Co-nondeterminism in compositions:
 A kernelization lower bound for a Ramsey-type problem

Stefan Kratsch

September 03, WorKer 2011, Vienna

Introduction

Ramsey(k)
 Input: A graph G and an integer k.
 Parameter: k.
 Question: Does G contain an independent set or a clique of size at least k ?

Brought to general attention by Rod Downey at WorKer 2010 in Leiden. He asked whether the problem admits a polynomial kernel.

FPT: if $n \geq R(k, k)$ (Ramsey number) then answer YES, else use brute force $\left(R(k, k)<4^{k}\right)$

Motivation

- spin-off of a classical problem
- a polynomial kernel would speed up computation of Ramsey numbers: essentially replacing brute force on c^{k} vertices by brute force on poly (k) vertices
- seems to resist standard techniques for upper and lower bounds
- \$\$...

Ramsey Numbers

- $\mathbf{R}\left(\ell_{1}, \ell_{2}\right)$: largest number of vertices among graphs G that contain no ℓ_{1}-independent set or ℓ_{2}-clique
- $\mathbf{R}(\ell):=R(\ell, \ell)$
- explicit values are only known for small ℓ (essentially by brute force computation)
- $R(\ell) \sim c^{\ell}$ (there are exponential upper and lower bounds)

Outline

Introduction

Warm-up

Co-nondeterministic composition

Excluding polynomial kernels for Ramsey(k)

Conclusion

Outline

Introduction

Warm-up

Co-nondeterministic composition

Excluding polynomial kernels for Ramsey(k)

Conclusion

A simple composition for Ramsey (k)

- given t instances $\left(G_{1}, k\right), \ldots,\left(G_{t}, k\right)$
- we construct $\left(G^{\prime}, k^{\prime}\right)$ with
- $\left(G^{\prime}, k^{\prime}\right)$ YES iff at least one $\left(G_{i}, k\right)$ is YES
- $k^{\prime} \in \mathcal{O}\left(t^{1 / 2} k\right)$
- thus Ramsey (k) has no $\mathcal{O}\left(k^{2-\epsilon}\right)$ kernel unless PH collapses
[Dell, van Melkebeek 2010 \& Hermelin, Wu 2011]

Improvement version

Improvement Ramsey(k)
 Input: A graph G and an integer k. Two vertex sets $/$ and K of size $k-1$ each which induce an independent set and a clique in G. Parameter: k.
 Question: Does G contain an independent set or a clique of size at least k ?

We will simply continue to call it Ramsey(k). It is straightforward to reduce between the two versions.

The construction

- w.l.o.g. $t=\ell^{2}$
- group the t instances into ℓ groups of size ℓ each
- let G^{\prime} contain copies of G_{1}, \ldots, G_{t}
- add all edges between vertices of G_{i} and G_{j} in G^{\prime} if they are in the same group
- let $k^{\prime}=\ell(k-1)+1$ thus $k^{\prime} \in \mathcal{O}\left(t^{1 / 2} k\right)$
note: adjacency between the graphs G_{1}, \ldots, G_{t} can be described by a host graph H : a disjoint union of ℓ cliques of size ℓ each

Some observations I

- cliques in G^{\prime} can use vertices from only one group, i.e., from at most ℓ graphs
- independent sets in G^{\prime} can use vertices from at most one graph per group, i.e., from at most ℓ graphs
- thus a clique of size $\ell(k-1)+1$ must contain at least k vertices from a single G_{i}
- ditto for independent sets
thus if $\left(G^{\prime}, k^{\prime}\right)$ is YES then at least one $\left(G_{i}, k\right)$ is YES

Some observations II

- if some G_{i} contains a k-clique, then it can be extended by $k-1$ vertices from each other graph in its group in G^{\prime}
- we get a clique of size $k+(\ell-1)(k-1)=\ell(k-1)+1$
- similarly for a k-independent set in some G_{i}
- it is crucial here that we have the improvement version
if some $\left(G_{i}, k\right)$ is YES then $\left(G^{\prime}, k^{\prime}\right)$ is YES

We get a composition with dependence of $t^{1 / 2}$ on t, excluding kernels of size $\mathcal{O}\left(k^{2-\epsilon}\right)$.

Why did it work...

...and how can we do better?

- in the host graph H (recall: disj. union of ℓ many ℓ-cliques):
- there are no cliques or independent sets of size $\ell+1$
- each vertex is in a clique and an independent set of size ℓ
- $\ell \in \mathcal{O}\left(t^{1 / 2}\right)$
- thus arranging and connecting the t instances according to H we get a composition with $\mathcal{O}\left(t^{1 / 2}\right)$ dependence on t

To exclude polynomial kernels we need $\ell \in t^{o(1)}$. Unfortunately no deterministic constructions of such graphs are known. (There is work on Ramsey graphs, but they don't include the covering property.)

Outline

Introduction

Warm-up

Co-nondeterministic composition

Excluding polynomial kernels for Ramsey(k)

Conclusion

Co-nondeterministic composition

$$
\text { Let } \mathcal{Q} \subseteq \Sigma^{*} \times \mathbb{N} \text {. }
$$

coNP-composition for \mathcal{Q} : co-nondeterministic algorithm C input: t instances $\left(x_{1}, k\right), \ldots,\left(x_{t}, k\right) \in \Sigma^{*} \times \mathbb{N}$ time: polynomial in $\sum_{i=1}^{t}\left|x_{i}\right|$
output: on each computation path an instance (y, k^{\prime})
with $k^{\prime} \leq t^{o(1)} p o l y(k)$ such that:

1. if at least one $\left(x_{i}, k\right)$ is YES then each computation path ends with the output of a YES-instance $\left(y, k^{\prime}\right)$
2. if all $\left(x_{i}, k\right)$ are NO then at least one computation path ends with the output of a NO-instance
new: co-nondeterminism, $t^{o(1)}$ dependence on t

Consequence of a coNP-composition

Theorem: If $\mathcal{Q} \subseteq \Sigma^{*} \times \mathbb{N}$ has a coNP-composition then it admits no polynomial kernelization unless NP \subseteq coNP/poly.

Proof: This follows straightforwardly from the Complementary Witness Lemma [Dell \& van Melkebeek 2010].
key: coNP-kernelization \& coNP-composition give oracle communication protocol with co-nondeterministic first player

Outline

Introduction

Warm-up

Co-nondeterministic composition

Excluding polynomial kernels for Ramsey(k)

Conclusion

We need better host graphs

- we need a host graph H on t vertices and $\ell \in t^{o(1)}$ such that:
- H contains no independent set and no clique of size $>\ell$
- each vertex of H is contained in an independent set and a clique both of size ℓ
- combining t instances according to H will then give a composition
- we will use co-nondeterminism to find such graphs
note: $\alpha(H)=\ell$ cannot be verified, so we will have to cope with graphs H not fulfilling all properties

Making our lives a bit easier

- it suffices if each vertex of H is in a clique or an independent set of size ℓ
- by a simple transformation $G_{i} \mapsto G_{i}^{\prime}$ we get
G_{i} has a k-clique or a k-independent set
$\Leftrightarrow G_{i}^{\prime}$ has a $2 k$ - 1 -clique and a $2 k$ - 1 -indepenent set
- it can be seen that embedding graphs G_{i}^{\prime} in the relaxed host graph suffices

Ramsey numbers have useful gaps

Lemma: For every integer $t>3$ there is an integer $\ell \in\{1, \ldots, 8 \log t\}$ such that $R(\ell+1)>R(\ell)+t$.

Proof (sketch): If no integer $\ell \in\{1, \ldots, 8 \log t\}$ works, then $R(8 \log t)$ would be smaller than known lower bounds.

Thanks to Pascal Schweitzer for the lemma and advice regarding Ramsey numbers.

Finding a host graph

let an integer t be given

- guess smallest $\ell \in\{1, \ldots, 8 \log t\}$ with $R(\ell+1)>R(\ell)+t$
- guess T such that $T=R(\ell)+t$
there is a graph on T vertices which has no clique or independent set greater than ℓ
- guess a graph H on T vertices
next: covering at least t vertices of H by independent sets and cliques

Partially covering H

assume that we have a graph H with $R(\ell)+t$ vertices

- among any $R(\ell)$ vertices of H there must be an independent set or a clique of size ℓ
- thus there must be a set of (at most t) cliques and independent sets that covers at least t vertices of H
- such a cover can be guessed and verified; on a failure return YES
- let H^{\prime} be a subgraph of H on at least t vertices, such that all vertices of H^{\prime} are covered
- use H^{\prime} as a host graph and return the obtained instance $\left(G^{\prime}, k^{\prime}\right)$

Wrap-Up / Proof sketch

given t instances $\left(G_{1}, k\right), \ldots,\left(G_{t}, k\right)$ of (improvement) Ramsey (k)

- transform to simpler instances $\left(G_{1}^{\prime}, 2 k-1\right), \ldots,\left(G_{t}^{\prime}, 2 k-1\right)$ for which relaxed host graph suffices
- co-nondeterministically search for a host graph H^{\prime}
- each computation path returns YES or an instance $\left(G^{\prime}, k^{\prime}\right)$
- in the latter case the used host graph H^{\prime} is always covered
- there is at least one c-path where H^{\prime} has no clique or independent set of size $>\ell \in \mathcal{O}(\log t)$
from these facts, we easily get the following:

Theorem: Ramsey(k) has a coNP-composition and hence does not admit a polynomial kernel unless NP \subseteq coNP/poly.

Outline

Introduction

Warm-up

Co-nondeterministic composition

Excluding polynomial kernels for Ramsey(k)

Conclusion

Conclusion

- Ramsey(k) does not admit a polynomial kernel unless $N P \subseteq$ coNP/poly
- Ramsey numbers are the key to both FPT and kernel lower bound for Ramsey(k)
- co-nondeterministic compositions may help for other problems with open existence of polynomial kernels
- is there more to be gained from the $t^{o(1)}$ dependence on t or is $\log t$ all we ever need?

Thank you

