Declarative Knowledge Processing
Lecture 5: Complexity of reasoning in \mathcal{ALC}

Magdalena Ortiz
Knowledge Base Systems Group
Institute of Information Systems
ortiz@kr.tuwien.ac.at

3 November 2010

Complexity of reasoning in \mathcal{ALC}

Recommended Resources

- The DL Complexity Navigator contains links to dozens of complexity results
 http://www.cs.man.ac.uk/~ezolin/dl/

 Emphasis on different DLs, only fragments are really related to today’s lecture

Complexity of Reasoning

As we have mentioned, the tableau algorithm is not worst-case optimal

Apart from devising ‘practicable’ algorithms, we are also interested in understanding the expressiveness of \mathcal{ALC} and the real complexity of the relevant reasoning problems

We now look briefly at the computational complexity of reasoning in \mathcal{ALC}

Outline

1. The complexity of concept satisfiability

2. The complexity of Knowledge Base satisfiability
 2.1 An ExpTime algorithm for reasoning in \mathcal{ALC}
 2.2 ExpTime-hardness (intuition only)

3. Summary
Complexity of reasoning in ALC 1. Concept satisfiability

Concept satisfiability in ALC

Recall:

Theorem

Deciding satisfiability of ALC concepts is PSpace-complete.

Proof. [Membership] For every ALC concept \(C \), it is possible to obtain in linear time a formula \(\varphi_C \) in multi-modal K such that \(\varphi_C \) is satisfiable iff \(C \) is satisfiable. Since formula satisfiability in multi-modal K can be decided in polynomial space, then ALC concept satisfiability can also be decided in polynomial space.

[Hardness] For every formula \(\varphi \) in multi-modal K it is possible to obtain in linear time an ALC concept \(C_\varphi \) such that \(C_\varphi \) is satisfiable iff \(\varphi \) is satisfiable. Since formula satisfiability in multi-modal K is PSpace-hard, then so is satisfiability of ALC concepts.

\(\square \)

PSpace completeness extends to ALC concept subsumption.

Reasoning w.r.t. Acyclic TBoxes

Lemma

Given an ALC KB \(K = (T,A) \) where \(T \) is acyclic, deciding satisfiability of \(K \) is PSpace-complete.

- PSpace hardness follows directly.
- It is only necessary to show that satisfiability of \(K \) can be decided in polynomial space. Intuitively:
 - Recall our (informal) PSpace argument for the tableau for concepts
 - If the TBox is acyclic, a tableau algorithm only needs to ‘unfold’ the definitions of the concepts in the current labels
 - This will always lead to concepts of smaller ‘implicit’ quantifier depth, and thus ensure that branches have polynomial depth
- Note: satisfiability w.r.t. acyclic TBoxes can be reduced to plain concept satisfiability, but the resulting concept may be exponentially larger

Reasoning w.r.t. Acyclic TBoxes (cont’d)

- In the presence of acyclic TBoxes, PSpace completeness also holds for concept subsumption and instance checking
 - the reductions preserve cyclicity
- However, reasoning gets harder if we consider arbitrary TBoxes!
ExpTime-completeness of ALC

Theorem

Deciding satisfiability of ALC knowledge bases is ExpTime-complete.

This means that:

1. Deciding satisfiability of ALC knowledge bases is ExpTime-hard.
 - Any correct algorithm will need exponential time to terminate, at least in some cases,
 + but we can solve some problems that are so hard that they can not be solved in polynomial time.
2. Deciding satisfiability of ALC knowledge bases is in ExpTime.
 + There is an algorithm that only needs exponential time,
 - but ALC can not express problems that are, for example, 2-ExpTime-hard.

ExpTime-completeness extends to the other mentioned reasoning tasks w.r.t. TBoxes and KBs.

ExpTime-completeness of ALC (cont’d)

How do we show this theorem?

One needs to show:

- **hardness (lower bound)** Deciding satisfiability of ALC knowledge bases is ExpTime-hard.
- **membership (upper bound)** Deciding satisfiability of ALC knowledge bases is in ExpTime.

- We will show membership, for a simplified case
 - No ABoxes, we consider the satisfiability of a TBox only
 - and briefly discuss the hardness, without giving a formal proof.

Memberhp

Lemma

Deciding satisfiability of an ALC TBox is in ExpTime.

To show the lemma, we show that there exists an algorithm such that:

- It takes an ALC TBox T as an input.
- It always terminates, and answers ‘satisfiable’ or ‘unsatisfiable’
- If it answers ‘satisfiable’, then there exists a model of T (i.e. the algorithm is sound)
- If there exists a model of T, then it answers ‘satisfiable’ (i.e. the algorithm is complete)
- It terminates in time $O(2^{p(T)})$ for some polynomial function $p(T)$.

A Type Elimination Algorithm

Our algorithm is based on type elimination

- Let $C_T = \prod_{C \subseteq T} \text{NFF}(\neg C \sqcup D)$ be defined as usual
- sub(T) contains C_T and is closed under subconcepts and their negations in NNF

Definition (Type)

A T-type is a set $\tau \subseteq \text{sub}(T)$ that satisfies:

- $C \in \tau$ iff $\text{NFF}(\neg C) \notin \tau$, for all $C \in \text{sub}(K)$
- if $C \sqcap D \in \tau$, then $C \in \tau$ and $D \in \tau$,
- if $C \sqcup D \in \tau$, then $C \in \tau$ or $D \in \tau$, and
- $C_T \in \tau$.
A Type Elimination Algorithm (cont’d)

Roughly, models of T are composed of types.

To decide the existence of a model, we:

- Generate all types
 - we can do it because there are only exponentially many
- Eliminate the ones that cannot occur in the models of T
- At the end, check whether the set of remaining types is empty
- If it is not empty, then there is a model of T, and the algorithm answers ‘satisfiable’
- If it is empty, then the algorithm answers ‘unsatisfiable’

Good and bad types

Which types can not occur in the models of T?

- Let T be a set of types.
- We say that a type τ is good in T, if for every $\exists R. C \in \tau$, there is some $\tau' \in T$ such that
 - $C \in \tau'$ and
 - $\{D \mid \forall R. D \in \tau\} \subseteq \tau'$
- Intuitively, we can find suitable ‘successors’ for τ in T
- A type is bad in T if it is not good in T
- A bad type contains some existential restriction that we cannot satisfy using the types in T

Type Elimination Algorithm

- First, we compute the set T_0 of all T-types
- We repeatedly compute T_{i+1} from T_i, until $T_{i+1} = T_i$
 \[
 T_{i+1} = \{\tau \in T_i \mid \tau \text{ is good in } T_i\}
 \]
- If the final T_ω is not empty, then return ‘satisfiable’
- Otherwise, return ‘unsatisfiable’

To decide whether a concept C is satisfiable w.r.t. to a TBox T, simply run the algorithm as above, but return ‘satisfiable’ if the final T_ω contains some type τ with $C \in \tau$, and ‘unsatisfiable’ otherwise

Correctness and Complexity

- The algorithm terminates in $O(2^{2^{|\text{sub}(T)|}})$ steps, and $\text{sub}(T)$ is linear in \mathcal{K}
- The algorithm returns ‘satisfiable’ iff \mathcal{K} is satisfiable
 - If all type in a set are good, and one contains C_0, then we can build a tree model of T whose root satisfies C_0
 - If we take a model of \mathcal{K} and break it up into small pieces, we obtain a set of good types where one contains C_0
Comparing with Tableaux

Some similarities are clear:
- the \cap, \cup, and T rules are captured by the definition of type
- the \exists and \forall rules are reflected in the notion of good in T
- absence of clashes is also reflected in definition of type

In the worst-case, the tableau algorithm may need more than double exponential time, while type elimination needs only single exponential!

But what about the best case? and average cases?

ExpTime-hardness

- To formally prove this, one needs to give a (polynomial) reduction from an ExpTime-hard problem to KB satisfiability in \mathcal{ALC}.
- For example, one could reduce some problem like:
 - The word problem for a deterministic Turing machine that runs in single exponential time
 - The word problem for an alternating Turing machine that runs in polynomial space (easier to encode)
 - The succinct version of the Graph-accessibility problem (see proof by Donini in the DL handbook)
- We do not do any such reduction here, and only discuss some informal intuitions

ExpTime-hardness (cont’d)

- Similarly as for \mathcal{ALC} concepts, the graph representation of the model of an \mathcal{ALC} KB is a forest with exponentially many branches
- But in the presence of GCIs, the depth of the relevant concepts need not decrease along the branches
- Branches may be infinite, and some kind of cycle detection is required
- In general, a cycle is only enforced after using exponential space
- This makes reasoning ExpTime hard
- It is not hard to write an \mathcal{ALC} KB whose models simulate an exponential counter (this is important for the mentioned encodings)
- ExpTime-hardness holds already for deciding the existence of a model of a TBox (or concept satisfiability w.r.t. a TBox)

Some of the Main Ideas of Today

- Reasoning about concepts in \mathcal{ALC} is PSpace-complete
- The same holds for KB reasoning if TBoxes are acyclic
- Without this restriction, reasoning in \mathcal{ALC} is ExpTime-complete
- Basic intuition:
 - Branches of polynomial depth \sim PSpace
 - Branches of exponential/unbounded depth \sim ExpTime
- Type elimination is a simple and elegant way to show an ExpTime upper bound for reasoning in \mathcal{ALC} and in other logics

In the next lecture, we will discuss reasoning techniques and complexity results for extensions of \mathcal{ALC}