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Abstract

We show that several known theorems on graphs and digraphs are
equivalent. The list of equivalent theorems include Kotzig’s result
on graphs with unique 1-factors, a lemma by Seymour and Giles,
theorems on alternating cycles in edge-colored graphs, and a theorem
on semicycles in digraphs.

We consider computational problems related to the quoted re-
sults; all these problems ask whether a given (di)graph contains a
cycle satisfying certain properties which runs through p prescribed
vertices. We show that all considered problems can be solved in
polynomial time for p < 2 but are NP-complete for p ≥ 2.

1. Introduction

We consider several results on graphs and digraphs which all have been
shown separately with considerable efforts:

1. Kotzig’s theorem on graphs with unique 1-factors [8] (Theorem 1);

2. the main lemma in Seymour’s ‘Sums of Circuits’-paper [10] (Theo-
rem 2);

3. theorems on properly colored cycles in edge-colored graphs [6, 15]
(Theorems 3 and 4);

4. a theorem on semicycles in digraphs [12] (Theorem 5).

We show that all these theorems are equivalent1. Up to now, no pair of
these theorems was shown equivalent; in particular, it was believed that
Theorem 4 cannot be obtained from Theorems 3 directly (see [15]). How-
ever, the following implications have been observed elsewhere:

1by “equivalent” we mean that the theorems can be deduced from each other.
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− Theorem 2 implies Theorem 1 ([10]);

− Theorem 3 implies Theorem 1 ([6]);

− Theorem 2 implies Theorem 3 (attributed in [14] to B. Jackson).

Moreover, Theorem 4 clearly implies Theorem 3, since the latter is a special
case of the former.

Computational problems which arise from the quoted results ask whether
(di)graphs contain cycles which satisfy certain properties and run through
p specified vertices. We show that these problems can be reduced to each
other in polynomial time. Moreover, we show that all these problems can
be solved in polynomial time if p = 0 or p = 1, and are NP-complete for
p ≥ 2.

2. Notation

All graphs and digraphs considered are finite, simple and contain at least
one vertex. For a graph G and v ∈ V (G) we denote by EG(v) the set of
edges of G which are incident with v. Graph theoretic terminology not
defined here may be found in [4, 5].

3. Graphs with unique 1-factors

A 1-factor (or perfect matching) of a graph G is a set of independent edges
F ⊆ E(G) such that every vertex of G is incident with some edge in F .
The following is a well-known theorem due to Kotzig [8] (for generalizations,
see [2, 7]).

Theorem 1 (Kotzig). If a graph G has a unique 1-factor F , then G has
a bridge which belongs to F .

Let G be a graph, and let F, F ′ be 1-factors of G. The symmetric difference
F 4F ′ is a vertex disjoint union of F -alternating cycles (i.e., of cycles whose
edges are alternately in and out of F ), cf. [3]. Hence Theorem 1 can be
stated as follows:

Let G be a graph and F a 1-factor of G. If no edge in F is a
bridge, then G contains an F -alternating cycle.

By means of Kotzig’s theorem one can decide efficiently whether a graph
G with given 1-factor F contains some F -alternating cycle (see the proof
of Lemma 1 below). It is natural to consider the following generalization of
this problem (here, and in all problems presented in the sequel, the integer
p is considered as some fixed parameter).
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Problem 1. Given a graph G, a 1-factor F of G, and a set X of p vertices;
is there an F -alternating cycle in G which runs through all vertices of X?

We will show that this problem (and several other problems formulated in
the sequel) can be solved efficiently if p < 2, and are NP-complete for p ≥ 2.

Lemma 1. Problem 1 can be solved in polynomial time for p < 2.

Proof. For the case p = 1, let X = {v} and let e be the unique edge in
EG(v) ∩ F . Observe that there is an F -alternating cycle C which runs
through v if and only if G − e has a 1-factor Fe; the latter can be checked
in polynomial time by matching algorithms (see, e.g., [9]). If G − e has
a 1-factor Fe, then we choose the unique cycle C in Fe 4F such that
e ∈ E(C).

To find any F -alternating cycle (p = 0), we proceed similarly as in
the case p = 1: we consider all e ∈ E(G) and check whether G − e has
a 1-factor. If, however, only existence of F -alternating cycles should be
decided, then we can use Kotzig’s theorem and proceed as follows. Denote
the set of bridges of G by B(G). We put G0 := G, and for i > 0 we
obtain Gi from Gi−1 by deletion of the vertices which are incident with
edges in B(Gi−1) ∩ F . We stop as soon as we have either (i) no vertex
of Gn is incident with some edge in B(Gn) ∩ F (i.e., B(Gn) ∩ F = ∅) or
(ii) every vertex of Gn is incident with some edge in B(Gn) ∩ F ; evidently
n ≤ |V (G)|. In case (i) we conclude by Kotzig’s theorem that Gn (and
so G) contains some F -alternating cycle. In case (ii), Gn certainly has no
F -alternating cycle, and so G has no F -alternating cycle (for, if Gi−1 has
some F -alternating cycle C (1 ≤ i < n), then no vertex of Gi−1 which is
incident with edges in B(Gi−1)∩F can lie on C; consequently, C is also an
F -alternating cycle of Gi).

We will show in the final section of this paper that Problem 1 is NP-com-
plete for p ≥ 2.

4. Seymour and Giles’ Theorem

Next we consider a result which is stated as a lemma in Seymour’s famous
paper on sums of circuits [10]; Seymour attributes this result to him and
Giles, and he calls it “the most tricky step” in the proof of the main theorem
of [10]. Consider a graph G and map ϕ : V (G) → E(G) such that ϕ(v) ∈
EG(v) for all v ∈ V (G). We call a cycle C of G ϕ-conformal if ϕ(v) ∈ E(C)
for every v ∈ V (C).

Theorem 2 (Seymour and Giles). Let G be a bridgeless graph and let
ϕ : V (G) → E(G) be a map such that ϕ(v) ∈ EG(v) for all v ∈ V (G).
Then G has a ϕ-conformal cycle.
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We strengthen this theorem slightly as follows (observe that 0 ≤
∣

∣ϕ−1(e)
∣

∣ ≤
2 holds for all edges e ∈ E(G)).

Corollary 1. Let G be a graph and let ϕ : V (G) → E(G) be a map such
that ϕ(v) ∈ EG(v) for all v ∈ V (G). If ϕ−1(e) = ∅ for every bridge e of G,
then G has a ϕ-conformal cycle.

Proof. We assume that ϕ−1(e) = ∅ for all bridges e of G; we remove all
bridges from G and obtain a graph G′. Now G′ is bridgeless and ϕ(v) ∈
EG′(v) holds for all v ∈ V (G′). Hence Theorem 2 applies. Thus G′ has a
ϕ-conformal cycle C, which is clearly a ϕ-conformal cycle of G as well.

Problem 2. Given a graph G, a map ϕ : V (G) → E(G) with ϕ(v) ∈ EG(v)
for all v ∈ V (G), and a set X of p vertices; is there a ϕ-conformal cycle C

which runs through all vertices in X?

Proposition 1. (1) Theorem 1 implies Theorem 2. (2) For every p ≥ 0,
Problem 2 can be reduced to Problem 1 in polynomial time.

Proof. Let G and ϕ as stated in Problem 2. Consider an edge e = uv ∈
E(G) and put ke :=

∣

∣ϕ−1(e)
∣

∣. If ke = 1, then we subdivide e by introducing
a new vertex ve; if ϕ(u) = e then we mark the edge uve, otherwise we mark
the edge vve. If ke = 2, then we replace e by a path u, ue, ve, v (ue and ve

are new vertices); we mark the edges uue and vve. Finally, if ke = 0, then
we replace e by a path u, ue, ve, v and mark the edge ueve. Applying this
construction to all edges of G we obtain a graph G′ with V (G) ⊆ V (G′).
It can be verified easily that the set F of marked edges is a 1-factor of G′.

Let C ′ be an F -alternating cycle of G′. We observe that C ′ is a subdivi-
sion of a ϕ-conformal cycle C in G; we put π(C ′) = C. On the other hand,
if C is a ϕ-conformal cycle of G, then there is a unique F -alternating cycle
C ′ in G′ with π(C ′) = C. Thus π is a bijection between F -alternating cy-
cles of G′ and ϕ-conformal cycles of G. Moreover, since V (π(C ′)) ⊆ V (C ′)
for every F -alternating cycle of G′, it follows that X ⊆ V (C ′) if and only
if X ⊆ V (π(C ′)) for any given set X ⊆ V (G). Thus Problem 2 reduces to
Problem 1. Evidently, the reduction can be carried out in polynomial time,
hence part (2) of the proposition follows.

To show Theorem 2, we assume that G is bridgeless, and we suppose to
the contrary that G has no ϕ-conformal cycle. As shown above, this implies
that G′ has no F -alternating cycle. By Theorem 1, G′ has a bridge e. Since
every edge of G′ can be considered as the result of subdivision of an edge of
G, we conclude that G must have a bridge as well, a contradiction. Whence
Theorem 2 follows from Theorem 1.
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5. Properly colored cycles in edge-colored graphs

An edge-colored graph is a graph G with an associated map χG which
assigns to every edge e ∈ E(G) a positive integer χG(e), the color of e

(note that the coloring is possibly ‘improper’). If r ≥ 2 is an integer such
that χG(e) ≤ r for each e ∈ E(G), then we say that G is r-edge-colored.
For a vertex v of an edge-colored graph G we write cG(v) for the number
of different colors occurring on edges incident with v. We say that v is
monochromatic if cG(v) ≤ 1, i.e., if all incident edges have the same color.
A cut vertex v separates colors if v is monochromatic in all blocks of G to
which v belongs. A cycle C in an edge-colored graph is properly colored if
consecutive edges of C have different colors. The following Theorem is due
to Grossman and Häggkvist [6].

Theorem 3 (Grossman and Häggkvist). Let G be a 2-edge-colored
graph without monochromatic vertices. Then either G has a cut vertex
separating colors, or G has a properly colored cycle.

Again, we state a related problem.

Problem 3. Given a 2-edge-colored graph G and a set X of p vertices; is
there a properly colored cycle C which runs through all vertices in X?

Proposition 2. (1) Theorem 2 implies Theorem 3. (2) For every p ≥ 0,
Problem 3 can be reduced to Problem 3 in polynomial time.

Proof. Let G be a 2-edge-colored graph. We transform G into a graph G′

by splitting each vertex v ∈ V (G) into vertices v1 and v2 such that the
edges e incident with v are incident with vχG(e), and by joining each pair
of such vertices v1, v2 by an edge ev. Let ϕ : V (G′) → E(G′) be the map
defined by ϕ(v1) = v1v2 = ϕ(v2) for v ∈ V .

Consider a properly colored cycle C in G. We observe that the set
{ v1, v2 | v ∈ V (C) } defines a ϕ-conformal cycle C ′ in G′. We put π(C) =
C ′. On the other hand, consider a ϕ-conformal cycle C ′ of G′. It follows
that v1 ∈ V (C ′) if and only if v2 ∈ V (C ′), for every v ∈ V (G). Hence
{ v ∈ V (G) | v1, v2 ∈ V (C ′) } induces a properly colored cycle C in G such
that π(C) = C ′. Thus π is a bijection between properly colored cycles in G

and ϕ-conformal cycles in G′, and for any set X ⊆ V (G) we have X ⊆ V (C)
if and only if X ′ := { v1 | v ∈ X } ⊆ V (π(C)) (clearly |X | = |X ′|). Since
the above construction can be carried out in polynomial time, part (2) of
the proposition follows.

Now assume that (i) G has no monochromatic vertices and (ii) G has no
properly colored cycle; we show that G has a cut vertex separating colors.
From (i) it follows that the minimum degree of G is at least 2, and from
(ii) it follows—as shown above—that G′ has no ϕ-conformal cycle. Hence,
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by Theorem 2, G′ has a bridge e. In view of Corollary 1, we may assume
that

∣

∣ϕ−1(e)
∣

∣ ≥ 1. By definition of G′ and ϕ, we conclude that e = v1v2

for some v ∈ V (G). Consequently, v is a color separating cut vertex of G

(note that dG′(v1), dG′(v2) ≥ 2). Thus Theorem 2 implies Theorem 3, and
the proposition is shown true.

A generalization of Theorem 3 to r-edge-colored graphs for arbitrary
r ≥ 2 has been shown by Yeo [15].

Theorem 4 (Yeo). Let G be an r-edge-colored graph, r ≥ 2, without
monochromatic vertices. Then either G has a color separating cut vertex,
or a properly colored cycle.

We generalize Problem 3 respectively:

Problem 4. Given an r-edge-colored graph G, r ≥ 2, and a set X of p

vertices; is there a properly colored cycle C which runs through all vertices
in X?

In the proof of Theorem 4, Yeo proceeds quite differently than the authors
of [6]; moreover he remarks “it appears that Grossman and Häggkvist’s
result cannot be used to obtain the desired extension.”

Nevertheless, in the proof of the next proposition we provide a simple
construction by which one can derive Yeo’s extension from Grossman and
Häggkvist’s result directly (another application of this construction can be
found in [13]).

Proposition 3. (1) Theorems 3 and 4 are equivalent. (2) For every p ≥ 0,
Problems 3 and 4 can be reduced to each other in polynomial time.

Proof. Since Theorem 4 is a generalization of Theorems 3, and Problem 4
is a generalization of Problem 3, we only have to show one direction of (1)
and (2), respectively. Let r ≥ 2 and G an r-edge-colored graph. Choose
v ∈ V (G) and put s := cG(v) (s ≥ 2 if G has no monochromatic vertices).
W.l.o.g., we assume that {χG(e) | e ∈ EG(v) } equals {1, . . . , s}. We apply
the following local transformation (see Figure 2 for an illustration). We
split v into vertices v1, . . . , vs such that edges e incident with v in G become
incident with vχG(e) in G′. We add new vertices u1, . . . , us and edges uivi

for 1 ≤ i ≤ s. Finally, we add new vertices w1 and w2, the edge w1w2

and the edges uiwj for all 1 ≤ i ≤ s and 1 ≤ j ≤ 2. We mark the edge
w1w2 and the edges uivi. We put Sv = {ui, vi | 1 ≤ i ≤ s } and wv = w1.
Applying this construction to all v ∈ V (G) we obtain a graph G′. Note
that Sv and Sv′ are disjoint for v 6= v′. We define a 2-edge-coloring of G′

by putting χG′(e) := 1 if e is a marked edge, and χG′(e) := 2 otherwise.
Let C ′ be properly colored cycle in G′. We observe that { v ∈ V (G) |

Sv ∩ V (C ′) 6= ∅ } induces a properly colored cycle C in G. We put
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v

· · ·

E1

···

E2

···

Es

···

⇒
· · ·

E1

···

E2

···

Es

···

v1

u1

v2

u2

vs

us

w1 w2

Figure 1: Illustration for the proof of Proposition 3. Ei denotes the set of
edges of color i incident with v.

π(C ′) := C. On the other hand, if C is a properly colored cycle in G,
then C = π(C ′) for some properly colored cycle C ′ in G′ (note, however,
that π is not 1-to-1). Let X ⊆ V (G); we define X ′ := {wv | v ∈ X } (note
that |X | = |X ′|). Evidently, G has a properly colored cycle C running
through all vertices in X if and only if the properly colored cycle C ′ with
π(C ′) = C runs trough all vertices in X ′. Obviously, the above construc-
tions can be carried out efficiently. Thus Problem 4 reduces to Problem 3,
and part (2) of the proposition is shown.

For part (1) we assume to the contrary that G has no monochromatic
vertices, no properly colored cycles, and no color separating cut vertex.
Furthermore, we may assume, w.l.o.g., that no r-edge-colored graph with
fewer vertices than G has this property. As shown above, the 2-edge-colored
graph G′ obtained from G has no properly colored cycles as well (and no
monochromatic vertices by construction); thus by Theorem 3, G′ has a color
separating cut vertex x. By construction of G′, x ∈ Sv for some unique
v ∈ V (G). For letting Sv = {u1, v1, . . . , us, vs}, s = cG(v) ≥ 2, it follows
that some edge uivi, 1 ≤ i ≤ s, is a bridge of G′; thus v is a cut vertex
of G. Let K1, . . . , Kk be the components of G − v, k ≥ 2. Since v is not
color separating by assumption, there is some i ∈ {1, . . . , k} such that v is
joined to vertices in Ki by edges of different colors; w.l.o.g., assume i = 1.
Let G1 := G −

⋃k

i=2 V (Ki). Since |V (G1)| < |V (G)|, and since G1 neither
contains monochromatic vertices (in particular, v is not monochromatic by
the choice of i) nor a properly colored cycle, if follows by the minimal choice
of G that G1 has a color separating cut vertex v1. Since the blocks of G1

are also blocks of G, we conclude that v1 is a color separating cut vertex
of G, a contradiction. Whence, Theorem 4 follows from Theorem 3, and
the proposition is shown true.
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6. Semicycles in digraphs

Let D be a digraph. A subdigraph C of D is a semicycle if the (undirected)
graph underlying C is a cycle. A vertex v of a semicycle C is a turning
vertex of C if v is either a source or a sink of C (i.e., the arcs of C incident
with v are either both outgoing from or both incoming to v).

The following theorem is due to Shoesmith and Smiley [12].

Theorem 5 (Shoesmith and Smiley). If a nonempty set S of vertices
of a digraph D contains a turning vertex of each semicycle of D, then S

contains a vertex which is a turning vertex of every semicycle it belongs to.

Let D be a digraph and S ⊆ V (D). We call a semicycle C of D an S-semi-
cycle if no turning vertex of C belongs to S (thus directed cycles and
V (D)-semicycles coincide). Further, we call a cut vertex v of D a strong
cut vertex if there is no (weakly connected) component of D− v containing
vertices u, w (possibly u = w) such that both (u, v), (v, w) ∈ A(D). Using
these definitions, Theorem 5 can be stated as follows:

Let D be a digraph and ∅ 6= S ⊆ V (D) such that D has no
S-semicycles. Then S contains some source or some sink or
some strong cut vertex.

Below we will refer to this formulation of Theorem 5.
The appendant problem reads as follows.

Problem 5. Given a digraph D, a set S ⊆ V (D), and a set X of p vertices;
is there an S-semicycle which runs through all vertices in X?

In [1, Propositions 9.2.1 and 9.2.2] it is shown that the problem whether
a digraph contains a (directed) cycle which runs through two prescribed
vertices is NP-complete. This problem, however, is a special case of Prob-
lem 5, choosing S to be the set of all vertices of the given digraph. Hence
we have the following:

Lemma 2. Problem 5 is NP-complete for p ≥ 2.

Lemma 3. For proving Theorem 5 and for solving Problem 5 it suffices to
consider bipartite digraphs D with bipartition (S, T ).

Proof. Let D be a digraph and S ⊆ V (D); we put T := V (D) \S. If D has
some bridge b = (t, t′) with t, t′ ∈ T , then we can remove b from D without
effecting validity of Theorem 5 or solutions of Problem 5. Hence we assume,
w.l.o.g., that D does not contain bridges of this type. By subdivision of
arcs which join vertices in S or vertices in T we transform D into a bipartite
digraph D′ with bipartition (S′, T ′) such that S ⊆ S′, T ⊆ T ′
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Observe that S-semicycles of D and S ′-semicycles of D′ correspond to
each other in a natural way; thus, S-semicycles of D which run trough
X ⊆ V (D) correspond to S ′-semicycles of D′ which run through X . Con-
sequently, for solving Problem 5 it suffices to consider bipartite digraphs D

with bipartition (S, T ).
Now assume ∅ 6= S and that D has no S-semicycles; consequently, D′

has no S′-semicycles. We apply Theorem 5 to D′, and conclude that some
x ∈ S′ is a source or a sink or a strong cut vertex. If x is a source or a
sink, then x ∈ S by construction of D′; hence x is also a source or a sink
of D. Now assume that x is a strong cut vertex of D′. Since D has no
bridges (t, t′) with t, t′ ∈ T by assumption, no cut vertex of D′ belongs to
S′ \ S; thus x ∈ S follows. By construction of D′, x is also a strong cut
vertex of D. Hence, for proving Theorem 5 it suffices to consider bipartite
digraphs with bipartition (S, T ).

In fact, a proof of Theorem 5, restricted to bipartite digraphs where S

is one of the bipartition sets, can already be found in [11, Lemma 10.6].

Proposition 4. (1) Theorem 4 implies Theorem 5. (2) For every p ≥ 0,
Problem 5 can be reduced to Problem 4 in polynomial time.

Proof. Let D be a digraph and S ⊆ V (D). In view of Lemma 3 we may
assume that D is bipartite with bipartition (S, T ). We construct a 2-edge-
colored graph G′ as follows (for an example see Figure 2). For each v ∈

s s′

t t′ t′′

s1 s2 s′1 s′2

t1 t2 t′1 t′2 t′′1 t′′2

Figure 2: Example for the construction in the proof of Proposition 4.

V (D) we take two new vertices v1, v2 and join them by an edge ev; we put
χG′(ev) = 1. For each arc (s, t) ∈ A(D), s ∈ S, t ∈ T , we add edges s2t1
and s2t2, and for each arc (t, s) ∈ A(D), s ∈ S, t ∈ T , we add edges s1t1
and s1t2; we put χG′(tisj) = 2.

Let C ′ be a properly colored cycle in G′. Observe that for every v ∈
V (G), v1 ∈ V (C ′) if and only if v2 ∈ V (C ′); furthermore, observe that { v ∈
V (D) | v1, v2 ∈ V (C ′) } induces an S-semicycle C in D; we put π(C ′) := C.
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Conversely, let C be an S-semicycle in D. It follows that the subgraph of
G induced by { v1, v2 | v ∈ V (C) } contains a properly colored cycle C ′

such that π(C ′) = C. For X ⊆ V (D) let X ′ = { v1 | v ∈ X } (|X | = |X ′|
follows). Clearly, D contains an S-semicycle C with X ⊆ V (C) if and only
if there is some properly colored cycle C ′ in G′ such that X ′ ⊆ V (C ′).
Whence Problem 5 reduces to Problem 4 in polynomial time.

Assume S 6= ∅ and that (i) D contains no S-semicycles, and (ii) S con-
tains no sources or sinks. We show that S contains a strong cut vertex of D.
From (i) it follows (as shown above) that G′ has no properly colored cycles;
from (ii) and the construction of G′, it follows that G′ has no monochro-
matic vertices. Hence we conclude by Theorem 4 that G′ has some color
separating cut vertex vi for some v ∈ V (D) and i ∈ {1, 2}. Moreover, v

must belong to S, since for every t ∈ T , t1 and t2 lie on a triangle. How-
ever, if vi is a cut vertex, then the very construction of G′ implies that v1v2

is a bridge of G′, and consequently, v is a strong cut vertex of D. Thus
Theorem 5 follows from Theorem 4.

Proposition 5. (1) Theorem 1 follows from Theorem 5. (2) For every
p ≥ 0, Problem 5 can be reduced to Problem 1 in polynomial time.

Proof. Let G be a graph, F a 1-factor of G, and set S := V (G). We obtain
a bipartite Graph G′ with bipartition (S, T ) from G by subdividing each
edge e of G by some new vertex te ∈ T . We define an orientation D′ of G′

by replacing edges ste ∈ E(G′), by (te, s) if e ∈ F , and by (s, te) otherwise.
Observe that every vertex in T is either source or sink of D′; namely, te is
a source if e ∈ F and a sink otherwise.

Consider an F -alternating cycle C in G. Observe that C is a subdivision
of an S-semicycle cycle C ′ of D′; we put π(C) = C ′. On the other hand,
for any S-semicycle C ′ of D′, V (C ′)∩S defines an F -alternating cycle C in
G with π(C) = C ′. Whence π is a bijection between F -alternating cycles
of G and S-semicycles of D′. Since V (C) ⊆ V (π(C)), we conclude that
Problem 1 can be reduced to Problem 5 in polynomial time.

Assume that no bridge of G belongs to F ; we show that G contains
an F -alternating cycle. No s ∈ S is a strong cut vertex of D′; otherwise,
the unique edge e ∈ EG(s) ∩ F would be a bridge of G. Moreover, since
every s ∈ S is incident in G with some e ∈ F , s is not a source of D; and
since no e ∈ F is a bridge of G, s is not a sink of D. Consequently, S

contains no sources or sinks, and so we conclude by Theorem 5 that D has
some S-semicycle C; hence π−1(C) is an F -alternating cycle of G. Whence
Theorem 1 follows from Theorem 5, and the proposition is shown true.
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7. Conclusion

Putting together Propositions 1–5, we get the following result.

Theorem 6. Theorems 1–5 are all mutually equivalent.

Moreover, since Problems 1–5 can all be reduced to each other in polynomial
time, Lemmas 1 and 2 imply the following (which has been noted w.r.t.
Problem 4 in [1, Propositions 11.1.1 and 11.1.9]).

Theorem 7. Problems 1–5 can be solved in polynomial time for p < 2 and
are NP-complete for p ≥ 2.

Note that by the procedure described in Lemma 1, one cannot only decide
existence of an F -alternating cycle through < 2 prescribed vertices, but
such cycle can be found in polynomial time (if it exists). Since the reduc-
tions in the proofs of Propositions 1–5 transform cycles which are solutions
w.r.t. one problem to cycles which are solutions w.r.t. an other problem,
we can actually find solutions for Problems 1–5 (p < 2) in polynomial time
(if such exist).
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