Max- r-Lin Above Average and its Applications

Robert Crowston
Royal Holloway, University of London,
Egham,
Surrey,
TW20 0EX, UK
robert@cs.rhul.ac.uk

September 2011

Co-authors

Based on joint work with:

- Gregory Gutin, Mark Jones, Anders Yeo (Royal Holloway, University of London)
- Mike Fellows, Frances Rosamond (Charles Darwin University)
- EunJung Kim, Stéphan Thomassé (LIRMM-Université Montpellier II)
- Imre Ruzsa (Alfréd Rényi Institute of Mathematics, Hungarian Academy of Sciences)

Reminder: Parameterizations above Tight Bounds

- If a natural parameter has a large lower bound then it doesn't work well as a parameter - the answer is trivially Yes unless k is large, in which case $f(k)$ will be impractical
- for example, in Max-Sat, one can always satisfy at least $m / 2$ clauses, so "Does there exist an assignment satisfying at least k clauses?" isn't a good question.
- Instead, ask "is there an assignment satisfying at least $m / 2+k$ clauses?" (where m is the total number of clauses)
- Here we are parameterizing above the known lower bound ($m / 2$)

MaxLin Problem

> MAX- r-LIN2-AA
> Instance: A system S of equations $\sum_{i \in I_{j}} z_{i}=b_{j}$ over \mathbb{F}_{2}, where $z_{i}, b_{j} \in\{0,1\}, j=1, \ldots, m$; equation j is assigned a positive integral weight w_{j}.
> Each equation contains at most r variables $\left(\left|l_{j}\right| \leq r\right)$.
> Parameter: k.

> Question: Is the maximum possible weight of satisfied equations $\geq W / 2+k$?

(W denotes the total weight of all equations in the system)

Tightness

- Consider any system consisting of pairs of equations with different left hand sides
- One may only satisfy one equation from each pair
- For example, the system:

$$
\begin{aligned}
& x_{1}=0, x_{2}=0, \ldots, x_{n}=0, x_{1}+x_{2}=0 \\
& x_{1}=1, x_{2}=1, \ldots, x_{n}=1, x_{1}+x_{2}=1
\end{aligned}
$$

Previous results for MAX-r-Lin2-AA

Theorem (Gutin, Kim, Szeider, Yeo (2009))
Max- r-Lin2-AA has a kernel with at most $(2 k-1)^{2} 64^{r}$ variables.
Theorem (Kim, Williams (2011))
MAX- r-Lin2-AA has a kernel with at most $k r(r+1)$ variables.

Multilinear kernel for MAX-r-Lin2-AA

Theorem
MAX- r-Lin2-AA has a kernel with at most $(2 k-1) r$ variables.

Proof - Reduction Rules

Apply known reduction rules to reduce the number of equations and variables:

Reduction Rule (Linear Independence)

Let A be the matrix over \mathbb{F}_{2} corresponding to the set of equations in S, such that equation j is $\sum_{i \in[n]} a_{j i}=b_{j}$. Let $t=\operatorname{rank} A$ and suppose columns $a^{i_{1}}, \ldots, a^{i_{t}}$ of A are linearly independent. Then delete all variables not in $\left\{x_{i_{1}}, \ldots, x_{i_{t}}\right\}$ from the equations of S.

Reduction Rule (LHS Rule)

If we have, for a subset I of [n], an equation $\sum_{i \in I} x_{i}=b_{l}^{\prime}$ with weight w_{l}^{\prime}, and an equation $\sum_{i \in I} x_{i}=b_{l}^{\prime \prime}$ with weight $w_{l}^{\prime \prime}$, then we replace this pair by one of these equations with weight $w_{1}^{\prime}+w_{l}^{\prime \prime}$ if $b_{l}^{\prime}=b_{l}^{\prime \prime}$ and, otherwise, by the equation whose weight is bigger, modifying its new weight to be the difference of the two old ones. If the resulting weight is 0 , we delete the equation from the system.

Algorithm \mathcal{H}

Algorithm \mathcal{H}
While the system S is nonempty and the total weight of marked equations is less than $2 k$ do the following:

1. Choose an arbitrary equation $\sum_{i \in I} x_{i}=b$ and mark an arbitrary variable x_{l} such that $I \in I$.
2. Mark this equation and delete it from the system.
3. Replace every equation $\sum_{i \in I^{\prime}} x_{i}=b^{\prime}$ in the system containing x_{l} by $\sum_{i \in I \Delta I^{\prime}} x_{i}=b+b^{\prime}$, where $I \Delta I^{\prime}$ is the symmetric difference of I and I^{\prime} (the weight of the equation is unchanged).
4. Apply Reduction Rule 2 to the system.

Theorem

Let S be an irreducible system and suppose that each equation contains at most r variables. Let $n \geq(2 k-1) r+1$ and let $w_{\text {min }}$ be the minimum weight of an equation of S. Then, in time $m^{O(1)}$, we can find an assignment x^{0} to variables of S such that it satisfies equations of total weight at least $W / 2+k \cdot w_{\text {min }}$.

Sum-free Sets

- It would be good if we may mark an equation in the algorithm, and only few equations cancel out
- Aim: Find a set of equation that may be marked in turn, without any being cancelled out
- Let $K \subseteq M$ be sets of vectors in \mathbb{F}_{2}^{n}. K is M -sum-free if no sum of two or more vectors in K is equal to a vector in M

Lemma

Let M be the set of vectors formed from the equations in S. If there is a M-sum-free set K of size t, then we may run Algorithm \mathcal{H} for t iterations.

Proof of Theorem

Proof.

- Consider a set M of vectors in \mathbb{F}_{2}^{n} corresponding to equations in S : for each equation in S, define a vector $v=\left(v_{1}, \ldots, v_{n}\right) \in M$, where $v_{i}=1$ if $i \in I$ and $v_{i}=0$, otherwise.
- M contains a basis for \mathbb{F}_{2}^{n}, and each vector contains at most r non-zero coordinates and $n \geq(k-1) r+1$
- Using a constructive lemma, we may find a Sum-Free Set K of size $2 k$. To see this exists, consider K to be the minimal set of vectors whose sum is $(1,1, \ldots, 1)$ (this exists, since M is a basis).
- Run Algorithm \mathcal{H} on K.
- Algorithm \mathcal{H} will run for $2 k$ iterations of the while loop as no equation from $\left\{e_{j_{1}}, \ldots, e_{j_{2 k}}\right\}$ will be deleted before it has been marked.

Kernel

- Each iteration of Algorithm \mathcal{H} gives a gain of 0.5 above average
- Hence, if $n \geq(2 k-1) r+1$, the Theorem gives k above average
- Otherwise, $n \leq(2 k-1) r+1$, the claimed kernel.

Applications

> MAX-r-CSP parameterized above average (MAX-r-CSPAA)
> Instance:
> A set V of n boolean variables, and a set \mathcal{C} of m constraints, where each constraint C is a boolean function acting on at most r variables of V.
> Parameter: k.
> Question: Can we satisfy $E+k$ constraints, where E is the expected number of constraints satisfied by a random assignment?

MAX- r-SAT-AA

We focus on Max- r-Sat-AA. The same methodology can be applied to MAX-r-CSP-AA:

MAX- r-SAT-AA
Instance: A CNF formula F with n variables, m clauses, such that each clause has r variables.
Parameter: k.
Question: Can we satisfy $\geq\left(1-1 / 2^{r}\right) m+k$ clauses?

- Given a random assignment, each clause is satisfied with probability ($1-1 / 2^{r}$)
- The lower bound is the expected number of clauses satisfied by a random assignment.
- ($\left.1-1 / 2^{r}\right) m$ is a tight lower bound, for example, the system of all 2^{r} clauses on r variables.
- The condition "each clause has r variables" may be modified to "each clause has at most r variables"

Pseudo-boolean functions

- Pseudo-boolean functions are both of independent interest, and a useful tool for moving between MAX- r-Lin2-AA and MAX-r-CSP-AA
- A Pseudo-boolean function $f:\{-1,+1\}^{n} \rightarrow \mathbb{R}$
- Consider the Fourier Expansion of f :

$$
f(x)=\sum_{S \subseteq[n]} c_{S} \prod_{i \in S} x_{i}
$$

- Each term $c_{S} \prod_{i \in S} x_{i}$ corresponds to an equation $\sum_{i \in S} z_{i}=b_{i}$ of weight $\left|c_{S}\right|$ for MAX- r-LiN2-AA.
- If c_{S} is positive, the $b_{i}=0$. Otherwise, $b_{i}=1$.
- $z_{i}=0$ if $x_{i}=1$, and $z_{i}=1$ if $x_{i}=-1$. $\left(x_{i}=(-1)^{z_{i}}\right)$
- $f(x)=2 \cdot($ Weight of satisfied equations $-W / 2)$

MAX- r-SAT-AA as a pseudo-boolean function

$$
f(x)=\sum_{C \in \mathcal{F}}\left(1-\prod_{v_{i} \in C}\left(1+\epsilon_{i} x_{i}\right)\right)
$$

- For each $C, \epsilon_{i}=1$ if $v_{i} \in C, \epsilon_{i}=-1$ if $\bar{v}_{i} \in C$
- $x_{i}=-1$ corresponds to True, $x_{i}=1$ to False
- Note $f(x)$ is of degree r, so this defines a transformation to MAX- r-Lin2-AA
- The transformation takes time $O^{*}\left(2^{r}\right)$
- $\left(1-\prod_{v_{i} \in C}\left(1+\epsilon_{i} x_{i}\right)\right)$ is 1 if C is satisfied, $1-2^{r}$ if C is falisifed.

MAX-r-SAT-AA as a pseudo-boolean function (contd)

$$
f(x)=\sum_{C \in \mathcal{F}}\left(1-\prod_{v_{i} \in C}\left(1+\epsilon_{i} x_{i}\right)\right)
$$

- $f(x)=2^{r}$ (number of satisfied clauses - $\left(1-1 / 2^{r}\right) m$).
- Hence, the Max-r-SAT-AA instance is a YeS-instance with parameter k iff MAX- r-LIN2-AA is a Yes-instance with parameter $k^{\prime}=2^{r-1} \cdot k$.
- But Max- r-Lin2-AA has a kernel with $\left(2 k^{\prime}-1\right) r$ variables. Hence MAX-r-SAT-AA has a kernel with $\left(2^{r} k-1\right) r$ variables.
- The same approach can be applied to any general MAX-r-CSP problem
- In fact, if a class of MAX- r-CSP problems has certain symmetry, the running time/kernel may be better.
- Mahajan, Rama \& Sikdar (2006) asked if Max-Lin2-AA is FPT.

Theorem (Crowston, Fellows, Gutin, Jones, Rosamond, Thomasse, Yeo, 2011)
MAX-Lin-AA is fixed-parameter tractable, and has a kernel with $O\left(k^{2} \log k\right)$ variables.

Recent results on MAX-r-SAT-AA

Whilst Max-Lin2-AA and Max-r-Lin2-AA have polynomial kernels, the same does not hold for MAX-r-Sat-AA

Theorems (Crowston, Gutin, Jones, Raman, Saurabh (2011))

- MAX-r-SAT-AA is para-NP-complete for $r=\lceil\log n\rceil$.
- Assuming the exponential time hypothesis, MAX-r-SAT-AA is not fixed-parameter tractable for any $r \geq \log \log n+\phi(n)$, where $\phi(n)$ is any unbounded strictly increasing function of n.
- MAX-r-SAT-AA is fixed-parameter tractable for $r \leq \log \log n-\log \log \log n-\phi(n)$, for any unbounded strictly increasing function $\phi(n)$.

The End

- Thank You
- Questions?

