On Theorems Equivalent with Kotzig's Result on Graphs with Unique 1-Factors

Stefan Szeider
Department of Computer Science
University of Toronto
M5S 3G4 Toronto, Ontario, Canada
szeider@cs.toronto.edu

Abstract

We show that several known theorems on graphs and digraphs are equivalent. The list of equivalent theorems include Kotzig's result on graphs with unique 1 -factors, a lemma by Seymour and Giles, theorems on alternating cycles in edge-colored graphs, and a theorem on semicycles in digraphs.

We consider computational problems related to the quoted results; all these problems ask whether a given (di)graph contains a cycle satisfying certain properties which runs through p prescribed vertices. We show that all considered problems can be solved in polynomial time for $p<2$ but are NP-complete for $p \geq 2$.

1. Introduction

We consider several results on graphs and digraphs which all have been shown separately with considerable efforts:

1. Kotzig's theorem on graphs with unique 1-factors [8] (Theorem 1);
2. the main lemma in Seymour's 'Sums of Circuits'-paper [10] (Theorem 2);

3 . theorems on properly colored cycles in edge-colored graphs [6, 15] (Theorems 3 and 4);
4. a theorem on semicycles in digraphs [12] (Theorem 5).

We show that all these theorems are equivalent ${ }^{1}$. Up to now, no pair of these theorems was shown equivalent; in particular, it was believed that Theorem 4 cannot be obtained from Theorems 3 directly (see [15]). However, the following implications have been observed elsewhere:

[^0]- Theorem 2 implies Theorem 1 ([10]);
- Theorem 3 implies Theorem 1 ([6]);
- Theorem 2 implies Theorem 3 (attributed in [14] to B. Jackson).

Moreover, Theorem 4 clearly implies Theorem 3, since the latter is a special case of the former.

Computational problems which arise from the quoted results ask whether (di)graphs contain cycles which satisfy certain properties and run through p specified vertices. We show that these problems can be reduced to each other in polynomial time. Moreover, we show that all these problems can be solved in polynomial time if $p=0$ or $p=1$, and are NP-complete for $p \geq 2$.

2. Notation

All graphs and digraphs considered are finite, simple and contain at least one vertex. For a graph G and $v \in V(G)$ we denote by $E_{G}(v)$ the set of edges of G which are incident with v. Graph theoretic terminology not defined here may be found in $[4,5]$.

3. Graphs with unique 1-factors

A 1-factor (or perfect matching) of a graph G is a set of independent edges $F \subseteq E(G)$ such that every vertex of G is incident with some edge in F. The following is a well-known theorem due to Kotzig [8] (for generalizations, see $[2,7]$).
Theorem 1 (Kotzig). If a graph G has a unique 1-factor F, then G has a bridge which belongs to F.

Let G be a graph, and let F, F^{\prime} be 1-factors of G. The symmetric difference $F \triangle F^{\prime}$ is a vertex disjoint union of F-alternating cycles (i.e., of cycles whose edges are alternately in and out of F), cf. [3]. Hence Theorem 1 can be stated as follows:

Let G be a graph and F a 1-factor of G. If no edge in F is a bridge, then G contains an F-alternating cycle.

By means of Kotzig's theorem one can decide efficiently whether a graph G with given 1-factor F contains some F-alternating cycle (see the proof of Lemma 1 below). It is natural to consider the following generalization of this problem (here, and in all problems presented in the sequel, the integer p is considered as some fixed parameter).

Problem 1. Given a graph G, a 1-factor F of G, and a set X of p vertices; is there an F-alternating cycle in G which runs through all vertices of X ?

We will show that this problem (and several other problems formulated in the sequel) can be solved efficiently if $p<2$, and are NP-complete for $p \geq 2$.

Lemma 1. Problem 1 can be solved in polynomial time for $p<2$.
Proof. For the case $p=1$, let $X=\{v\}$ and let e be the unique edge in $E_{G}(v) \cap F$. Observe that there is an F-alternating cycle C which runs through v if and only if $G-e$ has a 1-factor F_{e}; the latter can be checked in polynomial time by matching algorithms (see, e.g., [9]). If $G-e$ has a 1-factor F_{e}, then we choose the unique cycle C in $F_{e} \triangle F$ such that $e \in E(C)$.

To find any F-alternating cycle $(p=0)$, we proceed similarly as in the case $p=1$: we consider all $e \in E(G)$ and check whether $G-e$ has a 1 -factor. If, however, only existence of F-alternating cycles should be decided, then we can use Kotzig's theorem and proceed as follows. Denote the set of bridges of G by $B(G)$. We put $G_{0}:=G$, and for $i>0$ we obtain G_{i} from G_{i-1} by deletion of the vertices which are incident with edges in $B\left(G_{i-1}\right) \cap F$. We stop as soon as we have either (i) no vertex of G_{n} is incident with some edge in $B\left(G_{n}\right) \cap F$ (i.e., $B\left(G_{n}\right) \cap F=\emptyset$) or (ii) every vertex of G_{n} is incident with some edge in $B\left(G_{n}\right) \cap F$; evidently $n \leq|V(G)|$. In case (i) we conclude by Kotzig's theorem that G_{n} (and so G) contains some F-alternating cycle. In case (ii), G_{n} certainly has no F-alternating cycle, and so G has no F-alternating cycle (for, if G_{i-1} has some F-alternating cycle $C(1 \leq i<n)$, then no vertex of G_{i-1} which is incident with edges in $B\left(G_{i-1}\right) \cap F$ can lie on C; consequently, C is also an F-alternating cycle of G_{i}).

We will show in the final section of this paper that Problem 1 is NP-complete for $p \geq 2$.

4. Seymour and Giles' Theorem

Next we consider a result which is stated as a lemma in Seymour's famous paper on sums of circuits [10]; Seymour attributes this result to him and Giles, and he calls it "the most tricky step" in the proof of the main theorem of [10]. Consider a graph G and $\operatorname{map} \varphi: V(G) \rightarrow E(G)$ such that $\varphi(v) \in$ $E_{G}(v)$ for all $v \in V(G)$. We call a cycle C of $G \varphi$-conformal if $\varphi(v) \in E(C)$ for every $v \in V(C)$.
Theorem 2 (Seymour and Giles). Let G be a bridgeless graph and let $\varphi: V(G) \rightarrow E(G)$ be a map such that $\varphi(v) \in E_{G}(v)$ for all $v \in V(G)$. Then G has a φ-conformal cycle.

We strengthen this theorem slightly as follows (observe that $0 \leq\left|\varphi^{-1}(e)\right| \leq$ 2 holds for all edges $e \in E(G)$).

Corollary 1. Let G be a graph and let $\varphi: V(G) \rightarrow E(G)$ be a map such that $\varphi(v) \in E_{G}(v)$ for all $v \in V(G)$. If $\varphi^{-1}(e)=\emptyset$ for every bridge e of G, then G has a φ-conformal cycle.

Proof. We assume that $\varphi^{-1}(e)=\emptyset$ for all bridges e of G; we remove all bridges from G and obtain a graph G^{\prime}. Now G^{\prime} is bridgeless and $\varphi(v) \in$ $E_{G^{\prime}}(v)$ holds for all $v \in V\left(G^{\prime}\right)$. Hence Theorem 2 applies. Thus G^{\prime} has a φ-conformal cycle C, which is clearly a φ-conformal cycle of G as well.

Problem 2. Given a graph G, a map $\varphi: V(G) \rightarrow E(G)$ with $\varphi(v) \in E_{G}(v)$ for all $v \in V(G)$, and a set X of p vertices; is there a φ-conformal cycle C which runs through all vertices in X ?

Proposition 1. (1) Theorem 1 implies Theorem 2. (2) For every $p \geq 0$, Problem 2 can be reduced to Problem 1 in polynomial time.

Proof. Let G and φ as stated in Problem 2. Consider an edge $e=u v \in$ $E(G)$ and put $k_{e}:=\left|\varphi^{-1}(e)\right|$. If $k_{e}=1$, then we subdivide e by introducing a new vertex v_{e}; if $\varphi(u)=e$ then we mark the edge $u v_{e}$, otherwise we mark the edge $v v_{e}$. If $k_{e}=2$, then we replace e by a path $u, u_{e}, v_{e}, v\left(u_{e}\right.$ and v_{e} are new vertices); we mark the edges $u u_{e}$ and $v v_{e}$. Finally, if $k_{e}=0$, then we replace e by a path u, u_{e}, v_{e}, v and mark the edge $u_{e} v_{e}$. Applying this construction to all edges of G we obtain a graph G^{\prime} with $V(G) \subseteq V\left(G^{\prime}\right)$. It can be verified easily that the set F of marked edges is a 1 -factor of G^{\prime}.

Let C^{\prime} be an F-alternating cycle of G^{\prime}. We observe that C^{\prime} is a subdivision of a φ-conformal cycle C in G; we put $\pi\left(C^{\prime}\right)=C$. On the other hand, if C is a φ-conformal cycle of G, then there is a unique F-alternating cycle C^{\prime} in G^{\prime} with $\pi\left(C^{\prime}\right)=C$. Thus π is a bijection between F-alternating cycles of G^{\prime} and φ-conformal cycles of G. Moreover, since $V\left(\pi\left(C^{\prime}\right)\right) \subseteq V\left(C^{\prime}\right)$ for every F-alternating cycle of G^{\prime}, it follows that $X \subseteq V\left(C^{\prime}\right)$ if and only if $X \subseteq V\left(\pi\left(C^{\prime}\right)\right)$ for any given set $X \subseteq V(G)$. Thus Problem 2 reduces to Problem 1. Evidently, the reduction can be carried out in polynomial time, hence part (2) of the proposition follows.

To show Theorem 2, we assume that G is bridgeless, and we suppose to the contrary that G has no φ-conformal cycle. As shown above, this implies that G^{\prime} has no F-alternating cycle. By Theorem $1, G^{\prime}$ has a bridge e. Since every edge of G^{\prime} can be considered as the result of subdivision of an edge of G, we conclude that G must have a bridge as well, a contradiction. Whence Theorem 2 follows from Theorem 1.

5. Properly colored cycles in edge-colored graphs

An edge-colored graph is a graph G with an associated map χ_{G} which assigns to every edge $e \in E(G)$ a positive integer $\chi_{G}(e)$, the color of e (note that the coloring is possibly 'improper'). If $r \geq 2$ is an integer such that $\chi_{G}(e) \leq r$ for each $e \in E(G)$, then we say that G is r-edge-colored. For a vertex v of an edge-colored graph G we write $c_{G}(v)$ for the number of different colors occurring on edges incident with v. We say that v is monochromatic if $c_{G}(v) \leq 1$, i.e., if all incident edges have the same color. A cut vertex v separates colors if v is monochromatic in all blocks of G to which v belongs. A cycle C in an edge-colored graph is properly colored if consecutive edges of C have different colors. The following Theorem is due to Grossman and Häggkvist [6].

Theorem 3 (Grossman and Häggkvist). Let G be a 2-edge-colored graph without monochromatic vertices. Then either G has a cut vertex separating colors, or G has a properly colored cycle.

Again, we state a related problem.
Problem 3. Given a 2-edge-colored graph G and a set X of p vertices; is there a properly colored cycle C which runs through all vertices in X ?

Proposition 2. (1) Theorem 2 implies Theorem 3. (2) For every $p \geq 0$, Problem 3 can be reduced to Problem 3 in polynomial time.

Proof. Let G be a 2-edge-colored graph. We transform G into a graph G^{\prime} by splitting each vertex $v \in V(G)$ into vertices v_{1} and v_{2} such that the edges e incident with v are incident with $v_{\chi_{G}(e)}$, and by joining each pair of such vertices v_{1}, v_{2} by an edge e_{v}. Let $\varphi: V\left(G^{\prime}\right) \rightarrow E\left(G^{\prime}\right)$ be the map defined by $\varphi\left(v_{1}\right)=v_{1} v_{2}=\varphi\left(v_{2}\right)$ for $v \in V$.

Consider a properly colored cycle C in G. We observe that the set $\left\{v_{1}, v_{2} \mid v \in V(C)\right\}$ defines a φ-conformal cycle C^{\prime} in G^{\prime}. We put $\pi(C)=$ C^{\prime}. On the other hand, consider a φ-conformal cycle C^{\prime} of G^{\prime}. It follows that $v_{1} \in V\left(C^{\prime}\right)$ if and only if $v_{2} \in V\left(C^{\prime}\right)$, for every $v \in V(G)$. Hence $\left\{v \in V(G) \mid v_{1}, v_{2} \in V\left(C^{\prime}\right)\right\}$ induces a properly colored cycle C in G such that $\pi(C)=C^{\prime}$. Thus π is a bijection between properly colored cycles in G and φ-conformal cycles in G^{\prime}, and for any set $X \subseteq V(G)$ we have $X \subseteq V(C)$ if and only if $X^{\prime}:=\left\{v_{1} \mid v \in X\right\} \subseteq V(\pi(C))$ (clearly $\left.|X|=\left|X^{\prime}\right|\right)$. Since the above construction can be carried out in polynomial time, part (2) of the proposition follows.

Now assume that (i) G has no monochromatic vertices and (ii) G has no properly colored cycle; we show that G has a cut vertex separating colors. From (i) it follows that the minimum degree of G is at least 2, and from (ii) it follows-as shown above-that G^{\prime} has no φ-conformal cycle. Hence,
by Theorem $2, G^{\prime}$ has a bridge e. In view of Corollary 1, we may assume that $\left|\varphi^{-1}(e)\right| \geq 1$. By definition of G^{\prime} and φ, we conclude that $e=v_{1} v_{2}$ for some $v \in V(G)$. Consequently, v is a color separating cut vertex of G (note that $d_{G^{\prime}}\left(v_{1}\right), d_{G^{\prime}}\left(v_{2}\right) \geq 2$). Thus Theorem 2 implies Theorem 3, and the proposition is shown true.

A generalization of Theorem 3 to r-edge-colored graphs for arbitrary $r \geq 2$ has been shown by Yeo [15].

Theorem 4 (Yeo). Let G be an r-edge-colored graph, $r \geq 2$, without monochromatic vertices. Then either G has a color separating cut vertex, or a properly colored cycle.

We generalize Problem 3 respectively:
Problem 4. Given an r-edge-colored graph $G, r \geq 2$, and a set X of p vertices; is there a properly colored cycle C which runs through all vertices in X ?

In the proof of Theorem 4, Yeo proceeds quite differently than the authors of [6]; moreover he remarks "it appears that Grossman and Häggkvist's result cannot be used to obtain the desired extension."

Nevertheless, in the proof of the next proposition we provide a simple construction by which one can derive Yeo's extension from Grossman and Häggkvist's result directly (another application of this construction can be found in [13]).

Proposition 3. (1) Theorems 3 and 4 are equivalent. (2) For every $p \geq 0$, Problems 3 and 4 can be reduced to each other in polynomial time.

Proof. Since Theorem 4 is a generalization of Theorems 3, and Problem 4 is a generalization of Problem 3, we only have to show one direction of (1) and (2), respectively. Let $r \geq 2$ and G an r-edge-colored graph. Choose $v \in V(G)$ and put $s:=c_{G}(v)(s \geq 2$ if G has no monochromatic vertices). W.l.o.g., we assume that $\left\{\chi_{G}(e) \mid e \in E_{G}(v)\right\}$ equals $\{1, \ldots, s\}$. We apply the following local transformation (see Figure 2 for an illustration). We split v into vertices v_{1}, \ldots, v_{s} such that edges e incident with v in G become incident with $v_{\chi_{G}(e)}$ in G^{\prime}. We add new vertices u_{1}, \ldots, u_{s} and edges $u_{i} v_{i}$ for $1 \leq i \leq s$. Finally, we add new vertices w_{1} and w_{2}, the edge $w_{1} w_{2}$ and the edges $u_{i} w_{j}$ for all $1 \leq i \leq s$ and $1 \leq j \leq 2$. We mark the edge $w_{1} w_{2}$ and the edges $u_{i} v_{i}$. We put $S_{v}=\left\{u_{i}, v_{i} \mid 1 \leq i \leq s\right\}$ and $w_{v}=w_{1}$. Applying this construction to all $v \in V(G)$ we obtain a graph G^{\prime}. Note that S_{v} and $S_{v^{\prime}}$ are disjoint for $v \neq v^{\prime}$. We define a 2-edge-coloring of G^{\prime} by putting $\chi_{G^{\prime}}(e):=1$ if e is a marked edge, and $\chi_{G^{\prime}}(e):=2$ otherwise.

Let C^{\prime} be properly colored cycle in G^{\prime}. We observe that $\{v \in V(G) \mid$ $\left.S_{v} \cap V\left(C^{\prime}\right) \neq \emptyset\right\}$ induces a properly colored cycle C in G. We put

Figure 1: Illustration for the proof of Proposition 3. E_{i} denotes the set of edges of color i incident with v.
$\pi\left(C^{\prime}\right):=C$. On the other hand, if C is a properly colored cycle in G, then $C=\pi\left(C^{\prime}\right)$ for some properly colored cycle C^{\prime} in G^{\prime} (note, however, that π is not 1-to-1). Let $X \subseteq V(G)$; we define $X^{\prime}:=\left\{w_{v} \mid v \in X\right\}$ (note that $\left.|X|=\left|X^{\prime}\right|\right)$. Evidently, G has a properly colored cycle C running through all vertices in X if and only if the properly colored cycle C^{\prime} with $\pi\left(C^{\prime}\right)=C$ runs trough all vertices in X^{\prime}. Obviously, the above constructions can be carried out efficiently. Thus Problem 4 reduces to Problem 3, and part (2) of the proposition is shown.

For part (1) we assume to the contrary that G has no monochromatic vertices, no properly colored cycles, and no color separating cut vertex. Furthermore, we may assume, w.l.o.g., that no r-edge-colored graph with fewer vertices than G has this property. As shown above, the 2-edge-colored graph G^{\prime} obtained from G has no properly colored cycles as well (and no monochromatic vertices by construction); thus by Theorem $3, G^{\prime}$ has a color separating cut vertex x. By construction of $G^{\prime}, x \in S_{v}$ for some unique $v \in V(G)$. For letting $S_{v}=\left\{u_{1}, v_{1}, \ldots, u_{s}, v_{s}\right\}, s=c_{G}(v) \geq 2$, it follows that some edge $u_{i} v_{i}, 1 \leq i \leq s$, is a bridge of G^{\prime}; thus v is a cut vertex of G. Let K_{1}, \ldots, K_{k} be the components of $G-v, k \geq 2$. Since v is not color separating by assumption, there is some $i \in\{1, \ldots, k\}$ such that v is joined to vertices in K_{i} by edges of different colors; w.l.o.g., assume $i=1$. Let $G_{1}:=G-\bigcup_{i=2}^{k} V\left(K_{i}\right)$. Since $\left|V\left(G_{1}\right)\right|<|V(G)|$, and since G_{1} neither contains monochromatic vertices (in particular, v is not monochromatic by the choice of i) nor a properly colored cycle, if follows by the minimal choice of G that G_{1} has a color separating cut vertex v_{1}. Since the blocks of G_{1} are also blocks of G, we conclude that v_{1} is a color separating cut vertex of G, a contradiction. Whence, Theorem 4 follows from Theorem 3, and the proposition is shown true.

6. Semicycles in digraphs

Let D be a digraph. A subdigraph C of D is a semicycle if the (undirected) graph underlying C is a cycle. A vertex v of a semicycle C is a turning vertex of C if v is either a source or a sink of C (i.e., the arcs of C incident with v are either both outgoing from or both incoming to v).

The following theorem is due to Shoesmith and Smiley [12].
Theorem 5 (Shoesmith and Smiley). If a nonempty set S of vertices of a digraph D contains a turning vertex of each semicycle of D, then S contains a vertex which is a turning vertex of every semicycle it belongs to.

Let D be a digraph and $S \subseteq V(D)$. We call a semicycle C of D an S-semicycle if no turning vertex of C belongs to S (thus directed cycles and $V(D)$-semicycles coincide). Further, we call a cut vertex v of D a strong cut vertex if there is no (weakly connected) component of $D-v$ containing vertices u, w (possibly $u=w$) such that both $(u, v),(v, w) \in A(D)$. Using these definitions, Theorem 5 can be stated as follows:

Let D be a digraph and $\emptyset \neq S \subseteq V(D)$ such that D has no S-semicycles. Then S contains some source or some sink or some strong cut vertex.

Below we will refer to this formulation of Theorem 5.
The appendant problem reads as follows.
Problem 5. Given a digraph D, a set $S \subseteq V(D)$, and a set X of p vertices; is there an S-semicycle which runs through all vertices in X ?

In [1, Propositions 9.2.1 and 9.2.2] it is shown that the problem whether a digraph contains a (directed) cycle which runs through two prescribed vertices is NP-complete. This problem, however, is a special case of Problem 5, choosing S to be the set of all vertices of the given digraph. Hence we have the following:

Lemma 2. Problem 5 is NP-complete for $p \geq 2$.
Lemma 3. For proving Theorem 5 and for solving Problem 5 it suffices to consider bipartite digraphs D with bipartition (S, T).

Proof. Let D be a digraph and $S \subseteq V(D)$; we put $T:=V(D) \backslash S$. If D has some bridge $b=\left(t, t^{\prime}\right)$ with $t, t^{\prime} \in T$, then we can remove b from D without effecting validity of Theorem 5 or solutions of Problem 5. Hence we assume, w.l.o.g., that D does not contain bridges of this type. By subdivision of arcs which join vertices in S or vertices in T we transform D into a bipartite digraph D^{\prime} with bipartition $\left(S^{\prime}, T^{\prime}\right)$ such that $S \subseteq S^{\prime}, T \subseteq T^{\prime}$

Observe that S-semicycles of D and S^{\prime}-semicycles of D^{\prime} correspond to each other in a natural way; thus, S-semicycles of D which run trough $X \subseteq V(D)$ correspond to S^{\prime}-semicycles of D^{\prime} which run through X. Consequently, for solving Problem 5 it suffices to consider bipartite digraphs D with bipartition (S, T).

Now assume $\emptyset \neq S$ and that D has no S-semicycles; consequently, D^{\prime} has no S^{\prime}-semicycles. We apply Theorem 5 to D^{\prime}, and conclude that some $x \in S^{\prime}$ is a source or a sink or a strong cut vertex. If x is a source or a sink, then $x \in S$ by construction of D^{\prime}; hence x is also a source or a sink of D. Now assume that x is a strong cut vertex of D^{\prime}. Since D has no bridges $\left(t, t^{\prime}\right)$ with $t, t^{\prime} \in T$ by assumption, no cut vertex of D^{\prime} belongs to $S^{\prime} \backslash S$; thus $x \in S$ follows. By construction of D^{\prime}, x is also a strong cut vertex of D. Hence, for proving Theorem 5 it suffices to consider bipartite digraphs with bipartition (S, T).

In fact, a proof of Theorem 5, restricted to bipartite digraphs where S is one of the bipartition sets, can already be found in [11, Lemma 10.6].
Proposition 4. (1) Theorem 4 implies Theorem 5. (2) For every $p \geq 0$, Problem 5 can be reduced to Problem 4 in polynomial time.
Proof. Let D be a digraph and $S \subseteq V(D)$. In view of Lemma 3 we may assume that D is bipartite with bipartition (S, T). We construct a 2-edgecolored graph G^{\prime} as follows (for an example see Figure 2). For each $v \in$

Figure 2: Example for the construction in the proof of Proposition 4.
$V(D)$ we take two new vertices v_{1}, v_{2} and join them by an edge e_{v}; we put $\chi_{G^{\prime}}\left(e_{v}\right)=1$. For each arc $(s, t) \in A(D), s \in S, t \in T$, we add edges $s_{2} t_{1}$ and $s_{2} t_{2}$, and for each arc $(t, s) \in A(D), s \in S, t \in T$, we add edges $s_{1} t_{1}$ and $s_{1} t_{2}$; we put $\chi_{G^{\prime}}\left(t_{i} s_{j}\right)=2$.

Let C^{\prime} be a properly colored cycle in G^{\prime}. Observe that for every $v \in$ $V(G), v_{1} \in V\left(C^{\prime}\right)$ if and only if $v_{2} \in V\left(C^{\prime}\right)$; furthermore, observe that $\{v \in$ $\left.V(D) \mid v_{1}, v_{2} \in V\left(C^{\prime}\right)\right\}$ induces an S-semicycle C in D; we put $\pi\left(C^{\prime}\right):=C$.

Conversely, let C be an S-semicycle in D. It follows that the subgraph of G induced by $\left\{v_{1}, v_{2} \mid v \in V(C)\right\}$ contains a properly colored cycle C^{\prime} such that $\pi\left(C^{\prime}\right)=C$. For $X \subseteq V(D)$ let $X^{\prime}=\left\{v_{1} \mid v \in X\right\} \quad\left(|X|=\left|X^{\prime}\right|\right.$ follows). Clearly, D contains an S-semicycle C with $X \subseteq V(C)$ if and only if there is some properly colored cycle C^{\prime} in G^{\prime} such that $X^{\prime} \subseteq V\left(C^{\prime}\right)$. Whence Problem 5 reduces to Problem 4 in polynomial time.

Assume $S \neq \emptyset$ and that (i) D contains no S-semicycles, and (ii) S contains no sources or sinks. We show that S contains a strong cut vertex of D. From (i) it follows (as shown above) that G^{\prime} has no properly colored cycles; from (ii) and the construction of G^{\prime}, it follows that G^{\prime} has no monochromatic vertices. Hence we conclude by Theorem 4 that G^{\prime} has some color separating cut vertex v_{i} for some $v \in V(D)$ and $i \in\{1,2\}$. Moreover, v must belong to S, since for every $t \in T, t_{1}$ and t_{2} lie on a triangle. However, if v_{i} is a cut vertex, then the very construction of G^{\prime} implies that $v_{1} v_{2}$ is a bridge of G^{\prime}, and consequently, v is a strong cut vertex of D. Thus Theorem 5 follows from Theorem 4.

Proposition 5. (1) Theorem 1 follows from Theorem 5. (2) For every $p \geq 0$, Problem 5 can be reduced to Problem 1 in polynomial time.

Proof. Let G be a graph, F a 1-factor of G, and set $S:=V(G)$. We obtain a bipartite Graph G^{\prime} with bipartition (S, T) from G by subdividing each edge e of G by some new vertex $t_{e} \in T$. We define an orientation D^{\prime} of G^{\prime} by replacing edges $s t_{e} \in E\left(G^{\prime}\right)$, by $\left(t_{e}, s\right)$ if $e \in F$, and by $\left(s, t_{e}\right)$ otherwise. Observe that every vertex in T is either source or sink of D^{\prime}; namely, t_{e} is a source if $e \in F$ and a sink otherwise.

Consider an F-alternating cycle C in G. Observe that C is a subdivision of an S-semicycle cycle C^{\prime} of D^{\prime}; we put $\pi(C)=C^{\prime}$. On the other hand, for any S-semicycle C^{\prime} of $D^{\prime}, V\left(C^{\prime}\right) \cap S$ defines an F-alternating cycle C in G with $\pi(C)=C^{\prime}$. Whence π is a bijection between F-alternating cycles of G and S-semicycles of D^{\prime}. Since $V(C) \subseteq V(\pi(C))$, we conclude that Problem 1 can be reduced to Problem 5 in polynomial time.

Assume that no bridge of G belongs to F; we show that G contains an F-alternating cycle. No $s \in S$ is a strong cut vertex of D^{\prime}; otherwise, the unique edge $e \in E_{G}(s) \cap F$ would be a bridge of G. Moreover, since every $s \in S$ is incident in G with some $e \in F, s$ is not a source of D; and since no $e \in F$ is a bridge of G, s is not a sink of D. Consequently, S contains no sources or sinks, and so we conclude by Theorem 5 that D has some S-semicycle C; hence $\pi^{-1}(C)$ is an F-alternating cycle of G. Whence Theorem 1 follows from Theorem 5, and the proposition is shown true.

7. Conclusion

Putting together Propositions $1-5$, we get the following result.
Theorem 6. Theorems 1-5 are all mutually equivalent.
Moreover, since Problems 1-5 can all be reduced to each other in polynomial time, Lemmas 1 and 2 imply the following (which has been noted w.r.t. Problem 4 in [1, Propositions 11.1.1 and 11.1.9]).

Theorem 7. Problems 1-5 can be solved in polynomial time for $p<2$ and are NP-complete for $p \geq 2$.

Note that by the procedure described in Lemma 1, one cannot only decide existence of an F-alternating cycle through <2 prescribed vertices, but such cycle can be found in polynomial time (if it exists). Since the reductions in the proofs of Propositions $1-5$ transform cycles which are solutions w.r.t. one problem to cycles which are solutions w.r.t. an other problem, we can actually find solutions for Problems $1-5(p<2)$ in polynomial time (if such exist).

References

[1] J. Bang-Jensen and G. Gutin. Digraphs: Theory, Algorithms, Applications. Springer Monographs in Mathematics. Springer Verlag, London, 2001.
[2] L. W. Beineke and M. D. Plummer. On the 1-factors of a non-separable graph. J. Combin. Theory, 2:285-289, 1967.
[3] C. Berge. Two theorems in graph theory. Proc. Nat. Acad. Sci. U.S.A., 43:842-844, 1957.
[4] J. A. Bondy and U. S. R. Murty. Graph Theory with Applications. Macmillan, London, 1976.
[5] R. Diestel. Graph Theory, volume 173 of Graduate Texts in Mathematics. Springer Verlag, New York, 2nd edition, 2000.
[6] J. W. Grossman and R. Häggkvist. Alternating cycles in edgepartitioned graphs. J. Combin. Theory Ser. B, 34(1):77-81, 1983.
[7] B. Jackson and R. W. Whitty. A note concerning graphs with unique f-factors. J. Graph Theory, 13(5):577-580, 1989.
[8] A. Kotzig. On the theory of finite graphs with a linear factor II. Mat.Fyz. Časopis. Slovensk. Akad. Vied, 9(3):136-159, 1959.
[9] L. Lovász and M. D. Plummer. Matching Theory, volume 29 of Annals of Discrete Mathematics. North-Holland Publishing Co., Amsterdam, 1986.
[10] P. D. Seymour. Sums of circuits. In J. A. Bondy and U. S. R. Murty, editors, Graph Theory and Related Topics, pages 341-355. Academic Press, New York-London, 1979.
[11] D. J. Shoesmith and T. J. Smiley. Multiple-conclusion Logic. Cambridge University Press, Cambridge, 1978.
[12] D. J. Shoesmith and T. J. Smiley. Theorem on directed graphs, applicable to logic. J. Graph Theory, 3(4):401-406, 1979.
[13] S. Szeider. Finding paths in graphs avoiding forbidden transitions. To appear in Discr. Appl. Math.
[14] C. Whitehead. Alternating cycles in edge-colored graphs. J. Graph Theory, 13(4):387-391, 1989.
[15] A. Yeo. A note on alternating cycles in edge-coloured graphs. J. Combin. Theory Ser. B, 69(2):222-225, 1997.

[^0]: ${ }^{1}$ by "equivalent" we mean that the theorems can be deduced from each other.

