Linear-Time Computation of a Linear Kernel for Dominating Set on Planar Graphs

$\begin{array}{rl} {\sf René \ van \ Bevern^1 \ \underline{Sepp \ Hartung^1} \ \ Frank \ {\sf Kammer^2} \\ {\sf Rolf \ Niedermeier^1 \ \ Mathias \ Weller^1} \end{array}$

¹TU Berlin, Germany

²University of Augsburg, Germany

Worker 2011

Planar Dominating Set

Input A planar graph G and an integer k.

Question Is there a dominating set of size k for G?

• $\gamma(G) =$ size of minimum dominating set of G

Known Results:

- Garey & Johnson, 1979: NP-hardness
- BAKER, J. ACM 1994: PTAS
- subexponential algorithms:
 - Alber, Bodlaender, Fernau, Kloks & Niedermeier, Algorithmica 2002

Focusing on Kernel Size:

Alber, Fellows & Niedermeier, J. ACM 2004: 335γ -vertex kernel in $O(n^3)$ time

CHEN, FERNAU, KANJ & XIA, SIAM J. COMPUT. 2007: 67 γ -vertex kernel in O(n^3) time

Focusing on Larger Graph Classes:

FOMIN & THILIKOS, ICALP 2004: $O(\gamma + g)$ -vertex kernel in $O(gn^3)$ time on graphs of genus g

PHILIP, RAMAN & SIKDAR, ESA 2009: $O(\gamma^{2(d+1)^2})$ -vertex kernel in $O(2^d dn^2)$ time on *d*-degenerated graphs

FOMIN, LOKSHTANOV, SAURABH & THILIKOS, SODA 2010: $O(\gamma)$ -vertex kernel in polynomial time on apex-minor free graphs

van Bevern, Hartung, Kammer, Niedermeier & Weller, IPEC 2011: $O(\gamma)$ -vertex kernel in O(n) time

Motivation:

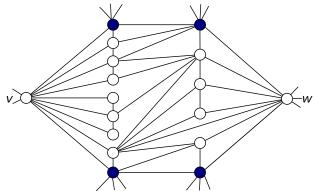
- kernel size \Leftrightarrow running time of kernelization
 - Which kernel size can be achieved in linear time?
 - combine size-optimized with time-optimized kernelization algorithm
 - with CHEN ET AL., 2007: 67 γ -vertex kernel in $O(\gamma^3 + n)$ time

Main Features:

- $\bullet\,$ rework and more refined analysis of the interaction of the reduction rules of $\rm Alber \ ET \ Al., \ 2004$
- $\bullet\,$ non-exhaustive application of rules $\rightarrow\,$ "knowing when to stop"

Alber et al. kernel I

Main Observation: A graph is decomposable into $O(\gamma)$ regions.



Definition

A region between two vertices v and w is a closed subset of the plane such that

1 all vertices are contained in $N(v) \cup N(w)$, and

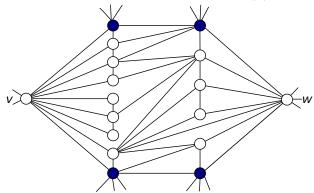
2 the boundary is formed by two simple paths of length at most three.

Sepp Hartung (TU Berlin)

Lin-Time Lin-Size Kernel Planar DomSet

Alber et al. kernel I

Main Observation: A graph is decomposable into $O(\gamma)$ regions.

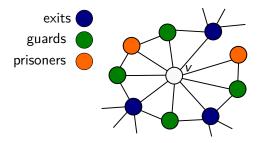


Problem kernel is obtained by two reduction rules:

- Private Neighborhood: Reduces number of vertices outside of regions to O(γ)
- **2** Joint Neighborhood: Shrink each region to O(1) vertices

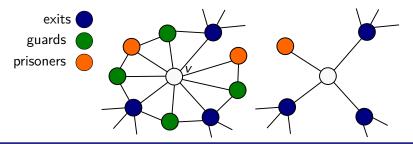
Alber et al.: Private Neighborhood Rule

• partition the neighborhood of a vertex v into three sets



Alber et al.: Private Neighborhood Rule

• partition the neighborhood of a vertex v into three sets

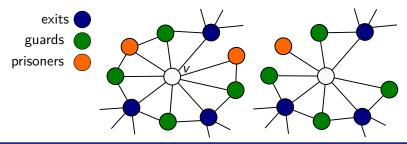


Private Neighborhood Rule

Delete guards and prisoners and add a degree-one neighbor.

Alber et al.: Private Neighborhood Rule

• partition the neighborhood of a vertex v into three sets



Private Neighborhood Rule

Delete guards and prisoners and add a degree-one neighbor.

Modified Private Neighborhood Rule

Delete prisoners and add a degree-one neighbor.

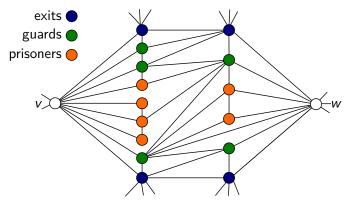
• avoids cascading effects \rightarrow exhaustive application in O(n) time

Sepp Hartung (TU Berlin)

Lin-Time Lin-Size Kernel Planar DomSet

Alber et al.: Joint Neighborhood Rule I

Joint Neighborhood Rule: Finds and Shrinks Regions

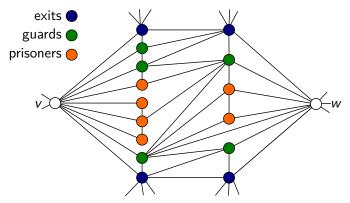


Shrink every potential region:

• Alber et al.: For all vertices v, w delete vertices from $N(v) \cup N(w) \rightarrow \Omega(n^2)$. Rule applies O(n) times $\rightarrow O(n^3)$ time

Alber et al.: Joint Neighborhood Rule I

Joint Neighborhood Rule: Finds and Shrinks Regions



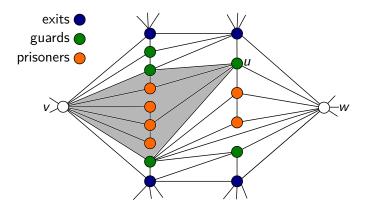
Shrink every potential region:

- Modified Joint Neighborhood Rule:
 - DFS: starting in v, list all vertices up to a depth of three
 - follow only constant degree vertices

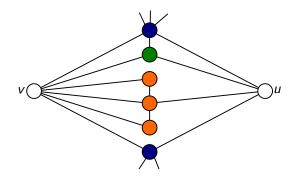
Alber et al.: Joint Neighborhood Rule II

Our Main Observation:

- ullet the neighbors of inner vertices lie in the region \rightarrow adjacent to v or w
- inner vertices with large degree form restricted regions



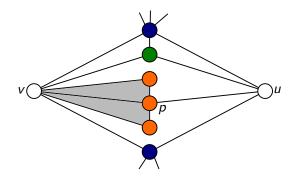
Restricted Regions I



Observations:

- all inner vertices have to be adjacent to v
- boundary paths have length at most two

Restricted Regions I



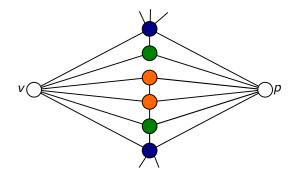
Observations:

- all inner vertices have to be adjacent to v
- boundary paths have length at most two
- a common neighbor p ∈ N(u) ∩ N(v) can still have unbounded degree
 - $\bullet \ \rightarrow$ consider the restricted region between v and p

Restricted Region II

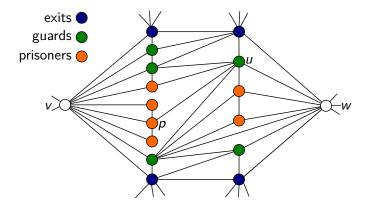
Observations:

- all inner vertices have to be **adjacent to** v and p
 - planarity: inner vertices have constant degree!

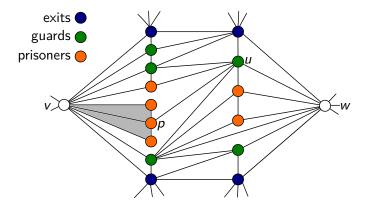


v − *p* region can be explored in time bounded by the number of inner vertices → Modified Joint Neighborhood Rule

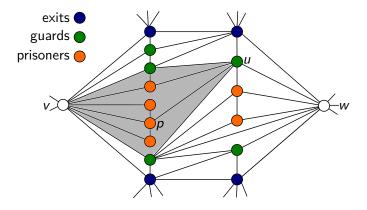
Modified Private Neighborhood Rule: Shrinks vertices outside of regions



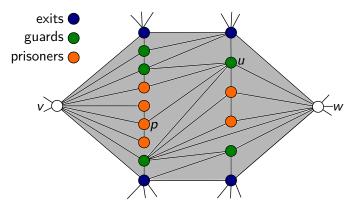
- Modified Private Neighborhood Rule: Shrinks vertices outside of regions
- **2** Modified Joint Neighborhood Rule: Shrinks v p region $\rightarrow \deg(p)$ constant



- Modified Private Neighborhood Rule: Shrinks vertices outside of regions
- **2** Modified Joint Neighborhood Rule: Shrinks v p region $\rightarrow \deg(p)$ constant
- **③** Modified Joint Neighborhood Rule: Shrinks v u region $\rightarrow \deg(u)$ constant



- Modified Private Neighborhood Rule: Shrinks vertices outside of regions
- Modified Joint Neighborhood Rule: Shrinks v p region $\rightarrow \deg(p)$ constant 2
- Modified Joint Neighborhood Rule: Shrinks v u region $\rightarrow \deg(u)$ constant 3
- Modified Joint Neighborhood Rule: Shrinks v w region to constant size



- kernel size and kernel time race
 - combining them yields fast and effective preprocessing for hard problems
- approaches to get time-optimized kernels:
 - Speed-up known kernels (our work)
 - 2 Develop new time-optimized kernels
 - HAGERUP, IPEC 2011, LINEAR-TIME KERNELIZATION FOR PLANAR DOMINATING SET

- implementation of our approach
 - 335 γ kernel: Alber, Betzler & Niedermeier, Ann. Oper. Res., 2006
- Exhaustive application of reduction rules of Alber et al. (or even Chen et al.) in linear time?
- Can our approach be extended to other problems?
 - Connected Vertex Cover
 - Guo & Niedermeier, ICALP 2007
- Lower Bounds: Does every FPT-problem admit a kernel in O(n) time?
 - near-linear time: best kernel in O(p(k) + n) or $O(p(k) \cdot n)$ time?