Declarative Knowledge Processing
Lecture 5: Complexity of reasoning in \mathcal{ALC}

Magdalena Ortiz

Knowledge Base Systems Group
Institute of Information Systems

ortiz@kr.tuwien.ac.at

3 November 2010
Recommended Resources

- The DL Complexity Navigator contains links to dozens of complexity results
 http://www.cs.man.ac.uk/~ezolin/dl/

 Emphasis on different DLs, only fragments are really related to today’s lecture
Complexity of reasoning in \mathcal{ALC}

Complexity of Reasoning

- As we have mentioned, the tableau algorithm is not worst-case optimal

- Apart from devising ‘practicable’ algorithms, we are also interested in understanding the expressiveness of \mathcal{ALC} and the real complexity of the relevant reasoning problems

- We now look briefly at the computational complexity of reasoning in \mathcal{ALC}
Outline

1. The complexity of concept satisfiability

2. The complexity of Knowledge Base satisfiability
 2.1 An ExpTime algorithm for reasoning in \mathcal{ALC}
 2.2 ExpTime-hardness (intuition only)

3. Summary
Concept satisfiability in \mathcal{ALC}

Recall:

Theorem

Deciding satisfiability of \mathcal{ALC} concepts is PSpace-complete.

Proof. [Membership] For every \mathcal{ALC} concept C, it is possible to obtain in linear time a formula φ_C in multi-modal K such that φ_C is satisfiable iff C is satisfiable. Since formula satisfiability in multi-modal K can be decided in polynomial space, then \mathcal{ALC} concept satisfiability can also be decided in polynomial space.

[Hardness] For every formula φ in multi-modal K it is possible to obtain in linear time an \mathcal{ALC} concept C_φ such that C_φ is satisfiable iff φ is satisfiable. Since formula satisfiability in multi-modal K is PSpace-hard, then so is satisfiability of \mathcal{ALC} concepts.

PSpace completeness extends to \mathcal{ALC} concept subsumption.
Acyclic TBoxes

Definition (Acyclic TBox)

Let \mathcal{T} be a TBox \mathcal{T} that contains only
- definitions of the form $A \equiv C$ and
- primitive concept inclusions of the form $A \sqsubseteq C$,

where A is a concept name, and such that each concept name occurs at most once in the left hand side of the axioms.

Let A, B be concept names occurring in \mathcal{T}. We say that A directly uses B if there is an axiom $A \equiv C$ or $A \sqsubseteq C$ such that B occurs in C. The relation uses is the transitive closure of directly uses.

Then we say that \mathcal{T} is acyclic if there no concept names A, B such that A uses B and B uses A.
Reasoning w.r.t. Acyclic TBoxes

Lemma

Given an ALC KB $\mathcal{K} = (T, A)$ where T is acyclic, deciding satisfiability of \mathcal{K} is PSpace-complete.

- PSpace hardness follows directly.
- It is only necessary to show that satisfiability of \mathcal{K} can be decided in polynomial space. Intuitively:
 - Recall our (informal) PSpace argument for the tableau for concepts
 - If the TBox is acyclic, a tableau algorithm only needs to ‘unfold’ the definitions of the concepts in the current labels
 - This will always lead to concepts of smaller ‘implicit’ quantifier depth, and thus ensure that branches have polynomial depth

- Note: satisfiability w.r.t. acyclic TBoxes can be reduced to plain concept satisfiability, but the resulting concept may be exponentially larger
In the presence of acyclic TBoxes, PSpace completeness also holds for concept subsumption and instance checking.

- the reductions preserve cyclicity

However, reasoning gets harder if we consider arbitrary TBoxes!
ExpTime-completeness of \mathcal{ALC}

Theorem

Deciding satisfiability of \mathcal{ALC} knowledge bases is ExpTime-complete.

This means that:

1. Deciding satisfiability of \mathcal{ALC} knowledge bases is ExpTime-hard.
 - Any correct algorithm will need exponential time to terminate, at least in some cases,
 + but we can solve some problems that are so hard that they cannot be solved in polynomial time.

2. Deciding satisfiability of \mathcal{ALC} knowledge bases is in ExpTime.
 + There is an algorithm that only needs exponential time,
 - but \mathcal{ALC} cannot express problems that are, for example, 2-ExpTime hard.

ExpTime-completeness extends to the other mentioned reasoning tasks w.r.t. TBoxes and KBs.
ExpTime-completeness of \mathcal{ALC} (cont’d)

How do we show this theorem?

One needs to show:

- **hardness (lower bound)** Deciding satisfiability of \mathcal{ALC} knowledge bases is ExpTime-hard.

- **membership (upper bound)** Deciding satisfiability of \mathcal{ALC} knowledge bases is in ExpTime.

- We will show membership, for a simplified case
 - No ABoxes, we consider the satisfiability of a TBox only

- and briefly discuss the hardness, without giving a formal proof.
Membership

Lemma

Deciding satisfiability of an \mathcal{ALC} TBox is in ExpTime.

To show the lemma, we show that there exists an algorithm such that:

- It takes an \mathcal{ALC} TBox \mathcal{T} as an input.
- It always terminates, and answers ‘satisfiable’ or ‘unsatisfiable’
- If it answers ‘satisfiable’, then there exists a model of \mathcal{T} (i.e. the algorithm is sound)
- If there exists a model of \mathcal{T}, then it answers ‘satisfiable’ (i.e. the algorithm is complete)
- It terminates in time $O(2^{p(\mathcal{T})})$ for some polynomial function $p(\mathcal{T})$.
A Type Elimination Algorithm

Our algorithm is based on *type elimination*

- Let $C_T = \bigsqcap_{C \sqsubseteq D \in T} \text{NNF}(\neg C \sqcup D)$ be defined as usual.

- $\text{sub}(T)$ contains C_T and is closed under subconcepts and their negations in NNF.

Definition (Type)

A T-type is a set $\tau \subseteq \text{sub}(T)$ that satisfies:

- $C \in \tau$ iff $\text{NNF}(\neg C) \notin \tau$, for all $C \in \text{sub}(\mathcal{K})$.

- if $C \sqcap D \in \tau$, then $C \in \tau$ and $D \in \tau$.

- if $C \sqcup D \in \tau$, then $C \in \tau$ or $D \in \tau$, and

- $C_T \in \tau$.

A Type Elimination Algorithm (cont’d)

Roughly, models of T are composed of types.

To decide the existence of a model, we:

- Generate all types
 - we can do it because there are only exponentially many
- Eliminate the ones that can not occur in the models of T
- At the end, check whether the set of remaining types is empty
- If it is not empty, then there is a model of T, and the algorithm answers ‘satisfiable’
- If is empty, then the algorithm answers ‘unsatisfiable’
Good and bad types

Which types can not occur in the models of \mathcal{T}?

- Let \mathcal{T} be a set of types.

- We say that a type τ is good in \mathcal{T}, if for every $\exists R. C \in \tau$, there is some $\tau' \in \mathcal{T}$ such that:
 - $C \in \tau'$ and
 - $\{D \mid \forall R. D \in \tau\} \subseteq \tau'$

 Intuitively, we can find suitable ‘successors’ for τ in \mathcal{T}

- A type is bad in \mathcal{T} if it is not good in \mathcal{T}

 A bad type contains some existential restriction that we can not satisfy using the types in \mathcal{T}
Type Elimination Algorithm

- First, we compute the set T_0 of all \mathcal{T}-types.
- We repeatedly compute T_{i+1} from T_i, until $T_{i+1} = T_i$

$$T_{i+1} = \{ \tau \in T_i \mid \tau \text{ is good in } T_i \}$$

- If the final T_ω is not empty, then return ‘satisfiable’
- Otherwise, return ‘unsatisfiable’

To decide whether a concept C is satisfiable w.r.t. to a TBox \mathcal{T}, simply run the algorithm as above, but return ‘satisfiable’ if the final T_ω contains some type τ with $C \in \tau$, and ‘unsatisfiable’ otherwise.
Correctness and Complexity

- The algorithm terminates in $O(2^{2 \cdot |\text{sub}(T)|})$ steps, and $\text{sub}(T)$ is linear in \mathcal{K}

- The algorithm returns ‘satisfiable’ iff \mathcal{K} is satisfiable

 - If all type in a set are good, and one contains C_0, then we can build a tree model of T whose root satisfies C_0

 - If we take a model of \mathcal{K} and break it up into small pieces, we obtain a set of good types where one contains C_0
Comparing with Tableaux

Some similarities are clear:

- the \(\cap \), \(\cup \), and \(\top \) rules are captured by the definition of type
- the \(\exists \) and \(\forall \) rules are reflected in the notion of \textit{good in} \(T \)
- absence of clashes is also reflected in definition of type

In the worst-case, the tableau algorithm may need more than double exponential time, while type elimination needs only single exponential!

But what about the best case? and average cases?
ExpTime-hardness

- To formally prove this, one needs to give a (polynomial) reduction from an ExpTime-hard problem to KB satisfiability in ALC.

- For example, one could reduce some problem like:
 - The word problem for a deterministic Turing machine that runs in single exponential time
 - The word problem for an alternating Turing machine that runs in polynomial space (easier to encode)
 - The succinct version of the Graph-accessibility problem (see proof by Donini in the DL handbook)

- We do not do any such reduction here, and only discuss some informal intuitions
ExpTime-hardness (cont’d)

- Similarly as for \mathcal{ALC} concepts, the graph representation of the model of an \mathcal{ALC} KB is a forest with exponentially many branches.

- But in the presence of GCIs, the depth of the relevant concepts need not decrease along the branches.

- Branches may be infinite, and some kind of cycle detection is required.

- In general, a cycle is only enforced after using exponential space.

- This makes reasoning ExpTime hard.

- It is not hard to write an \mathcal{ALC} KB whose models simulate an exponential counter (this is important for the mentioned encodings).

- ExpTime-hardness holds already for deciding the existence of a model of a TBox (or concept satisfiability w.r.t. a TBox).
Some of the Main Ideas of Today

- Reasoning about concepts in \mathcal{ALC} is PSpace-complete.
- The same holds for KB reasoning if TBoxes are acyclic.
- Without this restriction, reasoning in \mathcal{ALC} is ExpTime-complete.

Basic intuition:
- Branches of polynomial depth \sim PSpace
- Branches of exponential/unbounded depth \sim ExpTime

Type elimination is a simple and elegant way to show an ExpTime upper bound for reasoning in \mathcal{ALC} and in other logics.

In the next lecture, we will discuss reasoning techniques and complexity results for extensions of \mathcal{ALC}.