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Abstract. We study the parameterized complexity of the following problem: is it
possible to make a given graph r-regular by applying at most k elementary editing
operations; the operations are vertex deletion, edge deletion, and edge addition.
We also consider more general annotated variants of this problem, where vertices
and edges are assigned an integer cost and each vertex v has assigned its own de-
sired degree δ(v) ∈ {0, . . . , r}. We show that both problems are fixed-parameter
tractable when parameterized by (k, r), but W [1]-hard when parameterized by k
alone. These results extend our earlier results on problems that are defined simi-
larly but where edge addition is not available. We also show that if edge addition
and/or deletion are the only available operations, then the problems are solvable
in polynomial time. This completes the classification for all combinations of the
three considered editing operations.

1 Introduction

Deciding whether a given graph has a regular subgraph is a well studied problem.
Chvátal et al. [5] give one of the earliest results, showing that the CUBIC SUBGRAPH
problem is NP-complete. Plesnı́k [17] proves that it remains NP-complete even when
restricted to a planar bipartite graph with maximum degree 4. In the same paper he
also shows that the r-REGULAR SUBGRAPH problem for r ≥ 3 is NP-complete even
on bipartite graphs of degree at most r + 1. Cheah and Corneil [4] show that a similar
result holds for general graphs of degree at most r + 1. A series of results for further
constraints is given by Stewart [18–20]. Bodlaender et al. [2] give a polynomial-time
algorithm for producing a ∆-regular supergraph of a graph with maximum degree ∆,
using at most ∆+2 additional vertices. Moser and Thilikos [15] give a series of results
for certain parameterized versions, showing that when parameterized by the size of the
regular subgraph, the problem is W [1]-hard, but when parameterized by both the num-
ber k of vertices to remove to make the graph regular and the regularity r, the problem
is fixed-parameter tractable. In previous work [14] we show that when parameterized
by k alone, the problem is W [1]-hard (a question left open by Moser and Thilikos).
We also introduce a generalized version of the problem where vertices and edges are
weighted, and each vertex has a degree function that specifies the number of edges to
be incident on the vertex, rather than simply a fixed number for all vertices. When
parameterized by the number k of edges and vertices to remove to obtain the regular
graph, the problem is W [1]-hard, but when parameterized by k and the bound r on the



degree function, the problem is fixed-parameter tractable. Interestingly the latter result
improves that of Moser and Thilikos even though it is generalized, and additionally
allows edge deletion.

In this paper we extend the editing operations available to include edge addition
besides vertex and edge deletion (see Section 2.1 for precise definitions), thus giving
the following problems.

EDIT TO REGULAR GRAPH
Instance: A graph G = (V,E), two nonnegative integers k and r.
Question: Is there an r-regular graph H obtainable from G by at most k edit
operations?

WEIGHTED EDIT TO CHOSEN DEGREE GRAPH
Instance: A graphG = (V,E), nonnegative integers k and r, a weight function
ρ : V ∪ E → {1, . . . , k + 1} and a degree function δ : V → {0, . . . , r}.
Question: Is there a graphH obtainable fromG by edit operations of total cost
at most k such that

∑
e∈E(v) ρ(e) = δ(v) holds for each vertex in H?

Variants of the above two problems with only one or two of the three editing operations
available are defined similarly.

We previously demonstrated [14] that these two problems are W [1]-hard when pa-
rameterized by k. In this paper we complete the classification and show that they are
both fixed-parameter tractable with parameter (k, r). We also give a simpler proof that
the weighted edit problem is W [1]-hard when parameterized by k alone, via the W [1]-
hardness of the related subproblem EDGE REPLACEMENT SET (see Section 4). We
also prove that EDGE REPLACEMENT SET is NP-complete, giving an indication that
a polynomial-time kernelization of the form previously used for the deletion version
of the problems is unlikely to exist for the edit version. Additionally, we show that
WEIGHTED EDGE EDIT TO CHOSEN DEGREE GRAPH, and the unweighted counter-
part EDGE EDIT TO REGULAR GRAPH, where the edit operations are edge addition
and deletion, both have polynomial-time algorithms. The results are summarized in
Table below.

2 Preliminaries

2.1 Graph Modification

Graph modification or graph editing problems are widespread throughout the literature
appearing in various forms in such areas as bioinformatics [6], electronic commerce [9]
and graph theory [1]. Three fundamental operations for graph editing are edge dele-
tion, vertex deletion and edge addition. For any combination of these three operations
Cai [3] demonstrates fixed-parameter tractability for graph properties with finitely many
obstructions in the induced order.

In this paper we consider simple, undirected graphs (whether weighted or un-
weighted). The edge between two vertices u and v is denoted uv (or equivalently vu).
The degree of a vertex u is denoted d(u).
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Problem Operations Parameter
k (k, r)

Uniform

v W [1]-hard† FPT‡†

e+v W [1]-hard† FPT†

v+a W [1]-hard† FPT∗

e+v+a W [1]-hard∗† FPT∗

a P¶∗ P¶∗

e P¶∗ P¶∗

e+a P∗ P∗

Annotated

v W [1]-hard† FPT†

e+v W [1]-hard† FPT†

v+a W [1]-hard† FPT∗

e+v+a W [1]-hard∗† FPT∗

a P¶∗ P¶∗

e P¶∗ P¶∗

e+a P∗ P∗

ERS W [1]-hard∗ FPT∗

Results shown in: ∗ this paper, ‡ [15], † [14],
¶ follows from results on f -factors [13].
The editing operations are codified as ‘e’ - edge
deletion, ‘v’ - vertex deletion and ‘a’ - edge ad-
dition. The ‘uniform’ version of the problem is
where all vertices and edges have weight 1 and
the desired graph is r-regular.
The final row indicates the complexity of EDGE

REPLACEMENT SET.

The following operations alter a graphG = (V,E) into a new graphG′ = (V ′, E′).
Deleting an edge uv simply removes that edge from the graph (i.e., E′ = E \ {uv},
and V ′ = V ). Deleting a vertex u removes that vertex and all incident edges (i.e.,
V ′ = V \ {u}, E′ = E \ {uv | v ∈ V }). Adding an edge uv of course inserts an edge
between u and v (i.e., E′ = E ∪ {uv}, V ′ = V ).

In this paper we also consider weighted versions of these operations, which are
defined similarly. Given a weighted edge or vertex, the cost of deletion is simply that
weight. Note particularly that the cost of deleting a vertex is the weight of the vertex
alone, not the weight of the vertex plus the weights of the incident edges, even though
they are also removed (this is consistent with the normal definition for unweighted
graphs, where deleting a vertex counts as one step, regardless of any incident edges).
Weighted edge addition works as defined, except where an edge already exists, which in
the unweighted case would prevent addition. In the weighted case however, we simply
increase the weight of the existing edge. Thus, in the presence of edge addition one
needs to consider the weighted and the unweighted variants of a problem separately, as
the former is not just a special case of the latter.

2.2 Basic Parameterized Complexity

Here we introduce some basic, relevant parameterized complexity theory. For a
more in-depth coverage we refer to the books of Downey and Fellows [7], Flum and
Grohe [11] and Niedermeier [16]. When considering the complexity of a problem in a
classical, P vs. NP setting, the only measure available is n, the instance size (or some
function thereof). Parameterized complexity adds a second measure, that of a parame-
ter k, which is given as a special part of the input. If a problem has an algorithm that
runs in time O(f(k)p(n)), where p is a polynomial and f is a computable function of
k, then the problem is fixed-parameter tractable, or in the class FPT. Conversely, the
demonstration of hardness for the class W [t] for some t ≥ 1 gives the intuition that
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the problem is unlikely to be fixed-parameter tractable. This is analogous to a problem
being NP-hard in the classical set-up. For the sake of clarity any problem is understood
to be a decision problem unless explicitly stated otherwise (and the parameterized com-
plexity classes that are referenced are defined for decision problems).

Demonstration of W [t]-hardness is normally done via an FPT reduction, which is
the parameterized complexity equivalent of a polynomial-time many-one reduction in
classical complexity theory. Given two parameterized problems Π1 and Π2, an FPT
reduction Π1 ≤FPT Π2 is a mapping from Π1 to Π2 that maps an instance (I, k) of
Π1 to an instance (I ′, k′) of Π2 such that (i) k′ = h(k) for some computable function
h, (ii) (I, k) is a YES-instance of Π1 if and only if (I ′, k′) is a YES-instance of Π2 and
(iii) the mapping can be computed in time O(f(k)p(|I|)), where f is some computable
function of the parameter k alone and p is a polynomial.

Then if Π2 is in FPT, so is Π1, and if Π1 is W [t]-hard, so is Π2.
The classes W [t], t = 1, 2, . . ., are defined as the classes of problems that can be

FPT-reduced to certain weighted satisfiability problems. The classes form the chain
FPT ⊆ W [1] ⊆ W [2] ⊆ . . ., where all inclusions are believed to be strict (Flum and
Grohe [11] in particular give detailed coverage of this hierarchy) .

Reduction to a problem kernel, or kernelization, is one of the fundamental tech-
niques for developing fixed-parameter tractable algorithms, and thus for demonstrating
FPT membership. A problem is kernelizable if, given an instance (I, k) of the prob-
lem, where I is the input and k is the parameter, it is possible to produce in polynomial
time an instance (I ′, k′) where |I ′| ≤ g(k′) and k′ = h(k) for computable functions
g and h, and (I, k) is a YES-instance if and only if (I ′, k′) is a YES-instance. It can
be shown that a problem is kernelizable in this sense if and only if it is fixed-parameter
tractable. Kernelization is normally accomplished by the application of reduction rules
to the instance. Further explanation of the theory can be found in Estivill-Castro et al.’s
paper [10].

3 Easy Cases

Before moving to the general versions of the considered problems, let us examine re-
stricted versions where only edge editing operations are allowed; we may not delete any
vertices.

If only one of the operations is available, then the problems (weighted and uniform)
can easily be seen to correspond the well-known polynomially solvable f -factor prob-
lem [13]. Although the f -factor problem does not explicitly include editing operations,
edge deletions are dealt with implicitly as any f -factor of a graph has the same number
of edges, we need merely then to compare the difference between this number and the
total number of edges with the parameter. When the operation is edge addition, we
simply use the complement of the input graph instead and modify the degree function
appropriately. However it is not immediately apparent that these techniques may be di-
rectly applied to the case where we allow both edge addition and edge deletion. Hence
we shall give a general construction for solving the WEIGHTED EDGE EDIT TO CHO-
SEN DEGREE GRAPH problem by application of Edmond’s minimum weight perfect
matching algorithm [13, 8].
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Let G, k be an instance of WEIGHTED EDGE EDIT TO CHOSEN DEGREE GRAPH.
By allowing edge weights of 0, we may assume thatG is a complete graph. Now solving
the problem is clearly equivalent to finding an edge weight function ρ′ : E(G) →
{0, 1, 2, . . . } of G such that for each v ∈ V (G) we have

∑
vv′∈E(G) ρ

′(vv′) = δ(v)
and the cost of ρ′,

∑
vv′∈E(G) |ρ(vv′)− ρ′(vv′)|, is at most k.

We construct a graph H with edge-weight function η as follows: For each vertex v
of G we introduce in H a set V (v) of δ(v) vertices. For each edge vv′ ∈ E(G) we add
the following vertices and edges to H ′.

1. We add two sets Vdel(v, v′) and Vdel(v′, v) of vertices, each of size ρ(vv′).
2. We add two sets Vadd(v, v′) and Vadd(v′, v) of vertices, each of size

min(δ(v), δ(v′)).
3. We add all edges uw for u ∈ V (v) and w ∈ Vdel(v, v′) ∪ Vadd(v, v′), and all edges
uw for u ∈ V (v′) and w ∈ Vdel(v′, v) ∪ Vadd(v′, v).

4. We add edges that form a matching Mvv′ between the sets Vdel(v, v′) and
Vdel(v′, v). We will refer to these edges as deletion edges.

5. We add edges that form a matching M ′
vv′ between the sets Vadd(v, v′) and

Vadd(v′, v) and subdivide the edges of M ′
vv′ twice, that is, we replace xy ∈ M ′

vv′

by a path x, xy, yx, y where xy and yx are new vertices. We will refer to the edges
of the form xyyx as addition edges.

This completes the construction of H . It remains to assign deletion and addition
edges e the weight η(e) = 1, and all other edges the weight 0. It can be verified that
(G, k) a yes-instance of WEIGHTED EDGE EDIT TO CHOSEN DEGREE GRAPH if and
only if H perfect matching of weight at most k, but owing to space restrictions, we
omit the proof. If we remove the addition (deletion) edges from H , then we also have
a construction that can be used to solve the edge deletion (addition) problem. Naturally
this construction allows solutions for the uniform versions of the problems as well, as a
subcase.

4 A Thorn in the Paw

Previously [14] we demonstrated the following result:

Theorem 1. WEIGHTED DELETION TO CHOSEN DEGREE GRAPH is fixed parameter
tractable for parameter (k, r).

This was shown by reduction to problem kernel, with a kernel of sizeO(kr(k+r)). It is
interesting to note that the result holds not only for DELETION TO REGULAR GRAPH,
but also for WEIGHTED VERTEX DELETION TO CHOSEN DEGREE GRAPH, and that
the generalization gives a smaller kernel than by using a similar method without the
annotation.

Naturally we would like to achieve a similar result for the edit versions of the prob-
lems. However the kernelization for deletion problems heavily relies on the fact that if
we delete a vertex in a clean region (defined below) or an edge incident with a vertex
in a clean region, then we must delete the entire clean region. Consequently, we can
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shrink large clean regions as their specific structure is not relevant. This reasoning fails
for editing problems where edge addition is allowed.

We prove in Section 5 that the edit version is indeed fixed-parameter tractable for
(k, r), but obtaining a kernel is difficult, at least when approached in a similar manner
to the previous investigation. Note that demonstration of fixed-parameter tractability
guarantees that some kernelization exists, what we show here is that it is unlikely to
take a certain (useful) form.

Firstly it is useful to define the notion of a clean region (first introduced by Moser
and Thilikos [15]). Given a graph G = (V,E), a function δ : V → {0, . . . , r}, and a
function ρ : V ∪E → {1, 2, 3, . . . }, we say a vertex v is clean if

∑
e∈E(v) ρ(e) = δ(v),

where E(v) denotes the set of edges incident on v. Then a clean region is a maximal
connected subgraph of clean vertices. In the case where the graph is unweighted, we
implicitly assume that δ(v) = r for all v ∈ V and ρ(x) = 1 for all x ∈ V ∪ E.

In both EDIT TO REGULAR GRAPH and WEIGHTED EDIT TO CHOSEN DEGREE
GRAPH it may be necessary to delete a set of vertices from clean regions so that the
edges that become available may be used to complete the degree of a vertex of insuffi-
cient degree (indeed there are easily constructable instances where this is the only way
to solve the instance). This gives the following sub-problem:

EDGE REPLACEMENT SET
Instance: A graph G = (V,E), two positive integers k and t.
Question: Does there exist a set X ⊆ V such that |X| ≤ k and there are
exactly t edges between vertices in X and vertices in V \X?

Unfortunately, EDGE REPLACEMENT SET is NP-complete, thus making the possibility
of obtaining a kernel in polynomial time by somehow identifying all relevant sets in the
clean regions unlikely. The proof is by reduction from the following:

REGULAR CLIQUE
Instance: An r-regular graph G = (V,E), a positive integer k.
Question: Does G contain a clique on k vertices?

REGULAR CLIQUE is NP-complete, and W [1]-complete for parameter k, but fixed-
parameter tractable for parameter (k, r). We refer to previous work [14] for a detailed
proof of these statements.

The proof of the following theorem requires that the regularity r of the input graph
in the REGULAR CLIQUE instance be sufficiently large. It is possible to construct a “fix-
ing gadget” that allows the degree of each vertex to be increased effectively arbitrarily,
without introducing any non-trivial cliques. We refer again to previous work [14], and
particularly to the proof of Lemma 3.1 contained therein for proof of this claim.

Theorem 2. EDGE REPLACEMENT SET is NP-complete and W [1]-hard for parame-
ter k.

Proof. We shall concentrate on theW [1]-hardness proof; the NP-hardness follows from
the same result.

Let (G = (V,E), k) be an instance of REGULAR CLIQUE where G is r-regular.
We may assume that r is not bounded in terms of k, since REGULAR CLIQUE is fixed-
parameter tractable for parameter (k, r). For a set X ⊆ V let d(X) denote the number
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of edges uv ∈ E with u ∈ X and v ∈ V \ X . If X forms a clique in G then
d(X) = k(r − k + 1). Therefore we put t = k(r − k + 1) and consider (G, k, t) as an
instance of EDGE REPLACEMENT SET.

Let X ⊆ V with |X| ≤ k and d(X) = t. We show that X has exactly k elements
and forms a clique in G. Assume for the sake of contradiction that |X| < k. It follows
that d(X) ≤ |X|r and consequently r < r(k − |X|) ≤ k2 − k. This contradicts the
assumption that r is not bounded in terms of k. Hence we conclude |X| = k. Each
vertex x ∈ X has at most k − 1 neighbors in X and at least r − k + 1 neighbors in
V \ X . Therefore, if at least one x ∈ X had fewer than k − 1 neighbors in X , then
d(X) > k(r − k + 1) = t. Since d(X) = t, it follows that X is a clique in G. �

As the weighted edit problem contains EDGE REPLACEMENT SET as a subproblem
we also have the following result:

Corollary 1. WEIGHTED EDIT TO CHOSEN DEGREE GRAPH is W [1]-hard for pa-
rameter k.

This can be observed by considering the following simple construction: an isolated
vertex with ρ(v) = k + 1 and δ(v) = t ≤ r, along with a clique on y vertices inside
a clean region, where each clique vertex has t/y ‘outgoing’ edges, low weight, and
k ≥ y+ t. We cannot delete the isolated vertex, but the deleting the clique will give the
requisite number of edges to ‘fix’ the isolated vertex.

Thus this proof demonstrates that a polynomial-time kernelization which relies
upon identifying such candidate sets for deletion is unlikely to exist. Note also that
the proof holds if we also demand in EDIT TO REGULAR GRAPH that the set X is
connected.

5 Editing is Fixed Parameter Tractable for Parameter (k, r)

To demonstrate that EDIT TO REGULAR GRAPH is fixed-parameter tractable we take
a logical approach and apply the following meta-theorem which is due to Frick and
Grohe [12].

Theorem 3 ([12]). Let C be a polynomial-time decidable class of structures of effec-
tively bounded local tree-width. Then the model checking problem for first-order logic
on the classC is fixed-parameter tractable parameterized by the length of the first-order
formula.

More particularly we use their corollary that the parameterized model checking problem
for first-order logic is fixed-parameter tractable for graphs of bounded degree. Stew-
art [21] pointed out that this result also holds if the degree bound is not global but
depends on the parameter. Furthermore he indicated how this can be used to show that
REGULAR SUBGRAPH with parameter (k, r) is fixed-parameter tractable. In the follow-
ing we extend this approach to EDIT TO REGULAR GRAPH and further to WEIGHTED
EDIT TO CHOSEN DEGREE GRAPH.

First we introduce the following reduction rule, used previously [14, 15], that
reduces an instance (G, (k, r)) of EDIT TO REGULAR GRAPH to another instance
(G′, (k′, r′)) of EDIT TO REGULAR GRAPH with bounded degree:
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Reduction Rule 1: If there exists a vertex v in G where d(v) > k + r, then G′ =
G[V (G) \ {v}], k′ = k − 1 and r′ = r.

Therefore if we can formulate sentences φk, k ≥ 0, of first-order logic such that
φk is true for a graph G if and only if (G, k) is a YES-instance of EDIT TO REGULAR
GRAPH, then we have established fixed-parameter tractability of EDIT TO REGULAR
GRAPH, since by application of Reduction Rule 1 we have a graph of bounded degree.
Note that the predicates V x, Ey and Ixy mean that x is a vertex, y is an edge, and that
y is incident on x, respectively. Furthermore we write [n] = {1, . . . , n}.

The sentence is defined as

φk =
∨

k′+k′′+k′′′≤k

∃u1, . . . , uk′ , e1, . . . , ek′′ , a1, . . . , ak′′′ , b1, . . . , bk′′′(φ′k ∧ ∀v φ′′k)

where φ′k and φ′′k are defined below. φ′k is the conjunction of the following clauses
(1). . . (4) that ensure that u1, . . . , uk′ represent deleted vertices, e1, . . . ek′′ represent
deleted edges, and ai, bi, 1 ≤ i ≤ k′′′ represent ends of added edges. Note that since
added edges are not present in the given structure we need to express them in terms
vertex pairs.

(1)
∧

i∈[k′] V ui ∧
∧

i∈[k′′]Eei “ui is a vertex, ei is an edge;”
(2)

∧
i∈[k′′′] V ai ∧ V bi ∧ ai 6= bi ∧

∧
j(uj 6= ai ∧ uj 6= bi) “ai and bi are distinct

vertices and not deleted;”
(3)

∧
i∈[k′′′] ∀y(¬Iaiy ∨ ¬Ibiy) “ai and bi are not adjacent;”

(4)
∧

1≤i<j≤k′′(ai 6= bj ∨ aj 6= bi) ∧ (ai 6= aj ∨ bi 6= bj) “the pairs of vertices are
mutually distinct.”

The subformula φ′′k ensures that each vertex v has degree r after editing:

φ′′k = (V v ∧
∧

i∈[k′]

v 6= ui) →
∨

r′, r′′ ∈ [r]
r′ + r′′ = r

∃x1, . . . , xr′ , y1, . . . , yr′′ φ′′′k

where φ′′′k is the conjunction of the following clauses:

(5)
∧

i∈[r′] Ivxi “v is incident with r′ edges;”
(6)

∧
1≤i<j≤r′ xi 6= xj “the edges are all different;”

(7)
∧

i∈[r′],j∈[k′′] xi 6= ej “the edges have not been deleted;”
(8)

∧
i∈[r′],j∈[k′] ¬Iujxi “the ends of the edges have not been deleted;”

(9) ∀x(Ivx→
∨

i∈[r′] x = xi ∨
∨

i∈[k′′] x = ei ∨
∨

i Ixui) “v is not incident with any
further edges except deleted edges;”

(10)
∧

i∈[r′′]

∨
j(yi = aj ∧ v = bj)∨ (yi = bj ∧ v = aj) “v is incident with at least r′′

added edges;”
(11)

∧
j∈[r′′](v = aj →

∨
i yi = bj)∧ (v = bj →

∨
j∈[r′′] yi = aj) “v is incident with

at most r′′ added edges.”

By the above considerations, we have the following.
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Theorem 4. EDIT TO REGULAR GRAPH is fixed-parameter tractable for parameter
(k, r).

If we force k′′ to be zero, then the same sentence suffices to prove that the variant with
only edge addition and vertex deletion is also fixed-parameter tractable for parameter
(k, r). This variant is W [1]-hard for parameter k by a previous result [14].

WEIGHTED EDIT TO CHOSEN DEGREE GRAPH can be classified by a similar ap-
proach, but first we must demonstrate that we can express the ρ and δ functions in first
order logic. To this aim we introduce a series Wi, 1 ≤ i ≤ k + 1, of weight predicates
such that Wix is true for a vertex x if and only if ρ(x) = i, and a series Dj , 0 ≤ j ≤ r,
of degree predicates such that Djx is true for a vertex x if and only if δ(x) = j. We
represent an edge of weight i by i parallel edges.

Hence we can formulate the following sentence to represent solutions of
WEIGHTED EDIT TO CHOSEN DEGREE GRAPH.

ψk =
∨

k′, k′′, k′′′, l1, . . . , lk′ ∈ [k]
l1 + · · · + lk′ + k′′ + k′′′ ≤ k

∧
i∈[k′]

Wli(ui) ∧

∃u1, . . . , uk′ , e1, . . . ek′′ , a1, . . . , ak′′′ , b1, . . . , bk′′′(ψ′
k ∧ ∀v ψ′′

k )

ψ′′
k =

∨
j∈[r]

[(Djv ∧
∧

i∈[k′]

v 6= ui) →
∨

r′, r′′ ∈ [r]
r′ + r′′ = r

∃x1, . . . , xr′∃y1, . . . , yr′′ ψ′′′
k (j)]

The subformula ψ′
k is the conjunction of the above clauses (1) and (2) (we omit (3) and

(4) as we use multiple edges to encode edge weights) and ψ′′′
k (j) is obtained from the

above subformula φ′′′k by setting r to j. Hence, as above, we conclude:

Theorem 5. WEIGHTED EDIT TO CHOSEN DEGREE GRAPH is fixed-parameter
tractable for parameter (k, r).

By similar reasoning as before, this sentence demonstrates the fixed-parameter tractabil-
ity of the variant without edge deletion for parameter (k, r). Again this variant is W [1]-
hard for parameter k by a previous result [14].

6 Conclusion

We demonstrated that when parameterized by (k, r), the editing problems are fixed
parameter tractable, but when parameterized by k, the problems are W [1]-hard. The
only exceptions are when the editing operations are limited to edge addition and/or
deletion, in which case the problems are solvable in polynomial time, thus completing
the classification for all combinations of the three editing operations.

A change in complexity is also apparent when moving from the deletion only prob-
lems to the edit problems.

It seems unlikely that a similar approach as used for the deletion problems can be
used to develop a polynomial-time kernelization for the editing problems. For a feasible
kernelization some new structural insight must be gained.
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