Declarative Knowledge Processing
Lecture 5: Complexity of reasoning in \mathcal{ALC}

Magdalena Ortiz

Knowledge Base Systems Group
Institute of Information Systems

ortiz@kr.tuwien.ac.at

WS 2012/2013
Recommended Resources

- The DL Complexity Navigator contains links to dozens of complexity results
 http://www.cs.man.ac.uk/~ezolin/dl/

 Emphasis on different DLs, only fragments are really related to today’s lecture
Complexity of Reasoning

- As we have mentioned, the tableau algorithm is not worst-case optimal

- Apart from devising ‘practicable’ algorithms, we are also interested in understanding the expressiveness of \mathcal{ALC} and the real complexity of the relevant reasoning problems

- We now look briefly at the computational complexity of reasoning in \mathcal{ALC}
Complexity of reasoning in \(\mathcal{ALC}\)

Outline

1. The complexity of concept satisfiability

2. The complexity of Knowledge Base satisfiability
 2.1 An ExpTime algorithm for reasoning in \(\mathcal{ALC}\)
 2.2 ExpTime-hardness (intuition only)

3. Summary
Concept satisfiability in \mathcal{ALC}

Recall:

Theorem

Deciding satisfiability of \mathcal{ALC} concepts is PSpace-complete.

Proof. [Membership] For every \mathcal{ALC} concept C, it is possible to obtain in linear time a formula φ_C in multi-modal \mathcal{K} such that φ_C is satisfiable iff C is satisfiable. Since formula satisfiability in multi-modal \mathcal{K} can be decided in polynomial space, then \mathcal{ALC} concept satisfiability can also be decided in polynomial space.

[Hardness] For every formula φ in multi-modal \mathcal{K} it is possible to obtain in linear time an \mathcal{ALC} concept C_φ such that C_φ is satisfiable iff φ is satisfiable. Since formula satisfiability in multi-modal \mathcal{K} is PSpace-hard, then so is satisfiability of \mathcal{ALC} concepts.

PSpace completeness extends to \mathcal{ALC} concept subsumption.
Acyclic TBoxes

Definition (Acyclic TBox)

Let \mathcal{T} be a TBox \mathcal{T} that contains only
- definitions of the form $A \equiv C$ and
- primitive concept inclusions of the form $A \sqsubseteq C$,
where A is a concept name, and such that each concept name occurs at most once in the left hand side of the axioms.

Let A, B be concept names occurring in \mathcal{T}. We say that A directly uses B if there is an axiom $A \equiv C$ or $A \sqsubseteq C$ such that B occurs in C. The relation uses is the transitive closure of directly uses.

Then we say that \mathcal{T} is acyclic if there no concept names A, B such that A uses B and B uses A.

Reasoning w.r.t. Acyclic TBoxes

Lemma

Given an \(\mathcal{ALC} \) KB \(\mathcal{K} = (\mathcal{T}, \mathcal{A}) \) where \(\mathcal{T} \) is acyclic, deciding satisfiability of \(\mathcal{K} \) is PSpace-complete.

- PSpace hardness follows directly.
- It is only necessary to show that satisfiability of \(\mathcal{K} \) can be decided in polynomial space. Intuitively:
 - Recall our (informal) PSpace argument for the tableau for concepts
 - If the TBox is acyclic, a tableau algorithm only needs to ‘unfold’ the definitions of the concepts in the current labels
 - This will always lead to concepts of smaller ‘implicit’ quantifier depth, and thus ensure that branches have polynomial depth
- Note: satisfiability w.r.t. acyclic TBoxes can be reduced to plain concept satisfiability, but the resulting concept may be exponentially larger
Reasoning w.r.t. Acyclic TBoxes (cont’d)

- In the presence of acyclic TBoxes, PSpace completeness also holds for concept subsumption and instance checking
 - the reductions preserve cyclicity

- However, reasoning gets harder if we consider arbitrary TBoxes!
ExpTime-completeness of \mathcal{ALC}

Theorem

Deciding satisfiability of \mathcal{ALC} knowledge bases is ExpTime-complete.

This means that:

1. Deciding satisfiability of \mathcal{ALC} knowledge bases is ExpTime-hard.
 - Any correct algorithm will need exponential time to terminate, at least in some cases,
 + but we can solve some problems that are so hard that they can not be solved in polynomial time.

2. Deciding satisfiability of \mathcal{ALC} knowledge bases is in ExpTime.
 + There is an algorithm that only needs exponential time,
 - but \mathcal{ALC} can not express problems that are, for example, 2-ExpTime hard.

ExpTime-completeness extends to the other mentioned reasoning tasks w.r.t. TBoxes and KBs.
ExpTime-completeness of \mathcal{ALC} (cont’d)

How do we show this theorem?

One needs to show:

hardness (lower bound) Deciding satisfiability of \mathcal{ALC} knowledge bases is ExpTime-hard.

membership (upper bound) Deciding satisfiability of \mathcal{ALC} knowledge bases is in ExpTime.

- We will show membership, for a simplified case
 - No ABoxes, we consider the satisfiability of a TBox only

- and briefly discuss the hardness, without giving a formal proof.
Membership

Lemma

Deciding satisfiability of an \mathcal{ALC} TBox is in ExpTime.

To show the lemma, we show that there exists an algorithm such that:

- It takes an \mathcal{ALC} TBox \mathcal{T} as an input.

- It always terminates, and answers ‘satisfiable’ or ‘unsatisfiable’

- If it answers ‘satisfiable’, then there exists a model of \mathcal{T} (i.e. the algorithm is sound)

- If there exists a model of \mathcal{T}, then it answers ‘satisfiable’ (i.e. the algorithm is complete)

- It terminates in time $O(2^{p(\mathcal{T})})$ for some polynomial function $p(\mathcal{T})$.
A Type Elimination Algorithm

Our algorithm is based on *type elimination*

- Let $C_T = \bigcap_{C \sqsubseteq D \in \mathcal{T}} \text{NNF}(\neg C \sqcup D)$ be defined as usual

- $\text{sub}(\mathcal{T})$ contains C_T and is closed under subconcepts and their negations in NNF

Definition (Type)

A \mathcal{T}-type is a set $\tau \subseteq \text{sub}(\mathcal{T})$ that satisfies:

- $C \in \tau$ iff $\text{NNF}(\neg C) \notin \tau$, for all $C \in \text{sub}(\mathcal{K})$
- if $C \sqcap D \in \tau$, then $C \in \tau$ and $D \in \tau$,
- if $C \sqcup D \in \tau$, then $C \in \tau$ or $D \in \tau$, and
- $C_T \in \tau$.

A Type Elimination Algorithm (cont’d)

Roughly, models of \mathcal{T} are composed of types.

To decide the existence of a model, we:

- Generate all types
 - we can do it because there are only exponentially many
- Eliminate the ones that can not occur in the models of \mathcal{T}
- At the end, check whether the set of remaining types is empty
- If it is not empty, then there is a model of \mathcal{T}, and the algorithm answers ‘satisfiable’
- If is empty, then the algorithm answers ‘unsatisfiable’
Good and bad types

Which types can not occur in the models of T?

- Let T be a set of types.

- We say that a type τ is **good in T**, if for every $\exists R.C \in \tau$, there is some $\tau' \in T$ such that
 - $C \in \tau'$ and
 - $\{D \mid \forall R.D \in \tau\} \subseteq \tau'$

 Intuitively, we can find suitable ‘successors’ for τ in T

- A type is **bad in T** if it is not good in T
 A bad type contains some existential restriction that we can not satisfy using the types in T
Type Elimination Algorithm

- First, we compute the set T_0 of all \mathcal{T}-types
- We repeatedly compute T_{i+1} from T_i, until $T_{i+1} = T_i$

$$T_{i+1} = \{ \tau \in T_i \mid \tau \text{ is good in } T_i \}$$

- If the final T_ω is not empty, then return ‘satisfiable’
- Otherwise, return ‘unsatisfiable’

To decide whether a concept C is satisfiable w.r.t. to a TBox \mathcal{T}, simply run the algorithm as above, but return ‘satisfiable’ if the final T_ω contains some type τ with $C \in \tau$, and ‘unsatisfiable’ otherwise.
Correctness and Complexity

- The algorithm terminates in $O(2^{2 \cdot |\text{sub}(\mathcal{T})|})$ steps, and $\text{sub}(\mathcal{T})$ is linear in \mathcal{T}.

- The algorithm returns ‘satisfiable’ iff \mathcal{T} is satisfiable (or, resp., if C is satisfiable w.r.t. \mathcal{T}).

 - If all types in a set are good (and one contains C), then we can build a tree model of \mathcal{T} (whose root satisfies C').

 - If we take a model of \mathcal{T} (and C) and break it up into small pieces, we obtain a set of good types (where one contains C').
Comparing with Tableaux

Some similarities are clear:

- the \sqcap, \sqcup, and \top rules are captured by the definition of type
- the \exists and \forall rules are reflected in the notion of good in T
- absence of clashes is also reflected in definition of type

In the worst-case, the tableau algorithm may need more than double exponential time, while type elimination needs only single exponential!

But what about the best case? and average cases?
ExpTime-hardness

- To formally prove this, one needs to give a (polynomial) reduction from an ExpTime-hard problem to KB satisfiability in \mathcal{ALC}.

- For example, one could reduce some problem like:
 - The word problem for a deterministic Turing machine that runs in single exponential time
 - The word problem for an alternating Turing machine that runs in polynomial space (easier to encode)
 - The succinct version of the Graph-accessibility problem (see proof by Donini in the DL handbook)

- We do not do any such reduction here, and only discuss some informal intuitions
ExpTime-hardness (cont’d)

- Similarly as for \mathcal{ALC} concepts, the graph representation of the model of an \mathcal{ALC} KB is a forest with exponentially many branches.

- But in the presence of GCIs, the depth of the relevant concepts need not decrease along the branches.

- Branches may be infinite, and some kind of cycle detection is required.

- In general, a cycle is only enforced after using exponential space.

- This makes reasoning ExpTime hard.

- It is not hard to write an \mathcal{ALC} KB whose models simulate an exponential counter (this is important for the mentioned encodings).

- ExpTime-hardness holds already for deciding the existence of a model of a TBox (or concept satisfiability w.r.t. a TBox).
Some of the Main Ideas of Today

- Reasoning about concepts in \mathcal{ALC} is PSpace-complete
- The same holds for KB reasoning if TBoxes are acyclic
- Without this restriction, reasoning in \mathcal{ALC} is ExpTime-complete
- Basic intuition:
 - Branches of polynomial depth \sim PSpace
 - Branches of exponential/unbounded depth \sim ExpTime
- Type elimination is a simple and elegant way to show an ExpTime upper bound for reasoning in \mathcal{ALC} and in other logics

In the next lecture, we will discuss reasoning techniques and complexity results for extensions of \mathcal{ALC}