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Abstract
We show that several known theorems on graphs and digraphs are
equivalent. The list of equivalent theorems include Kotzig’s result
on graphs with unique 1-factors, a lemma by Seymour and Giles,
theorems on alternating cycles in edge-colored graphs, and a theorem
on semicycles in digraphs.

We consider computational problems related to the quoted re-
sults; all these problems ask whether a given (di)graph contains a
cycle satisfying certain properties which runs through p prescribed
vertices. We show that all considered problems can be solved in
polynomial time for p < 2 but are NP-complete for p > 2.

1. Introduction

We consider several results on graphs and digraphs which all have been
shown separately with considerable efforts:

1. Kotzig’s theorem on graphs with unique 1-factors [8] (Theorem 1);

2. the main lemma in Seymour’s ‘Sums of Circuits’-paper [10] (Theo-
rem 2);

3. theorems on properly colored cycles in edge-colored graphs [6, 15]
(Theorems 3 and 4);

4. a theorem on semicycles in digraphs [12] (Theorem 5).

We show that all these theorems are equivalent!. Up to now, no pair of
these theorems was shown equivalent; in particular, it was believed that
Theorem 4 cannot be obtained from Theorems 3 directly (see [15]). How-
ever, the following implications have been observed elsewhere:

Iby “equivalent” we mean that the theorems can be deduced from each other.



— Theorem 2 implies Theorem 1 ([10]);
— Theorem 3 implies Theorem 1 ([6]);
— Theorem 2 implies Theorem 3 (attributed in [14] to B. Jackson).

Moreover, Theorem 4 clearly implies Theorem 3, since the latter is a special
case of the former.

Computational problems which arise from the quoted results ask whether
(di)graphs contain cycles which satisfy certain properties and run through
p specified vertices. We show that these problems can be reduced to each
other in polynomial time. Moreover, we show that all these problems can
be solved in polynomial time if p = 0 or p = 1, and are NP-complete for
p =2

2. Notation

All graphs and digraphs considered are finite, simple and contain at least
one vertex. For a graph G and v € V(G) we denote by Eg(v) the set of
edges of G which are incident with v. Graph theoretic terminology not
defined here may be found in [4, 5.

3. Graphs with unique 1-factors

A 1-factor (or perfect matching) of a graph G is a set of independent edges
F C E(G) such that every vertex of G is incident with some edge in F.
The following is a well-known theorem due to Kotzig [8] (for generalizations,
see [2, 7]).

Theorem 1 (Kotzig). If a graph G has a unique 1-factor F, then G has
a bridge which belongs to F'.

Let G be a graph, and let F, I’ be 1-factors of G. The symmetric difference
F A F’ is a vertex disjoint union of F-alternating cycles (i.e., of cycles whose
edges are alternately in and out of F'), cf. [3]. Hence Theorem 1 can be
stated as follows:

Let G be a graph and F o 1-factor of G. If no edge in F is a
bridge, then G contains an F-alternating cycle.

By means of Kotzig’s theorem one can decide efficiently whether a graph
G with given 1-factor F' contains some F-alternating cycle (see the proof
of Lemma 1 below). It is natural to consider the following generalization of
this problem (here, and in all problems presented in the sequel, the integer
p is considered as some fixed parameter).



Problem 1. Given a graph G, a 1-factor F' of G, and a set X of p vertices;
is there an F'-alternating cycle in G which runs through all vertices of X ¢

We will show that this problem (and several other problems formulated in
the sequel) can be solved efficiently if p < 2, and are NP-complete for p > 2.

Lemma 1. Problem 1 can be solved in polynomial time for p < 2.

Proof. For the case p = 1, let X = {v} and let e be the unique edge in
Ec(v) N F. Observe that there is an F-alternating cycle C' which runs
through v if and only if G — e has a 1-factor F; the latter can be checked
in polynomial time by matching algorithms (see, e.g., [9]). If G — e has
a l-factor F., then we choose the unique cycle C' in F, A F such that
ee€ E(C).

To find any F-alternating cycle (p = 0), we proceed similarly as in
the case p = 1: we consider all e € E(G) and check whether G — e has
a 1-factor. If, however, only existence of F-alternating cycles should be
decided, then we can use Kotzig’s theorem and proceed as follows. Denote
the set of bridges of G by B(G). We put Gy := G, and for i > 0 we
obtain G; from G;_1 by deletion of the vertices which are incident with
edges in B(G;—1) N F. We stop as soon as we have either (i) no vertex
of Gy, is incident with some edge in B(G,) N F (i.e.,, B(G,) N F = () or
(ii) every vertex of Gy, is incident with some edge in B(G,,) N F’; evidently
n < |V(G)|. In case (i) we conclude by Kotzig’s theorem that G, (and
so () contains some F-alternating cycle. In case (ii), G,, certainly has no
F-alternating cycle, and so G has no F-alternating cycle (for, if G;_; has
some F-alternating cycle C' (1 < i < n), then no vertex of G;_; which is
incident with edges in B(G;—1) N F can lie on C'; consequently, C' is also an
F-alternating cycle of G;). O

We will show in the final section of this paper that Problem 1 is NP-com-
plete for p > 2.

4. Seymour and Giles’ Theorem

Next we consider a result which is stated as a lemma in Seymour’s famous
paper on sums of circuits [10]; Seymour attributes this result to him and
Giles, and he calls it “the most tricky step” in the proof of the main theorem
of [10]. Consider a graph G and map ¢ : V(G) — E(G) such that ¢(v) €
Eq(v) for allv € V(G). We call a cycle C of G ¢-conformal if p(v) € E(C)
for every v € V(C).

Theorem 2 (Seymour and Giles). Let G be a bridgeless graph and let
v : V(G) — E(G) be a map such that p(v) € Eg(v) for all v € V(G).
Then G has a p-conformal cycle.



We strengthen this theorem slightly as follows (observe that 0 < ‘gp‘l(e)| <
2 holds for all edges e € E(G)).

Corollary 1. Let G be a graph and let ¢ : V(G) — E(G) be a map such
that p(v) € Eg(v) for allv € V(G). If p=(e) = 0 for every bridge e of G,
then G has a p-conformal cycle.

Proof. We assume that ¢~1(e) = ) for all bridges e of G; we remove all
bridges from G and obtain a graph G’. Now G’ is bridgeless and p(v) €
E¢/(v) holds for all v € V(G’). Hence Theorem 2 applies. Thus G’ has a
p-conformal cycle C'; which is clearly a p-conformal cycle of G as well. [

Problem 2. Given a graph G, a map ¢ : V(G) — E(G) with p(v) € Eg(v)
for allv € V(G), and a set X of p vertices; is there a @-conformal cycle C
which runs through all vertices in X ?

Proposition 1. (1) Theorem 1 implies Theorem 2. (2) For every p > 0,
Problem 2 can be reduced to Problem 1 in polynomial time.

Proof. Let G and ¢ as stated in Problem 2. Consider an edge e = uv €
E(G) and put k. := ‘(,0_1(6”. If k. = 1, then we subdivide e by introducing
a new vertex ve; if p(u) = e then we mark the edge uv., otherwise we mark
the edge vv.. If k. = 2, then we replace e by a path u, u.,ve,v (u. and v,
are new vertices); we mark the edges uu. and vv.. Finally, if k. = 0, then
we replace e by a path u, u., ve,v and mark the edge u.ve. Applymg this
construction to all edges of G we obtain a graph G’ with V(G) C V(G').
It can be verified easily that the set F' of marked edges is a 1-factor of G'.

Let ¢’ be an F-alternating cycle of G’. We observe that C’ is a subdivi-
sion of a p-conformal cycle C in G; we put 7(C’) = C. On the other hand,
if C'is a (p-conformal cycle of GG, then there is a unique F-alternating cycle
C’ in G’ with 7(C") = C. Thus 7 is a bijection between F-alternating cy-
cles of G' and p-conformal cycles of G. Moreover, since V (7(C")) C V(C")
for every F-alternating cycle of G’, it follows that X C V(C”) if and only
if X CV(n(C")) for any given set X C V(G). Thus Problem 2 reduces to
Problem 1. Evidently, the reduction can be carried out in polynomial time,
hence part (2) of the proposition follows.

To show Theorem 2, we assume that G is bridgeless, and we suppose to
the contrary that G has no ¢-conformal cycle. As shown above, this implies
that G’ has no F-alternating cycle. By Theorem 1, G’ has a bridge e. Since
every edge of G’ can be considered as the result of subdivision of an edge of
G, we conclude that G must have a bridge as well, a contradiction. Whence
Theorem 2 follows from Theorem 1. ]



5. Properly colored cycles in edge-colored graphs

An edge-colored graph is a graph G with an associated map x¢g which
assigns to every edge e € F(G) a positive integer xg(e), the color of e
(note that the coloring is possibly ‘improper’). If » > 2 is an integer such
that xg(e) < r for each e € E(G), then we say that G is r-edge-colored.
For a vertex v of an edge-colored graph G we write c¢g(v) for the number
of different colors occurring on edges incident with v. We say that v is
monochromatic if cq(v) < 1, i.e., if all incident edges have the same color.
A cut vertex v separates colors if v is monochromatic in all blocks of G to
which v belongs. A cycle C' in an edge-colored graph is properly colored if
consecutive edges of C have different colors. The following Theorem is due
to Grossman and Haggkvist [6].

Theorem 3 (Grossman and Héaggkvist). Let G be a 2-edge-colored
graph without monochromatic vertices. Then either G has a cut vertex
separating colors, or G has a properly colored cycle.

Again, we state a related problem.

Problem 3. Given a 2-edge-colored graph G and a set X of p vertices; is
there a properly colored cycle C' which runs through all vertices in X ¢

Proposition 2. (1) Theorem 2 implies Theorem 3. (2) For every p > 0,
Problem 3 can be reduced to Problem 3 in polynomial time.

Proof. Let G be a 2-edge-colored graph. We transform G into a graph G’
by splitting each vertex v € V(@) into vertices v; and ve such that the
edges e incident with v are incident with v, (), and by joining each pair
of such vertices vy, vy by an edge e,. Let ¢ : V(G') — E(G’) be the map
defined by ¢(v1) = v1v2 = p(ve) for v € V.

Consider a properly colored cycle C' in G. We observe that the set
{v1,v2 | v € V(C)} defines a ¢-conformal cycle C’ in G'. We put 7(C) =
C’. On the other hand, consider a ¢-conformal cycle C’ of G'. Tt follows
that v; € V(C’) if and only if vo € V(C'), for every v € V(G). Hence
{v e V(G) | v1,v2 € V(C") } induces a properly colored cycle C in G such
that 7(C') = C’. Thus 7 is a bijection between properly colored cycles in G
and p-conformal cycles in G'; and for any set X C V(G) we have X C V(C)
if and only if X' := {v; |ve X} C V(n(C)) (clearly | X| = |X’|). Since
the above construction can be carried out in polynomial time, part (2) of
the proposition follows.

Now assume that (i) G has no monochromatic vertices and (ii) G has no
properly colored cycle; we show that GG has a cut vertex separating colors.
From (i) it follows that the minimum degree of G is at least 2, and from
(ii) it follows—as shown above—that G’ has no y-conformal cycle. Hence,



by Theorem 2, G’ has a bridge e. In view of Corollary 1, we may assume
that |g0_1(e)’ > 1. By definition of G’ and ¢, we conclude that e = viv9
for some v € V(G). Consequently, v is a color separating cut vertex of G
(note that dg/(v1),dgs (v2) > 2). Thus Theorem 2 implies Theorem 3, and
the proposition is shown true. ]

A generalization of Theorem 3 to r-edge-colored graphs for arbitrary
r > 2 has been shown by Yeo [15].

Theorem 4 (Yeo). Let G be an r-edge-colored graph, r > 2, without
monochromatic vertices. Then either G has a color separating cut verter,
or a properly colored cycle.

We generalize Problem 3 respectively:

Problem 4. Given an r-edge-colored graph G, r > 2, and a set X of p
vertices; is there a properly colored cycle C which runs through all vertices
in X?

In the proof of Theorem 4, Yeo proceeds quite differently than the authors
of [6]; moreover he remarks “it appears that Grossman and Haggkvist’s
result cannot be used to obtain the desired extension.”

Nevertheless, in the proof of the next proposition we provide a simple
construction by which one can derive Yeo’s extension from Grossman and
Héaggkvist’s result directly (another application of this construction can be
found in [13]).

Proposition 3. (1) Theorems 3 and 4 are equivalent. (2) For every p > 0,
Problems 3 and 4 can be reduced to each other in polynomial time.

Proof. Since Theorem 4 is a generalization of Theorems 3, and Problem 4
is a generalization of Problem 3, we only have to show one direction of (1)
and (2), respectively. Let r > 2 and G an r-edge-colored graph. Choose
v € V(G) and put s := cg(v) (s > 2 if G has no monochromatic vertices).
W.lo.g., we assume that { xg(e) | e € Eg(v) } equals {1,...,s}. We apply
the following local transformation (see Figure 2 for an illustration). We
split v into vertices vq, ..., vs such that edges e incident with v in G become
incident with v, () in G'. We add new vertices u1, ..., u, and edges u;v;
for 1 < ¢ < s. Finally, we add new vertices w; and ws, the edge wiws
and the edges u;w; for all 1 < i < sand 1 < j < 2. We mark the edge
wrwy and the edges u;v;. We put S, = {wu;,v; | 1 <i<s} and w, = ws.
Applying this construction to all v € V(G) we obtain a graph G’. Note
that S, and S, are disjoint for v # v'. We define a 2-edge-coloring of G’
by putting x¢(e) := 1 if e is a marked edge, and x¢-(€) := 2 otherwise.
Let C' be properly colored cycle in G’. We observe that {v € V(G) |
Sy NV(C') # 0} induces a properly colored cycle C in G. We put



w1 w2

Figure 1: Illustration for the proof of Proposition 3. E; denotes the set of
edges of color 7 incident with v.

7(C") := C. On the other hand, if C' is a properly colored cycle in G,
then C' = 7(C") for some properly colored cycle C’ in G’ (note, however,
that 7 is not 1-to-1). Let X C V(G); we define X' := {w, |v € X } (note
that |X| = |X’|). Evidently, G has a properly colored cycle C' running
through all vertices in X if and only if the properly colored cycle C’ with
m(C") = C runs trough all vertices in X’. Obviously, the above construc-
tions can be carried out efficiently. Thus Problem 4 reduces to Problem 3,
and part (2) of the proposition is shown.

For part (1) we assume to the contrary that G has no monochromatic
vertices, no properly colored cycles, and no color separating cut vertex.
Furthermore, we may assume, w.l.o.g., that no r-edge-colored graph with
fewer vertices than G has this property. As shown above, the 2-edge-colored
graph G’ obtained from G has no properly colored cycles as well (and no
monochromatic vertices by construction); thus by Theorem 3, G’ has a color
separating cut vertex x. By construction of G’, z € S, for some unique
v € V(Q). For letting S, = {uy,v1,...,us,v5}, s = cg(v) > 2, it follows
that some edge u;v;, 1 < i < s, is a bridge of G’; thus v is a cut vertex
of G. Let Kq,..., K\ be the components of G — v, k > 2. Since v is not
color separating by assumption, there is some i € {1,..., k} such that v is
joined to vertices in K; by edges of different colors; w.l.o.g., assume i = 1.
Let G1 := G — Uf:2 V(K;). Since |V (G1)| < |V(G)|, and since G neither
contains monochromatic vertices (in particular, v is not monochromatic by
the choice of i) nor a properly colored cycle, if follows by the minimal choice
of G that (G; has a color separating cut vertex v;. Since the blocks of Gy
are also blocks of GG, we conclude that vy is a color separating cut vertex
of G, a contradiction. Whence, Theorem 4 follows from Theorem 3, and
the proposition is shown true. ]
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6. Semicycles in digraphs

Let D be a digraph. A subdigraph C of D is a semicycle if the (undirected)
graph underlying C is a cycle. A vertex v of a semicycle C' is a turning
vertex of C if v is either a source or a sink of C (i.e., the arcs of C incident
with v are either both outgoing from or both incoming to v).

The following theorem is due to Shoesmith and Smiley [12].

Theorem 5 (Shoesmith and Smiley). If a nonempty set S of vertices
of a digraph D contains a turning verter of each semicycle of D, then S
contains a vertex which is a turning vertex of every semicycle it belongs to.

Let D be a digraph and S C V(D). We call a semicycle C' of D an S-semi-
cycle if no turning vertex of C' belongs to S (thus directed cycles and
V(D)-semicycles coincide). Further, we call a cut vertex v of D a strong
cut vertex if there is no (weakly connected) component of D — v containing
vertices u, w (possibly u = w) such that both (u,v), (v,w) € A(D). Using
these definitions, Theorem 5 can be stated as follows:

Let D be a digraph and ) # S C V(D) such that D has no
S-semicycles. Then S contains some source or some sink or
some strong cut vertex.

Below we will refer to this formulation of Theorem 5.
The appendant problem reads as follows.

Problem 5. Given a digraph D, a set S C V (D), and a set X of p vertices;
is there an S-semicycle which runs through all vertices in X ¢

In [1, Propositions 9.2.1 and 9.2.2] it is shown that the problem whether
a digraph contains a (directed) cycle which runs through two prescribed
vertices is NP-complete. This problem, however, is a special case of Prob-
lem 5, choosing S to be the set of all vertices of the given digraph. Hence
we have the following;:

Lemma 2. Problem 5 is NP-complete for p > 2.

Lemma 3. For proving Theorem 5 and for solving Problem 5 it suffices to
consider bipartite digraphs D with bipartition (S,T).

Proof. Let D be a digraph and S C V(D); we put T := V(D) \ S. If D has
some bridge b = (¢t,t') with ¢,¢ € T, then we can remove b from D without
effecting validity of Theorem 5 or solutions of Problem 5. Hence we assume,
w.l.o.g., that D does not contain bridges of this type. By subdivision of
arcs which join vertices in S or vertices in T we transform D into a bipartite
digraph D’ with bipartition (S’,7") such that S C S’ T C T’



Observe that S-semicycles of D and S’-semicycles of D’ correspond to
each other in a natural way; thus, S-semicycles of D which run trough
X C V(D) correspond to S’-semicycles of D’ which run through X. Con-
sequently, for solving Problem 5 it suffices to consider bipartite digraphs D
with bipartition (S, 7).

Now assume () # S and that D has no S-semicycles; consequently, D’
has no S’-semicycles. We apply Theorem 5 to D’, and conclude that some
x € S’ is a source or a sink or a strong cut vertex. If x is a source or a
sink, then x € S by construction of D’; hence z is also a source or a sink
of D. Now assume that x is a strong cut vertex of D’. Since D has no
bridges (t,t') with ¢,# € T by assumption, no cut vertex of D’ belongs to
S’\ S; thus z € S follows. By construction of D', x is also a strong cut
vertex of D. Hence, for proving Theorem 5 it suffices to consider bipartite
digraphs with bipartition (S, 7). O

In fact, a proof of Theorem 5, restricted to bipartite digraphs where S
is one of the bipartition sets, can already be found in [11, Lemma 10.6].

Proposition 4. (1) Theorem 4 implies Theorem 5. (2) For every p > 0,
Problem 5 can be reduced to Problem 4 in polynomaial time.

Proof. Let D be a digraph and S C V(D). In view of Lemma 3 we may
assume that D is bipartite with bipartition (S,7"). We construct a 2-edge-
colored graph G’ as follows (for an example see Figure 2). For each v €

/ !
S1 82 51 S2

/\/\ m
¢ ¢ T

1 to ty th t] ty
Figure 2: Example for the construction in the proof of Proposition 4.

V(D) we take two new vertices vy, vy and join them by an edge e,; we put
Xc(ey) = 1. For each arc (s,t) € A(D), s € S, t € T, we add edges sat;
and sots, and for each arc (t,s) € A(D), s € S, t € T, we add edges s1t;
and sit2; we put xeor(tis;) = 2.

Let C’ be a properly colored cycle in G'. Observe that for every v €
V(G), v1 € V(C") if and only if vo € V(C"); furthermore, observe that { v €
V(D) | v1,v2 € V(C") } induces an S-semicycle C' in D; we put 7(C’) := C.



Conversely, let C' be an S-semicycle in D. It follows that the subgraph of
G induced by {vy,v2 | v € V(C)} contains a properly colored cycle C’
such that 7(C") = C. For X C V(D) let X' ={v; |ve X} (|X|=|X|
follows). Clearly, D contains an S-semicycle C' with X C V(C) if and only
if there is some properly colored cycle C’ in G’ such that X’ C V(C").
Whence Problem 5 reduces to Problem 4 in polynomial time.

Assume S # () and that (i) D contains no S-semicycles, and (ii) S con-
tains no sources or sinks. We show that S contains a strong cut vertex of D.
From (i) it follows (as shown above) that G’ has no properly colored cycles;
from (ii) and the construction of G’, it follows that G’ has no monochro-
matic vertices. Hence we conclude by Theorem 4 that G’ has some color
separating cut vertex v; for some v € V(D) and i € {1,2}. Moreover, v
must belong to S, since for every t € T', t; and t lie on a triangle. How-
ever, if v; is a cut vertex, then the very construction of G’ implies that v1vo
is a bridge of G’, and consequently, v is a strong cut vertex of D. Thus
Theorem 5 follows from Theorem 4. ]

Proposition 5. (1) Theorem 1 follows from Theorem 5. (2) For every
p > 0, Problem 5 can be reduced to Problem 1 in polynomial time.

Proof. Let G be a graph, F' a 1-factor of G, and set S := V(G). We obtain
a bipartite Graph G’ with bipartition (S,T) from G by subdividing each
edge e of G by some new vertex t, € T. We define an orientation D’ of G’
by replacing edges st. € E(G), by (te, s) if e € F, and by (s, t.) otherwise.
Observe that every vertex in T is either source or sink of D’; namely, t, is
a source if e € F' and a sink otherwise.

Consider an F-alternating cycle C'in G. Observe that C'is a subdivision
of an S-semicycle cycle C’ of D’; we put w(C) = C’. On the other hand,
for any S-semicycle C’ of D', V(C')N S defines an F-alternating cycle C' in
G with 7(C) = C’. Whence 7 is a bijection between F-alternating cycles
of G and S-semicycles of D’. Since V(C) C V(w(C)), we conclude that
Problem 1 can be reduced to Problem 5 in polynomial time.

Assume that no bridge of G belongs to F'; we show that G contains
an F-alternating cycle. No s € S is a strong cut vertex of D’; otherwise,
the unique edge e € Eg(s) N F would be a bridge of G. Moreover, since
every s € S is incident in G with some e € F', s is not a source of D; and
since no e € F' is a bridge of GG, s is not a sink of D. Consequently, S
contains no sources or sinks, and so we conclude by Theorem 5 that D has
some S-semicycle C; hence 7~1(C) is an F-alternating cycle of G. Whence
Theorem 1 follows from Theorem 5, and the proposition is shown true. [

10



7. Conclusion

Putting together Propositions 1-5, we get the following result.
Theorem 6. Theorems 1-5 are all mutually equivalent.

Moreover, since Problems 1-5 can all be reduced to each other in polynomial
time, Lemmas 1 and 2 imply the following (which has been noted w.r.t.
Problem 4 in [1, Propositions 11.1.1 and 11.1.9]).

Theorem 7. Problems 1-5 can be solved in polynomial time for p < 2 and
are NP-complete for p > 2.

Note that by the procedure described in Lemma 1, one cannot only decide
ezistence of an F-alternating cycle through < 2 prescribed vertices, but
such cycle can be found in polynomial time (if it exists). Since the reduc-
tions in the proofs of Propositions 1-5 transform cycles which are solutions
w.r.t. one problem to cycles which are solutions w.r.t. an other problem,
we can actually find solutions for Problems 1-5 (p < 2) in polynomial time
(if such exist).
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