Where Myhill–Nerode Theorem Meets Parameterized Algorithmics

Petr Hliněný

Faculty of Informatics, Masaryk University
Botanická 68a, 602 00 Brno, Czech Republic

e-mail: hlineny@fi.muni.cz http://www.fi.muni.cz/~hlineny
Contents

1 Decomposing the Input 3
 And running dynamic algorithms: a try to give a useful unifying view . . .

2 The Concept of a Canonical Equivalence 4
 Capturing the formal essence of dynamic algorithms on “recursive” decom-
 positions: parse trees and Myhill-Nerode type congruences.

3 Measuring Graphs: Clique-width and Rank-width 8
 Measuring tree-likeness of a graph: the */-widths.

4 #SAT – our Sample Application 14
 Giving an FPT algorithm which is single-exponential in the rank-width.

5 Final remarks 19
1 Decomposing the Input and running Dynamic Algorithms

- A typical idea for a dynamic algorithm on a recursive decomposition:
 - Capture all relevant information about the problem on a substructure.
1 Decomposing the Input and running Dynamic Algorithms

- A typical idea for a *dynamic algorithm* on a recursive decomposition:
 - Capture *all relevant* inform. about the problem on a substructure.
 - Process this information bottom-up in the decomposition.
1 Decomposing the Input and running Dynamic Algorithms

• A typical idea for a *dynamic algorithm* on a *recursive decomposition*:

 − Capture all relevant inform. about the problem on a substructure.
 − Process this information bottom-up in the decomposition.
 − Importantly, this information has size depending only on k (ideally, not on the structure size), or at most polynomial size.
1 Decomposing the Input and running Dynamic Algorithms

• A typical idea for a *dynamic algorithm* on a *recursive decomposition*:

 – Capture *all relevant* inform. about the *problem* on a substructure.
 – Process this information bottom-up in the decomposition.
 – Importantly, this information has size *depending only on* k (ideally, not on the structure size), or at most polynomial size. . .

• How to understand words “*all relevant information about the problem*”? Use “tables”?
1 Decomposing the Input and running Dynamic Algorithms

• A typical idea for a *dynamic algorithm* on a *recursive decomposition*:

 – Capture *all relevant* inform. about the problem on a substructure.
 – Process this information bottom-up in the decomposition.
 – Importantly, this information has size *depending only on* \(k \) (ideally, not on the structure size), or at most polynomial size.

• How to understand words “*all relevant information about the problem*”? Use “tables”? Or...

 Look for inspiration in traditional finite automata theory!

Theorem. [Myhill–Nerode, folklore]
1 Decomposing the Input and running Dynamic Algorithms

• A typical idea for a dynamic algorithm on a recursive decomposition:

 – Capture all relevant inform. about the problem on a substructure.
 – Process this information bottom-up in the decomposition.
 – Importantly, this information has size depending only on k (ideally, not on the structure size), or at most polynomial size.

• How to understand words “all relevant information about the problem”? Use “tables”? Or...

 Look for inspiration in traditional finite automata theory!

Theorem. [Myhill–Nerode, folklore]
Finite automaton states (this is our information) \leftrightarrow
right congruence classes on the words (of a regular language).
1 Decomposing the Input and running Dynamic Algorithms

• A typical idea for a dynamic algorithm on a recursive decomposition:
 - Capture all relevant inform. about the problem on a substructure.
 - Process this information bottom-up in the decomposition.
 - Importantly, this information has size depending only on k (ideally, not on the structure size), or at most polynomial size.

• How to understand words “all relevant information about the problem”? Use “tables”? Or...

 Look for inspiration in traditional finite automata theory!

Theorem. [Myhill–Nerode, folklore]
Finite automaton states (this is our information) \leftrightarrow right congruence classes on the words (of a regular language).

• Explicit comb. extensions of this concept appeared e.g. in the works [Abrahamson and Fellows, 93], [PH, 03], or [Ganian and PH, 08].
2 The Concept of a Canonical Equivalence

How does the right congruence extend from formal words with the concatenation operation to, say, graphs with a kind of a “join” operation?
2 The Concept of a Canonical Equivalence

How does the right congruence extend from formal words with the concatenation operation to, say, graphs with a kind of a “join” operation?

• Consider the universe of structures \(\mathcal{U}_k \) implicitly associated with
 – some (small) distinguished “boundary of size \(k \)” of each graph, and
 – a join operation \(G \otimes H \) acting on the boundaries of disjoint \(G, H \).

• Let \(\mathcal{P} \) be a (decision) property we study.
2 The Concept of a Canonical Equivalence

How does the right congruence extend from formal words with the concatenation operation to, say, *graphs with a kind of a “join” operation*?

- Consider the universe of structures \mathcal{U}_k implicitly associated with
 - some (small) distinguished “boundary of size k” of each graph, and
 - a *join operation* $G \otimes H$ acting on the boundaries of disjoint G, H.

- Let \mathcal{P} be a (decision) property we study.

Definition. The *canonical equivalence* of \mathcal{P} on \mathcal{U}_k is defined:

$$G_1 \approx_{\mathcal{P},k} G_2 \text{ for any } G_1, G_2 \in \mathcal{U}_k \text{ if and only if, for all } H \in \mathcal{U}_k,$$

$$G_1 \otimes H \in \mathcal{P} \iff G_2 \otimes H \in \mathcal{P}.$$
2 The Concept of a Canonical Equivalence

How does the right congruence extend from formal words with the concatenation operation to, say, graphs with a kind of a “join” operation?

- Consider the universe of structures \mathcal{U}_k implicitly associated with
 - some (small) distinguished “boundary of size k” of each graph, and
 - a join operation $G \otimes H$ acting on the boundaries of disjoint G, H.

- Let \mathcal{P} be a (decision) property we study.

Definition. The canonical equivalence of \mathcal{P} on \mathcal{U}_k is defined:

$$G_1 \approx_{\mathcal{P},k} G_2 \quad \text{for any } G_1, G_2 \in \mathcal{U}_k \quad \text{if and only if, for all } H \in \mathcal{U}_k,$$

$$G_1 \otimes H \in \mathcal{P} \iff G_2 \otimes H \in \mathcal{P}. $$

- Informally, the classes of $\approx_{\mathcal{P},k}$ capture all information about the property \mathcal{P} that can “cross” our boundary of size k
 (regardless of actual meaning of “boundary” and “join”).
Definition. The *canonical equivalence* of \mathcal{P} on the universe \mathcal{U}_k is defined:

$$G_1 \approx_{\mathcal{P},k} G_2 \text{ for any } G_1, G_2 \in \mathcal{U}_k \text{ if and only if, for all } H \in \mathcal{U}_k,$$

$$G_1 \otimes H \in \mathcal{P} \iff G_2 \otimes H \in \mathcal{P}$$
Decision properties, or more?

Definition. The canonical equivalence of \mathcal{P} on the universe \mathcal{U}_k is defined:

$G_1 \approx_{\mathcal{P},k} G_2$ for any $G_1, G_2 \in \mathcal{U}_k$ if and only if, for all $H \in \mathcal{U}_k$,

$G_1 \otimes H \in \mathcal{P} \iff G_2 \otimes H \in \mathcal{P}$.

- Not only deciding the exist. of a solution, but want to find it / optimize!
Decision properties, or more?

Definition. The canonical equivalence of \mathcal{P} on the universe \mathcal{U}_k is defined:

$$G_1 \approx_{\mathcal{P},k} G_2 \text{ for any } G_1, G_2 \in \mathcal{U}_k \text{ if and only if, for all } H \in \mathcal{U}_k,$$

$$G_1 \otimes H \in \mathcal{P} \iff G_2 \otimes H \in \mathcal{P}.$$

- Not only deciding the exist. of a solution, but want to find it / optimize!
- So, let G_1, G_2 and H be assoc. with a solution fragment, say φ.
Decision properties, or more?

Definition. The *canonical equivalence* of \mathcal{P} on the universe U_k is defined:

$$G_1 \approx_{\mathcal{P},k} G_2 \text{ for any } G_1, G_2 \in U_k \text{ if and only if, for all } H \in U_k,$$

$$G_1 \otimes H \in \mathcal{P} \iff G_2 \otimes H \in \mathcal{P}.$$

• Not only deciding the exist. of a solution, but want to find it / optimize!

• So, let G_1, G_2 and H be assoc. with a *solution fragment*, say φ.

Definition, II. The *canonical equivalence* of \mathcal{P} on the extended universe U_k (of structures equipped with solution fragments) is defined:

$$(G_1, \varphi_1) \approx_{\mathcal{P},k} (G_2, \varphi_2) \text{ for } (G_i, \varphi_i) \in U_k \text{ if and only if, for all } (H, \varphi) \in U_k,$$

$$(G_1, \varphi_1) \otimes (H, \varphi) \models \mathcal{P} \iff (G_2, \varphi_2) \otimes (H, \varphi) \models \mathcal{P}$$
Decision properties, or more?

Definition. The canonical equivalence of \mathcal{P} on the universe \mathcal{U}_k is defined:

$$G_1 \approx_{\mathcal{P},k} G_2 \text{ for any } G_1, G_2 \in \mathcal{U}_k \text{ if and only if, for all } H \in \mathcal{U}_k,$$

$$G_1 \otimes H \in \mathcal{P} \iff G_2 \otimes H \in \mathcal{P}.$$

- Not only deciding the exist. of a solution, but want to find it / optimize!
- So, let G_1, G_2 and H be assoc. with a solution fragment, say φ.

Definition, II. The canonical equivalence of \mathcal{P} on the extended universe \mathcal{U}_k (of structures equipped with solution fragments) is defined:

$$(G_1, \varphi_1) \approx_{\mathcal{P},k} (G_2, \varphi_2) \text{ for } (G_i, \varphi_i) \in \mathcal{U}_k \text{ if and only if, for all } (H, \varphi) \in \mathcal{U}_k,$$

$$(G_1, \varphi_1) \otimes (H, \varphi) \models \mathcal{P} \iff (G_2, \varphi_2) \otimes (H, \varphi) \models \mathcal{P}.$$

- For simplicity, solution fragments φ can be "embedded" in \mathcal{U}_k and \otimes.
Decision properties, or more?

Definition. The canonical equivalence of \mathcal{P} on the universe \mathcal{U}_k is defined:

$$G_1 \approx_{\mathcal{P},k} G_2 \text{ for any } G_1, G_2 \in \mathcal{U}_k \text{ if and only if, for all } H \in \mathcal{U}_k,$$

$$G_1 \otimes H \in \mathcal{P} \iff G_2 \otimes H \in \mathcal{P}.$$

- Not only deciding the exist. of a solution, but want to find it / optimize!
- So, let G_1, G_2 and H be assoc. with a solution fragment, say φ.

Definition, II. The canonical equivalence of \mathcal{P} on the extended universe \mathcal{U}_k (of structures equipped with solution fragments) is defined:

$$(G_1, \varphi_1) \approx_{\mathcal{P},k} (G_2, \varphi_2) \text{ for } (G_i, \varphi_i) \in \mathcal{U}_k \text{ if and only if, for all } (H, \varphi) \in \mathcal{U}_k,$$

$$(G_1, \varphi_1) \otimes (H, \varphi) \models \mathcal{P} \iff (G_2, \varphi_2) \otimes (H, \varphi) \models \mathcal{P}.$$

- For simplicity, solution fragments φ can be “embedded” in \mathcal{U}_k and \otimes.
- Can, e.g., count the solutions in each class of $\approx_{\mathcal{P},k}$, or keep an opt. one.
Some particular issues, beyond Myhill-Nerode

Definition. The *canonical equivalence* of \mathcal{P} on the universe \mathcal{U}_k is defined:

$$G_1 \approx_{\mathcal{P},k} G_2 \quad \text{for any } G_1, G_2 \in \mathcal{U}_k \quad \text{if and only if, for all } H \in \mathcal{U}_k,$$

$$G_1 \otimes H \models \mathcal{P} \iff G_2 \otimes H \models \mathcal{P}.$$

- Are the elements of \mathcal{U}_k required *recursively decomposable*?
Some particular issues, beyond Myhill-Nerode

Definition. The *canonical equivalence* of \mathcal{P} on the universe \mathcal{U}_k is defined:

$G_1 \approx_{\mathcal{P}, k} G_2$ for any $G_1, G_2 \in \mathcal{U}_k$ if and only if, for all $H \in \mathcal{U}_k$,

$G_1 \otimes H \models \mathcal{P} \iff G_2 \otimes H \models \mathcal{P}$.

- Are the elements of \mathcal{U}_k required *recursively decomposable*?
 - somehow surprisingly, does not seem to play role. . .
Some particular issues, beyond Myhill-Nerode

Definition. The canonical equivalence of \mathcal{P} on the universe \mathcal{U}_k is defined:

$G_1 \approx_{\mathcal{P},k} G_2$ for any $G_1, G_2 \in \mathcal{U}_k$ if and only if, for all $H \in \mathcal{U}_k$,

$G_1 \otimes H \models \mathcal{P} \iff G_2 \otimes H \models \mathcal{P}$.

- Are the elements of \mathcal{U}_k required recursively decomposable?
 - somehow surprisingly, does not seem to play role.

- Can we have a different “right-hand-side universe” $H \in \mathcal{U}'_k$?
 - yes, useful e.g. for bi-rank-width of digraphs.
Some particular issues, beyond Myhill-Nerode

Definition. The canonical equivalence of \mathcal{P} on the universe \mathcal{U}_k is defined:

$$G_1 \approx_{\mathcal{P},k} G_2 \text{ for any } G_1, G_2 \in \mathcal{U}_k \text{ if and only if, for all } H \in \mathcal{U}_k, \quad G_1 \otimes H \models \mathcal{P} \iff G_2 \otimes H \models \mathcal{P}.$$

• Are the elements of \mathcal{U}_k required recursively decomposable?
 – somehow surprisingly, does not seem to play role. . .

• Can we have a different “right-hand-side universe” $H \in \mathcal{U}_k'$?
 – yes, useful e.g. for bi-rank-width of digraphs.

• Can we use more different join operators \otimes? Why?
 – related to “prepartitioning” (expectation) of right-hand universe.
Some particular issues, beyond Myhill-Nerode

Definition. The canonical equivalence of \mathcal{P} on the universe \mathcal{U}_k is defined:

$$G_1 \approx_{\mathcal{P}, k} G_2 \quad \text{for any } G_1, G_2 \in \mathcal{U}_k \quad \text{if and only if, for all } H \in \mathcal{U}_k,$$

$$G_1 \otimes H \models \mathcal{P} \iff G_2 \otimes H \models \mathcal{P}.$$

- Are the elements of \mathcal{U}_k required recursively decomposable?
 - somehow surprisingly, does not seem to play role.

- Can we have a different "right-hand-side universe" $H \in \mathcal{U}_k'$?
 - yes, useful e.g. for bi-rank-width of digraphs.

- Can we use more different join operators \otimes? Why?
 - related to "prepartitioning" (expectation) of right-hand universe.

- **XP algorithms**, i.e. getting away from finite automata?
Some particular issues, beyond Myhill-Nerode

Definition. The canonical equivalence of \mathcal{P} on the universe \mathcal{U}_k is defined:

$$G_1 \approx_{\mathcal{P},k} G_2 \quad \text{for any } G_1, G_2 \in \mathcal{U}_k \quad \text{if and only if, for all } H \in \mathcal{U}_k,$$

$$G_1 \otimes H \models \mathcal{P} \iff G_2 \otimes H \models \mathcal{P}.$$

- Are the elements of \mathcal{U}_k required recursively decomposable?
 – somehow surprisingly, does not seem to play role. . .

- Can we have a different “right-hand-side universe” $H \in \mathcal{U}_k'$?
 – yes, useful e.g. for bi-rank-width of digraphs.

- Can we use more different join operators \otimes? Why?
 – related to “prepartitioning” (expectation) of right-hand universe.

- XP algorithms, i.e. getting away from finite automata?
 – yes, still works quite nicely, cf. [Ganian, PH, Obdržálek, 09].
 – brings new application issues such as “quantification inside \otimes” (cf. sol. fragments), or a “second-level” congruence on top of $\approx_{\mathcal{P},k}$.

P. Hliněný, PCCR 2010, Brno CZ 6 Myhill–Nerode Meets Parameterized...
Parse trees of decompositions

To give an algor. usable meaning to the terms “boundary, join, and universe” we set them in the context of *tree-shaped* decompositions as follows...
Parse trees of decompositions

To give an algor. usable meaning to the terms “boundary, join, and universe” we set them in the context of *tree-shaped* decompositions as follows…

- Considering a rooted *-*decomposition of a graph G,
 we build on the following correspondence:

 - *boundary size* k \leftrightarrow restricted bag-size / width / etc in decomposition
 - *join operator* \otimes \leftrightarrow the way pieces of G “stick together” in decomp.
Parse trees of decompositions

To give an algor. usable meaning to the terms “boundary, join, and universe” we set them in the context of *tree-shaped* decompositions as follows…

- Considering a rooted *-decomposition of a graph G,
 we build on the following correspondence:

 - **boundary size k** ↔ restricted bag-size / width / etc in decomposition
 - **join operator \otimes** ↔ the way pieces of G “stick together” in decomp.

- This can be (visually) seen as…
3 Measuring Graphs: Clique-width and Rank-width

Motivation: Trees are easy to understand and to handle, so how “tree-like” our graph is in some well-defined sense (the width)?

- A topic occurring both in pure theory (e.g. Graph Minors), and in algorithms (Fixed parameter tractability).
3 Measuring Graphs: Clique-width and Rank-width

Motivation: Trees are easy to understand and to handle, so how “tree-like” our graph is in some well-defined sense (the width)?

- A topic occurring both in pure theory (e.g. Graph Minors), and in algorithms (Fixed parameter tractability).
- Many definitions known, e.g. tree-width, path-width, branch-width, DAG-width ...
3 Measuring Graphs: Clique-width and Rank-width

Motivation: Trees are easy to understand and to handle, so how “tree-like” our graph is in some well-defined sense (the \textit{width})?

- A topic occurring both in pure theory (e.g. Graph Minors), and in algorithms (Fixed parameter tractability).

- Many definitions known, e.g. \textit{tree-width}, \textit{path-width}, \textit{branch-width}, \textit{DAG-width} . . .

- \textbf{Clique-width} – another graph complexity measure [Courcelle and Olariu], defined by operations on \textit{vertex–labeled} graphs:
 - create a new vertex with label \(i\),
 - take the disjoint union of two labeled graphs,
 - add all edges between vertices of label \(i\) and label \(j\),
 - and relabel all vertices with label \(i\) to have label \(j\).
3 Measuring Graphs: Clique-width and Rank-width

Motivation: Trees are easy to understand and to handle, so how “tree-like” our graph is in some well-defined sense (the width)?

- A topic occurring both in pure theory (e.g. Graph Minors), and in algorithms (Fixed parameter tractability).

- Many definitions known, e.g. tree-width, path-width, branch-width, DAG-width...

- Clique-width – another graph complexity measure [Courcelle and Olariu], defined by operations on vertex–labeled graphs:
 - create a new vertex with label i,
 - take the disjoint union of two labeled graphs,
 - add all edges between vertices of label i and label j,
 - and relabel all vertices with label i to have label j.

 \[\rightarrow \text{ giving the expression tree (parse tree) for clique-width.} \]
Rank-decomposition

- [Oum and Seymour, 03] Bringing the branch-decomposition approach to measure “complexity” of vertex subsets $X \subseteq V(G)$ via *cut-rank*:

\[
\varrho_G(X) = \text{rank of } X \begin{pmatrix} 0 & 1 & 0 & 0 & 1 \\ 1 & 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 1 & 1 \end{pmatrix} \mod 2
\]
Rank-decomposition

- [Oum and Seymour, 03] Bringing the branch-decomposition approach to measure “complexity” of vertex subsets $X \subseteq V(G)$ via *cut-rank*:

 \[
 \varrho_G(X) = \text{rank of } X \begin{pmatrix} 0 & 1 & 0 & 0 & 1 \\ 1 & 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 1 & 1 \end{pmatrix} \mod 2
 \]

Definition. Decompose $V(G)$ one-to-one into the leaves of a subcubic tree. Then

- \[
 \text{width}(e) = \varrho_G(X) \text{ where } X \text{ is displayed by } f \text{ in the tree.}
 \]
Rank-decomposition

- [Oum and Seymour, 03] Bringing the branch-decomposition approach to measure “complexity” of vertex subsets $X \subseteq V(G)$ via cut-rank:

$$\varrho_G(X) = \text{rank of } \begin{pmatrix} 0 & 1 & 0 & 0 & 1 \\ 1 & 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 1 & 1 \end{pmatrix} \mod 2$$

\textbf{Definition.} Decompose $V(G)$ one-to-one into the leaves of a subcubic tree. Then

$$\text{width}(e) = \varrho_G(X) \text{ where } X \text{ is displayed by } f \text{ in the tree.}$$

- \textbf{Rank-width} = $\min_{\text{rank-decs. of } G} \max \{\text{width}(f) : f \text{ tree edge}\}$
An example. Cycle C_5 and its *rank-decomposition* of width 2:
Comparing these two

- Rank-width t is related to clique-width k as $t \leq k \leq 2^{t+1} - 1$.
- Both these measures are NP-hard in general.
Comparing these two

- Rank-width t is related to clique-width k as $t \leq k \leq 2^{t+1} - 1$.
- Both these measures are NP-hard in general.
- Clique-width *expressions* seem to be much more “explicit” than *rank-decompositions*, and more suited for design of actual algorithms.

On the other hand, however...
Comparing these two

- Rank-width \(t \) is related to clique-width \(k \) as \(t \leq k \leq 2^{t+1} - 1 \).

- Both these measures are \(NP \)-hard in general.

- Clique-width *expressions* seem to be much more “explicit” than *rank-decompositions*, and more suited for design of actual algorithms.

On the other hand, however...

- [Corneil and Rotics, 05] Clique-width can really be up to exponentially higher than rank-width.
Comparing these two

• Rank-width t is related to clique-width k as $t \leq k \leq 2^{t+1} - 1$.

• Both these measures are NP-hard in general.

• Clique-width *expressions* seem to be much more “explicit” than *rank-decompositions*, and more suited for design of actual algorithms.

On the other hand, however...

• [Corneil and Rotics, 05] Clique-width can really be up to exponentially higher than rank-width.

• [Oum and PH, 07] There is an *FPT algorithm* for computing an optimal width-t rank-decomposition of a graph in time $O(f(t) \cdot n^3)$.
Comparing these two

- Rank-width t is related to clique-width k as $t \leq k \leq 2^{t+1} - 1$.
- Both these measures are NP-hard in general.
- Clique-width expressions seem to be much more “explicit” than rank-decompositions, and more suited for design of actual algorithms.

On the other hand, however...

- [Corneil and Rotics, 05] Clique-width can really be up to exponentially higher than rank-width.
- [Oum and PH, 07] There is an FPT algorithm for computing an optimal width-t rank-decomposition of a graph in time $O(f(t) \cdot n^3)$.
- And new results show that certain algorithms designed on rank-decompositions run faster than their analogues designed on clique-width expressions... (subst. $poly(t)$ in place of cw, instead of 2^t)
Parse trees for rank-decompositions

Unlike for tree- or clique-decompositions with obvious parse trees, what is the “boundary” and “join” operation for rank-width? Our “boundary” includes all vertices, and “join” is just an implicit matrix rank.
Parse trees for rank-decompositions

Unlike for tree- or clique-decompositions with obvious parse trees, what is the “boundary” and “join” operation for rank-width?

Our “boundary” includes all vertices, and “join” is just an implicit matrix rank.

- **Bilinear product** approach of [Courcelle and Kanté, 07]:

 \[\text{boundary} \sim \text{labeling } \text{lab} : V(G) \to 2^{\{1,2,\ldots,t\}} \text{ (multi-colouring)}, \]
Parse trees for rank-decompositions

Unlike for tree- or clique-decompositions with obvious parse trees, what is the "boundary" and "join" operation for rank-width?

Our "boundary" includes all vertices, and "join" is just an implicit matrix rank.

- **Bilinear product** approach of [Courcelle and Kanté, 07]:

 - boundary \(\sim \) labeling \(\text{lab} : V(G) \rightarrow 2^{\{1,2,\ldots,t\}} \) (multi-colouring),
 - join \(\sim \) bilinear form \(g \) over \(GF(2)^t \) (i.e. "odd intersection") s.t.
 \[
 \text{edge } uv \iff \text{lab}(u) \cdot g \cdot \text{lab}(v) = 1.
 \]
Parse trees for rank-decompositions

Unlike for tree- or clique-decompositions with obvious parse trees, what is the “boundary” and “join” operation for rank-width?

Our “boundary” includes all vertices, and “join” is just an implicit matrix rank.

- **Bilinear product** approach of [Courcelle and Kanté, 07]:

 - **boundary** ~ labeling $lab : V(G) \rightarrow 2^{\{1,2,\ldots,t\}}$ (multi-colouring),
 - **join** ~ bilinear form g over $GF(2)^t$ (i.e. “odd intersection”) s.t.

 $$
 \text{edge } uv \leftrightarrow lab(u) \cdot g \cdot lab(v) = 1.
 $$

- Join → a composition operator with relabelings f_1, f_2;

 $$(G_1, lab^1) \otimes [g | f_1, f_2] (G_2, lab^2) = (H, lab)$$

 \implies the rank-width parse tree [Ganian and PH, 08]:
Parse trees for rank-decompositions

Unlike for tree- or clique-decompositions with obvious parse trees, what is the “boundary” and “join” operation for rank-width?

Our “boundary” includes all vertices, and “join” is just an implicit matrix rank.

• **Bilinear product** approach of [Courcelle and Kanté, 07]:

 – *boundary* \(\sim\) labeling \(\text{lab} : V(G) \rightarrow 2^{\{1,2,\ldots,t\}}\) (multi-colouring),

 – *join* \(\sim\) bilinear form \(g\) over \(GF(2)^t\) (i.e. “odd intersection”) s.t.

 \[\text{edge } uv \iff \text{lab}(u) \cdot g \cdot \text{lab}(v) = 1.\]

• Join \(\rightarrow\) a composition operator with relabelings \(f_1, f_2\);

 \[
 (G_1, \text{lab}^1) \otimes [g \mid f_1, f_2] (G_2, \text{lab}^2) = (H, \text{lab})
 \]

 \(\implies\) the rank-width **parse tree** [Ganian and PH, 08]:

 \(t\)-labeling parse tree for \(G\) \(\iff\) rank-width of \(G \leq t.\)
Parse trees for rank-decompositions

Unlike for tree- or clique-decompositions with obvious parse trees, what is the “boundary” and “join” operation for rank-width?

Our “boundary” includes all vertices, and “join” is just an implicit matrix rank.

- **Bilinear product** approach of [Courcelle and Kanté, 07]:
 - boundary ~ labeling \(\text{lab} : V(G) \to 2^{\{1,2,\ldots,t\}} \) (multi-colouring),
 - join ~ bilinear form \(g \) over \(GF(2)^t \) (i.e. “odd intersection”) s.t. \(\text{edge } uv \leftrightarrow \text{lab}(u) \cdot g \cdot \text{lab}(v) = 1. \)

- Join \(\to \) a composition operator with relabelings \(f_1, f_2; \)
 \[
 (G_1, \text{lab}^1) \otimes [g \mid f_1, f_2] \ (G_2, \text{lab}^2) = (H, \text{lab})
 \]

 \(\implies \) the rank-width parse tree [Ganian and PH, 08]:
 - \(t \)-labeling parse tree for \(G \) \iff rank-width of \(G \leq t. \)

- Independently considered related notion of \(R_t \)-join decompositions by [Bui-Xuan, Telle, and Vatshelle, 08].
A parse tree. An example generating the cycle C_5 (of rank-width 2):

\[
\begin{array}{c}
\otimes[id | \cdot, \cdot] \\
\otimes[id | id, 1 \rightarrow \emptyset] \\
\otimes[id | id, 1 \rightarrow 2] \\
\otimes[id | 1 \rightarrow 2, id] \\
\end{array}
\]

\[
\begin{array}{c}
\circ a \\
\circ b \\
\circ c \\
\circ d \\
\circ e \\
\end{array}
\]

\[
\begin{array}{c}
d \{1\} \\
e \{1\} \\
b \{1\} \\
\rightarrow \\
\end{array}
\]

\[
\begin{array}{c}
c \{1\} \\
e \{1\} \\
a \{1\} \\
\rightarrow \\
\end{array}
\]

\[
\begin{array}{c}
d \{2\} \\
e \{1\} \\
a \{1\} \\
\rightarrow \\
\end{array}
\]

\[
\begin{array}{c}
d \{2\} \\
e \{1\} \\
a \{1\} \\
\rightarrow \\
\end{array}
\]

\[
\begin{array}{c}
c \{2\} \\
e \{1\} \\
a \{1\} \\
\rightarrow \\
\end{array}
\]

\[
\begin{array}{c}
d \\
\rightarrow \\
\end{array}
\]

\[
\begin{array}{c}
C_5 \\
\end{array}
\]
4 \textbf{#SAT – our Sample Application}

- \textit{#SAT} – counting satisfying assignments of a CNF formula, a well-known \#P-hard problem.
4 #SAT – our Sample Application

- **#SAT** – counting satisfying assignments of a CNF formula, a well-known \#P-hard problem.

- FPT solutions on *formulas of bounded *-width*:
 - [Fisher, Makowsky, and Ravve, 08] – tree-width and clique-width,
 - [Samer and Szeider, 10] – tree-width improved.
4 #SAT – our Sample Application

- **#SAT** – counting satisfying assignments of a CNF formula, a well-known \#P-hard problem.

- FPT solutions on *formulas of bounded *-width*:
 - [Fisher, Makowsky, and Ravve, 08] – tree-width and clique-width,
 - [Samer and Szeider, 10] – tree-width improved.

- On the other hand...

Quote. [Samer and Szeider, 10] – regarding #SAT and *clique-width*:

... A single-exponential algorithm (for #SAT) is due to Fisher, Makowsky, and Ravve. However, both algorithms rely on clique-width approximation algorithms. The known polynomial-time algorithms for that purpose admit an exponential approximation error and are of limited practical value.
4 \textbf{#SAT – our Sample Application}

- \textbf{#SAT} – counting satisfying assignments of a CNF formula, a well-known \#P-hard problem.

- FPT solutions on \textit{formulas of bounded *-*width}:
 - [Fisher, Makowsky, and Ravve, 08] – tree-width and clique-width,
 - [Samer and Szeider, 10] – tree-width improved.

- On the other hand. . .

\textbf{Quote.} [Samer and Szeider, 10] – regarding \#SAT and \textit{clique-width}:

\ldots\ A single-exponential algorithm (for \#SAT) is due to Fisher, Makowsky, and Ravve. However, both algorithms rely on clique-width approximation algorithms. The known polynomial-time algorithms for that purpose admit an exponential approximation error and are of limited practical value.

\textbf{Where is the problem?}

A resulting \textbf{double-exponential} worst-case dependency on a width estimate!
The problem, again

Quote. [Samer and Szeider, 10] – regarding #SAT and *clique-width*:

A single-exponential algorithm (for #SAT) is due to Fisher, Makowsky, and Ravve. However, both algorithms rely on clique-width approximation algorithms. The known polynomial-time algorithms for that purpose admit an exponential approximation error and are of limited practical value.

Our answer – considering *rank-width*:
The problem, again

Quote. [Samer and Szeider, 10] – regarding \#SAT and *clique-width*:

A single-exponential algorithm (for \#SAT) is due to Fisher, Makowsky, and Ravve. However, both algorithms rely on clique-width approximation algorithms. The known polynomial-time algorithms for that purpose admit an exponential approximation error and are of limited practical value.

Our answer – considering *rank-width*:

- No loss in the promised width, and yet single-exponential in it.
The problem, again

Quote. [Samer and Szeider, 10] – regarding \#SAT and clique-width:

A single-exponential algorithm (for \#SAT) is due to Fisher, Makowsky, and Ravve. However, both algorithms rely on clique-width approximation algorithms. The known polynomial-time algorithms for that purpose admit an exponential approximation error and are of limited practical value.

Our answer – considering rank-width:

• No loss in the promised width, and yet single-exponential in it.
• A clear and rigorous algorithm employing many of the above tricks.

Theorem. [Ganian, PH, Obdržálek, 10] \#SAT solved in FPT time

\[O(t^3 \cdot 2^{3t(t+1)/2} \cdot |\phi|) \]

where \(t \) is the signed rank-width of the input instance (CNF formula) \(\phi \).
Signed graphs of CNF formulas

- The common way to measure structure / width of a formula:

 \[
 \text{vertices} \ := \ V \cup C \quad \text{variables and clauses of } \phi.
 \]
Signed graphs of CNF formulas

- The common way to measure structure / width of a formula:

 vertices := $V \cup C$ variables and clauses of ϕ.

 edges := $E^+ \cup E^-$ where

 \[x_i c_j \in E^+ \text{ if } c_j = (\cdots \lor x_i \ldots) \in C, \text{ and} \]
 \[x_i c_j \in E^- \text{ if } c_j = (\cdots \lor \neg x_i \ldots) \in C. \]
Signed graphs of CNF formulas

- The common way to measure structure / width of a formula:

 vertices \(:= V \cup C \) \(\) variables and clauses of \(\phi \).

 edges \(:= E^+ \cup E^- \) where

 \(x_i c_j \in E^+ \) if \(c_j = (\cdots \lor x_i \cdots) \in C \), and

 \(x_i c_j \in E^- \) if \(c_j = (\cdots \lor \neg x_i \cdots) \in C \).

- Signed clique-width – using distinct operations for \(E^+ \) and \(E^- \) (ordinary clique-width is not enough!).
Signed graphs of CNF formulas

• The common way to measure structure/width of a formula:

 vertices := $V \cup C$ variables and clauses of ϕ.

 edges := $E^+ \cup E^-$ where

 $x_i c_j \in E^+$ if $c_j = (\cdots \lor x_i \cdots) \in C$, and
 $x_i c_j \in E^-$ if $c_j = (\cdots \lor \neg x_i \cdots) \in C$.

• Signed clique-width – using distinct operations for E^+ and E^-
 (ordinary clique-width is not enough!).

• Signed rank-width – using separate joins for E^+ and E^-, formally
 $G = G^+ \cup G^-$ on the same vertex set (sim. bi-rank-width).
Signed graphs of CNF formulas

The common way to measure structure/width of a formula:

- **vertices**: $V \cup C$ variables and clauses of ϕ.
- **edges**: $E^+ \cup E^-$ where

 $x_i c_j \in E^+$ if $c_j = (\cdots \lor x_i \ldots) \in C$, and
 $x_i c_j \in E^-$ if $c_j = (\cdots \lor \neg x_i \ldots) \in C$.

- **Signed clique-width** – using distinct operations for E^+ and E^- (ordinary clique-width is not enough!).

- **Signed rank-width** – using separate joins for E^+ and E^-, formally

 $G = G^+ \cup G^-$ on the same vertex set (sim. bi-rank-width).

Then

$$G_1 \oplus G_2 = (G_1^+ \oplus G_2^+) \cup (G_1^- \oplus G_2^-)$$

and the same decomposition is used.
The canonical equivalence for SAT

- Corresp. $G = G[\phi]$ signed graph $\leftrightarrow \phi = \phi[G]$ CNF formula.
The canonical equivalence for SAT

• Corresp. \(G = G[\phi] \) signed graph \(\iff \phi = \phi[G] \) CNF formula.

• Valuation \(\nu_G : V \to \{0, 1\} \).
The canonical equivalence for SAT

- Corresp. \(G = G[\phi] \) signed graph \(\iff \phi = \phi[G] \) CNF formula.
- Valuation \(\nu_G : V \to \{0, 1\} \).
- The canonical equivalence: \((G_1, \nu_1) \approx_{SAT,t} (G_2, \nu_2) \) iff, for all \((H, \nu_H)\),

\[
\nu_1 \cup \nu_H \models \phi[G_1 \otimes H] \iff \nu_2 \cup \nu_H \models \phi[G_2 \otimes H].
\]
The canonical equivalence for SAT

• Corresp. \(G = G[\phi] \) signed graph \(\iff \phi = \phi[G] \) CNF formula.

• Valuation \(\nu_G : V \to \{0, 1\} \).

• The canonical equivalence: \((G_1, \nu_1) \approx_{SAT,t} (G_2, \nu_2)\) iff, for all \((H, \nu_H)\),

\[
\nu_1 \cup \nu_H \models \phi[G_1 \otimes H] \iff \nu_2 \cup \nu_H \models \phi[G_2 \otimes H].
\]

Proposition. \((G_1, \nu_1) \approx_{SAT,t} (G_2, \nu_2)\) if the foll. equal for \((G_i, \nu_i), i = 1, 2:\)

– the set of \(G_i^+\)-labels occuring at true (under \(\nu_i\)) variables,
The canonical equivalence for SAT

- Corresp. $G = G[\phi]$ signed graph $\iff \phi = \phi[G]$ CNF formula.

- Valuation $\nu_G : V \to \{0, 1\}$.

- The canonical equivalence: $(G_1, \nu_1) \approx_{SAT,t} (G_2, \nu_2)$ iff, for all (H, ν_H),

 $$\nu_1 \cup \nu_H \models \phi[G_1 \otimes H] \iff \nu_2 \cup \nu_H \models \phi[G_2 \otimes H].$$

Proposition. $(G_1, \nu_1) \approx_{SAT,t} (G_2, \nu_2)$ if the foll. equal for (G_i, ν_i), $i = 1, 2$:

- the set of G_i^+-labels occurring at true (under ν_i) variables,
- analog., the set of G_i^--labels of false (under ν_i) variables, and
The canonical equivalence for SAT

- Corresp. \(G = G[\phi] \) signed graph \(\iff \phi = \phi[G] \) CNF formula.

- Valuation \(\nu_G : V \to \{0, 1\} \).

- The canonical equivalence: \((G_1, \nu_1) \approx_{\text{SAT}, t} (G_2, \nu_2)\) iff, for all \((H, \nu_H)\),
 \[
 \nu_1 \cup \nu_H \models \phi[G_1 \otimes H] \iff \nu_2 \cup \nu_H \models \phi[G_2 \otimes H].
 \]

Proposition. \((G_1, \nu_1) \approx_{\text{SAT}, t} (G_2, \nu_2) \) if the foll. equal for \((G_i, \nu_i)\), \(i = 1, 2\):

- the set of \(G^+_i \)-labels occurring at true (under \(\nu_i \)) variables,
- analog., the set of \(G^-_i \)-labels of false (under \(\nu_i \)) variables, and
- the set of pair labels of all unsatisfied (under \(\nu_i \)) clauses of \(\phi[G_i] \).
The canonical equivalence for SAT

- Corresp. \(G = G[\phi] \) signed graph \(\iff \phi = \phi[G] \) CNF formula.

- Valuation \(\nu_G : V \to \{0, 1\} \).

- The canonical equivalence: \((G_1, \nu_1) \approx_{\text{SAT}, t} (G_2, \nu_2)\) iff, for all \((H, \nu_H)\),
 \[
 \nu_1 \cup \nu_H \models \phi[G_1 \otimes H] \iff \nu_2 \cup \nu_H \models \phi[G_2 \otimes H].
 \]

Proposition. \((G_1, \nu_1) \approx_{\text{SAT}, t} (G_2, \nu_2)\) if the foll. equal for \((G_i, \nu_i)\), \(i = 1, 2\):

- the set of \(G_i^+\)-labels occurring at true (under \(\nu_i\)) variables,
- analog., the set of \(G_i^-\)-labels of false (under \(\nu_i\)) variables, and
- the set of pair labels of all unsatisfied (under \(\nu_i\)) clauses of \(\phi[G_i]\).

Easy to prove..., but does it help?

Subsets of labels from \(2^{\{1,2,\ldots,t\}}\) \(\longrightarrow\) \(\Omega(2^{2^t})\) classes!
Getting coarser equivalences for SAT

We improve the runtime with the following two main tricks:
Getting coarser equivalences for SAT

We improve the runtime with the following two main tricks:

- **Linear algebra:**

 Subset of labels \rightarrow the \emph{spanning subspace} in $GF(2)^t$.
Getting coarser equivalences for SAT

We improve the runtime with the following two main tricks:

- **Linear algebra:**
 Subset of labels \rightarrow the *spanning subspace* in $GF(2)^t$.

Theorem. [Goldman and Rota, 69] The number of subspaces of $GF(2)^t$ is

$$S(t) \leq 2^{t(t+1)/4} \text{ for all } t \geq 12.$$
Getting coarser equivalences for SAT

We improve the runtime with the following two main tricks:

- **Linear algebra:**
 Subset of labels \rightarrow the *spanning subspace* in $GF(2)^t$.

Theorem. [Goldman and Rota, 69] The number of subspaces of $GF(2)^t$ is

$$S(t) \leq 2^{t(t+1)/4} \text{ for all } t \geq 12.$$

- **Expectation:**
 Labels of unsat. clauses \rightarrow *expected labels* of variables in H,
 and the subspace trick once again.
Getting coarser equivalences for SAT

We improve the runtime with the following two main tricks:

- **Linear algebra**:
 Subset of labels \rightarrow the *spanning subspace* in $GF(2)^t$.

Theorem. [Goldman and Rota, 69] The number of subspaces of $GF(2)^t$ is
$$S(t) \leq 2^{t(t+1)/4}$$
for all $t \geq 12$.

- **Expectation**:
 Labels of unsat. clauses \rightarrow *expected labels* of variables in H,
 and the subspace trick once again.

In other words, $\approx_{SAT,t}$ “suitably restricted” to (H, ν_H)’s of the expected label subspaces of its false and true variables. . .
Getting coarser equivalences for SAT

We improve the runtime with the following two main tricks:

- **Linear algebra:**

 Subset of labels \rightarrow the *spanning subspace* in $GF(2)^t$.

 Theorem. [Goldman and Rota, 69] The number of subspaces of $GF(2)^t$ is

 $$S(t) \leq 2^{t(t+1)/4}$$

 for all $t \geq 12$.

- **Expectation:**

 Labels of unsat. clauses \rightarrow *expected labels* of variables in H,

 and the subspace trick once again.

 In other words, $\approx_{SAT,t}$ “suitably restricted” to (H, ν_H)’s of the *expected*
 label subspaces of its false and true variables.

Conclusion. Breaking the satisfying assignments of ϕ into $S(t)^4$ classes,

and processing a node of the parse tree in $O^*(S(t)^6)$.
5 Final remarks

Our talk suggests (tries to, at least) the following research directions... as ordered from the very general one to the very concrete example:
5 Final remarks

Our talk suggests (tries to, at least) the following research directions... as ordered from the very general one to the very concrete example:

- The use of *Myhill–Nerode type congruences* in dynamic progr. alg. design

 - can give very rigorous proofs for algorithms (almost for free), and
5 Final remarks

Our talk suggests (tries to, at least) the following research directions... as ordered from the very general one to the very concrete example:

- The use of *Myhill–Nerode type congruences* in dynamic progr. alg. design
 - can give very rigorous proofs for algorithms (almost for free), and
 - immediately provides a rather simple test of “what is possible”.
5 Final remarks

Our talk suggests (tries to, at least) the following research directions... as ordered from the very general one to the very concrete example:

- The use of *Myhill–Nerode type congruences* in dynamic progr. alg. design
 - can give very *rigorous proofs* for algorithms (almost for free), and
 - immediately provides a rather simple test of “*what is possible*”.

- *Rank-width* to be used in place of *clique-width* in param. algorithms.
5 Final remarks

Our talk suggests (tries to, at least) the following research directions... as ordered from the very general one to the very concrete example:

- The use of Myhill–Nerode type congruences in dynamic progr. alg. design
 - can give very rigorous proofs for algorithms (almost for free), and
 - immediately provides a rather simple test of “what is possible”.

- Rank-width to be used in place of clique-width in param. algorithms.

- Rank-width is useful for variants of SAT via the signed graph.
5 Final remarks

Our talk suggests (tries to, at least) the following research directions... as ordered from the very general one to the very concrete example:

- The use of *Myhill–Nerode type congruences* in dynamic progr. alg. design
 - can give very *rigorous proofs* for algorithms (almost for free), and
 - immediately provides a rather simple test of “what is possible”.

- *Rank-width* to be used in place of *clique-width* in param. algorithms.

- Rank-width is useful for variants of *SAT* via the *signed graph*.

THANK YOU FOR YOUR ATTENTION