, X, C, k) is a reduced instance with respect to Rules 1–3, and P is an induced path in F, then P contains at most 2|X| + 1 vertices.

Proof (sketch). Let $P = p_1 \cdots p_t$ be an induced path in F.

An edge $p_i p_{i+1}$ of P is promoted by a vertex $x \in X$ if x is adjacent to exactly one of the vertices p_i, p_{i+1} .

- Every edge of P is promoted by some vertex in X.
- Every vertex in X promotes at most two edges of P.

If (G, X, C, k) is a reduced instance with respect to Rules 1–3, and P is an induced path in F, then P contains at most 2|X| + 1 vertices.

Proof (sketch). Let $P = p_1 \cdots p_t$ be an induced path in F.

An edge $p_i p_{i+1}$ of P is promoted by a vertex $x \in X$ if x is adjacent to exactly one of the vertices p_i, p_{i+1} .

- Every edge of P is promoted by some vertex in X.
- Every vertex in X promotes at most two edges of P.

Hence P has at most 2|X| edges, and 2|X| + 1 vertices.

Rule 4

Repeat the following for each ordered triple (x, y, z) of distinct vertices in X: if there is an induced path P between x and z whose internal vertices are all in $F - N_G(y)$, then mark all the internal vertices of P. Let Y be the set of vertices that were not marked during this procedure. Reduce to the instance (G - Y, X, C, k).

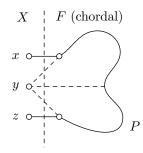
Rule 4

Repeat the following for each ordered triple (x, y, z) of distinct vertices in X: if there is an induced path P between x and z whose internal vertices are all in $F - N_G(y)$, then mark all the internal vertices of P. Let Y be the set of vertices that were not marked during this procedure. Reduce to the instance (G - Y, X, C, k).

 $\begin{array}{c|c} X & F \text{ (chordal)} \\ x \circ \\ y \circ \\ z \circ \\ \end{array}$

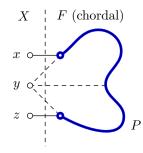
Rule 4

Repeat the following for each ordered triple (x, y, z) of distinct vertices in X: if there is an induced path P between x and z whose internal vertices are all in $F - N_G(y)$, then mark all the internal vertices of P. Let Y be the set of vertices that were not marked during this procedure. Reduce to the instance (G - Y, X, C, k).



Rule 4

Repeat the following for each ordered triple (x, y, z) of distinct vertices in X: if there is an induced path P between x and z whose internal vertices are all in $F - N_G(y)$, then mark all the internal vertices of P. Let Y be the set of vertices that were not marked during this procedure. Reduce to the instance (G - Y, X, C, k).



Rule 4

Repeat the following for each ordered triple (x, y, z) of distinct vertices in X: if there is an induced path P between x and z whose internal vertices are all in $F - N_G(y)$, then mark all the internal vertices of P. Let Y be the set of vertices that were not marked during this procedure. Reduce to the instance (G - Y, X, C, k).

Rule 4

Repeat the following for each ordered triple (x, y, z) of distinct vertices in X: if there is an induced path P between x and z whose internal vertices are all in $F - N_G(y)$, then mark all the internal vertices of P. Let Y be the set of vertices that were not marked during this procedure. Reduce to the instance (G - Y, X, C, k).

Claim

Rule 4 is safe.

Rule 4

Repeat the following for each ordered triple (x, y, z) of distinct vertices in X: if there is an induced path P between x and z whose internal vertices are all in $F - N_G(y)$, then mark all the internal vertices of P. Let Y be the set of vertices that were not marked during this procedure. Reduce to the instance (G - Y, X, C, k).

Suppose (G, X, C, k) is a yes-instance, with solution S.

• Since G - S is chordal, G - Y - S is chordal.

Hence (G - Y, X, C, k) is a yes-instance.

Rule 4

Repeat the following for each ordered triple (x, y, z) of distinct vertices in X: if there is an induced path P between x and z whose internal vertices are all in $F - N_G(y)$, then mark all the internal vertices of P. Let Y be the set of vertices that were not marked during this procedure. Reduce to the instance (G - Y, X, C, k).

Suppose (G - Y, X, C, k) is a yes-instance, with solution S.

• G - Y - S is chordal, and S intersects each pair in C.

Claim: S is a solution for (G, X, C, k).

Suppose, for contradiction, that S is *not* a solution for (G, X, C, k).

ANNOTATED RESTRICTED CHORDAL DELETION admits a kernel with $O(|X|^4)$ vertices.

Proof (sketch). Let (G, X, C, k) be a reduced instance with respect to Rules 1–4. Let F = G - X.

ANNOTATED RESTRICTED CHORDAL DELETION admits a kernel with $O(|X|^4)$ vertices.

Proof (sketch). Let (G, X, C, k) be a reduced instance with respect to Rules 1–4. Let F = G - X.

• F can be covered by $|X|^3$ induced paths;

ANNOTATED RESTRICTED CHORDAL DELETION admits a kernel with $O(|X|^4)$ vertices.

Proof (sketch). Let (G, X, C, k) be a reduced instance with respect to Rules 1–4. Let F = G - X.

- F can be covered by $|X|^3$ induced paths;
- each such path contains at most 2|X| + 1 vertices;

ANNOTATED RESTRICTED CHORDAL DELETION admits a kernel with $O(|X|^4)$ vertices.

Proof (sketch). Let (G, X, C, k) be a reduced instance with respect to Rules 1–4. Let F = G - X.

- F can be covered by $|X|^3$ induced paths;
- each such path contains at most 2|X| + 1 vertices;
- hence $|V(F)| \le 2|X|^4 + |X|^3$.

ANNOTATED RESTRICTED CHORDAL DELETION admits a kernel with $O(|X|^4)$ vertices.

Proof (sketch). Let (G, X, C, k) be a reduced instance with respect to Rules 1–4. Let F = G - X.

- F can be covered by $|X|^3$ induced paths;
- each such path contains at most 2|X| + 1 vertices;
- hence $|V(F)| \le 2|X|^4 + |X|^3$.

Since $V(G) = V(F) \cup X$, the result follows.

RESTRICTED CHORDAL DELETION admits a kernel with $O(|X|^4)$ vertices.

Proof (sketch). Let (G, X, k) be an instance of RESTRICTED CHORDAL DELETION.

RESTRICTED CHORDAL DELETION admits a kernel with $O(|X|^4)$ vertices.

Proof (sketch). Let (G, X, k) be an instance of RESTRICTED CHORDAL DELETION.

• Consider instance (G, X, \emptyset, k) of ANNOTATED RESTRICTED CHORDAL DELETION.

RESTRICTED CHORDAL DELETION admits a kernel with $O(|X|^4)$ vertices.

- Consider instance (G, X, \emptyset, k) of ANNOTATED RESTRICTED CHORDAL DELETION.
- Apply kernelization algorithm for ANNOTATED RESTRICTED CHORDAL DELETION.

RESTRICTED CHORDAL DELETION admits a kernel with $O(|X|^4)$ vertices.

- Consider instance (G, X, \emptyset, k) of ANNOTATED RESTRICTED CHORDAL DELETION.
- Apply kernelization algorithm for ANNOTATED RESTRICTED CHORDAL DELETION.
- Let (G', X', C, k') be the obtained instance.

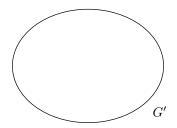
RESTRICTED CHORDAL DELETION admits a kernel with $O(|X|^4)$ vertices.

Proof (sketch). Let (G, X, k) be an instance of RESTRICTED CHORDAL DELETION.

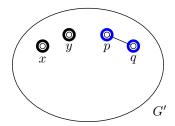
- Consider instance (G, X, \emptyset, k) of ANNOTATED RESTRICTED CHORDAL DELETION.
- Apply kernelization algorithm for ANNOTATED RESTRICTED CHORDAL DELETION.
- Let (G', X', C, k') be the obtained instance.

G' has $O(|X|^4)$ vertices.

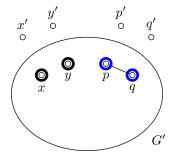
RESTRICTED CHORDAL DELETION admits a kernel with $O(|X|^4)$ vertices.



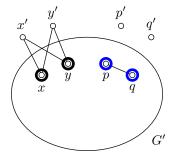
RESTRICTED CHORDAL DELETION admits a kernel with $O(|X|^4)$ vertices.



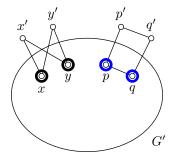
RESTRICTED CHORDAL DELETION admits a kernel with $O(|X|^4)$ vertices.



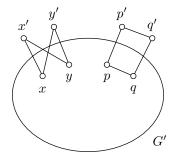
RESTRICTED CHORDAL DELETION admits a kernel with $O(|X|^4)$ vertices.



RESTRICTED CHORDAL DELETION admits a kernel with $O(|X|^4)$ vertices.



RESTRICTED CHORDAL DELETION admits a kernel with $O(|X|^4)$ vertices.



• Does CHORDAL DELETION have a polynomial kernel?

- Does CHORDAL DELETION have a polynomial kernel?
 - Yes, when parameter is vertex cover number.

- Does CHORDAL DELETION have a polynomial kernel?
 - Yes, when parameter is vertex cover number.
 - Yes, when parameter is feedback vertex set number.

- Does CHORDAL DELETION have a polynomial kernel?
 - Yes, when parameter is vertex cover number.
 - Yes, when parameter is feedback vertex set number.
 - What if parameter is interval vertex deletion number?

- Does CHORDAL DELETION have a polynomial kernel?
 - Yes, when parameter is vertex cover number.
 - Yes, when parameter is feedback vertex set number.
 - What if parameter is interval vertex deletion number?
- Is INTERVAL DELETION FPT?

- Does CHORDAL DELETION have a polynomial kernel?
 - Yes, when parameter is vertex cover number.
 - Yes, when parameter is feedback vertex set number.
 - What if parameter is interval vertex deletion number?
- Is INTERVAL DELETION FPT?
- Is Perfect Edge Deletion/Completion FPT?

Pim van 't Hof (University of Bergen) et al. Vertex Deletion into Perfect Graph Classes