Declarative Knowledge Processing
Lecture 7: Lightweight DLs

Magdalena Ortiz

Knowledge Base Systems Group
Institute of Information Systems

ortiz@kr.tuwien.ac.at

17 November 2010
A Bit of History
(based on slides by C. Lutz)

Ancient Period of DLs (until mid 1990s)

• Reasoning must be efficient, hence we cannot include all Booleans
• Applications need conjunction and universal restrictions (which make reasoning NP hard)

The $SHIQ$ era (since mid 1990s)

• Efficient reasoners for ExpTime logics are possible (FaCT reasoner)
• We need all the Booleans and more (but preserving decidability):

\[ALC \hookrightarrow SHIQ \hookrightarrow OWL\ 1\ (SHOIQ) \hookrightarrow OWL\ 2\ (SROIQ) \]
A Bit of History (cont’d)
(based on slides by C. Lutz)

With the transition

$$\text{ALC} \leadsto \text{SHIQ} \leadsto \text{OWL 1 (SHOIQ)} \leadsto \text{OWL 2 (SROIQ)}$$

the promise of efficiency on natural inputs became increasingly untrue

- In some applications this complexity is unacceptable

The \mathcal{EL} and DL-$Lite$ era (since ca. 2005)

- Scalable lightweight DLs are sufficient for many applications
- Existential restrictions are more important than universal ones
Lightweight DLs

In this lecture, we study the \mathcal{EL} and DL-$Lite$ families of description logics

- Core language
- Motivation and applications
- Reasoning techniques
- Computational advantages
- Extensions of the core language and limits of the fragment

We also discuss how some of the positive features of \mathcal{EL} and DL-$Lite$ families can be extended to more expressive languages in Horn DLs.
Outline

1. Introduction

2. \mathcal{EL}
 2.1 Core Language
 2.2 Motivation and Applications
 2.3 Reasoning Techniques
 2.4 Extensions and Limits

3. DL-Lite
 3.1 Core Language
 3.2 Motivation and Applications
 3.3 Reasoning Techniques
 3.4 Data Complexity in DL-Lite
 3.5 Extensions and Limits

4. Lightweight Profiles for OWL 2

5. Other Horn DLs
Recommended Reading and Links

- **Pushing the \mathcal{EL} Envelope**. Franz Baader, Sebastian Brandt, and Carsten Lutz. IJCAI 2005, pages 364-369, 2005.

- **Pushing the \mathcal{EL} Envelope Further**. Franz Baader, Sebastian Brandt, and Carsten Lutz. In OWLED 2008.

The Basic \mathcal{EL}

Essentially, \mathcal{EL} is a half of \mathcal{ALC}:

- It supports existential restrictions $\exists R.C$, but no universal ones
- It supports conjunction $C \sqcap D$, but no disjunction
- Of course, it does not allow for negation
 - but we can use \bot to express a restricted form of negation, see later

\mathcal{EL} concepts are defined inductively as follows

$$C, D \longrightarrow A \mid \top \mid C \sqcap D \mid \exists R.C$$

where $A \in N_C$ is a concept name and $R \in N_R$ is a role.
Motivation and Applications

In many applications existential restrictions and conjunction seem to play a central role.

- Many medical and Life Sciences ontologies rely on this kind of axioms:

```plaintext
ViralPneumonia ⊑ ∃CausitiveAgent.Virus
ViralPneumonia ⊑ InfectiousPneumonia
InfectiousPneumonia ⊑ Pneumonia □ InfectiousDisease
Pneumonia ⊑ ∃AssociatedMorphology.Inflammation
Pneumonia ⊑ ∃FindingSite.Lung
```
SNOMED CT (Systematized Nomenclature of Medicine – Clinical Terms) is written in (a minor extension of) \mathcal{EL}

So are

- large fragments of the GALEN ontology (Generalized Architecture for Languages, Encyclopaedias and Nomenclatures in medicine), another very important medical ontology http://www.openclinical.org/prj_galen.html
- etc.
Satisfiability in \mathcal{EL}

In the basic \mathcal{EL}

- Every concept C is satisfiable:
 - C induces a description tree that can be seen as a representation of a model

- It is also easy to show that every concept C is satisfiable w.r.t. every TBox and w.r.t. every KB.

Theorem

Satisfiability (w.r.t. a TBox / KB) is trivial in \mathcal{EL}.

Hence, we concentrate on deciding subsumption
Canonical Models in \mathcal{EL}

As usual, we use $\text{sub}(C)$ to denote the set of subconcepts of C.

Definition

Let C be an \mathcal{EL} concept. We define

$$\text{ex}(C) = \{ C \} \cup \{ D \mid \exists R. D \in \text{sub}(C) \}$$

Then the **canonical model** of C is the interpretation \mathcal{I}_C such that:

- The domain $\Delta^\mathcal{I}$ contains one element d_D for each $D \in \text{ex}(C)$
- $A^\mathcal{I} = \{ d_D \mid A \text{ is a conjunct in the concept } D \}$
- $R^\mathcal{I} = \{ (d_D, d_{D'}) \mid \exists R. D' \text{ is a conjunct in the concept } D \}$

Intuitively, the canonical model can simulate any model.
Subsumption in \mathcal{EL} (w.r.t. empty TBoxes)

Lemma

Let C and D be \mathcal{EL} concepts. Then $C \sqsubseteq D$ iff $d_C \in D^I_C$.

Hence deciding $C \sqsubseteq D$ can be done in polynomial time:

1. Building I_C is possible in polynomial time (because $|\Delta^I| \leq |C|$)
2. Testing whether $d_C \in D^I_C$ is also possible in polynomial time.
Subsumption in \mathcal{EL} w.r.t. TBoxes

- To decide subsumption w.r.t. to a TBox \mathcal{T}, one can build a canonical model $\mathcal{I}_\mathcal{T}$ of \mathcal{T}
 - it is not hard to ensure that $\mathcal{I}_\mathcal{T}$ is also a model of a given concept C

- The construction is iterative:
 - We start form a very simple interpretation \mathcal{I}_0 that only has one $d_A \in A^{\mathcal{I}_\mathcal{T}}$ for each concept name A, and where the interpretation of all roles is empty
 - At each step a new \mathcal{I}_{i+1} is obtained from \mathcal{I}_i by adding some object/pair of objects to the interpretation of a concept or role, as required by some GCI
 - $\mathcal{I}_\mathcal{T}$ is the limit of this iteration, where no more changes are required

- $\mathcal{I}_\mathcal{T}$ can be constructed in polynomial time
 (only polynomially many iterations needed)
Subsumption in \mathcal{EL} w.r.t. TBoxes (cont’d)

Lemma

- \mathcal{I}_T is a model of \mathcal{T}.
- For every \mathcal{EL} TBox \mathcal{T} and every pair A, B of concept names, $\mathcal{T} \models A \sqsubseteq B$ iff $d_A \in B^{\mathcal{I}_T}$.

An algorithm for deciding subsumption of concept names is enough:

$$\mathcal{T} \models C \sqsubseteq D \text{ iff } \mathcal{T} \cup \{A_C \sqsubseteq C, D \sqsubseteq A_D\} \models A_C \sqsubseteq A_D$$

Hence we have:

Theorem

Subsumption (w.r.t. a TBox) in \mathcal{EL} can be decided in polynomial time.
A relevant extension of \mathcal{EL} is \mathcal{EL}^\perp, which also allows \perp as a concept.

- Satisfiability is not trivial anymore, but it can be decided in polynomial time.
- We simply build the canonical model of C, and answer unsatisfiable iff some element must satisfy \perp.

In \mathcal{EL}^\perp, satisfiability and subsumption are interreducible:

- C is satisfiable w.r.t. $\langle T, A \rangle$ iff $\langle T, A \rangle \notmodels C \sqsubseteq \perp$.
- $\langle T, A \rangle \models C \sqsubseteq D$ iff $C \sqcap A_{\neg D}$ is unsatisfiable w.r.t. $\langle T \cup \{ A_{\neg D} \sqcap D \sqsubseteq \perp \}, A \rangle$, where $A_{\neg D}$ is a fresh concept name.
Other polynomial Extensions of \mathcal{EL}

Additionally to \bot, we can also add the following to \mathcal{EL}:

- Nominals $\{a\}$
- Range restrictions $\top \sqsubseteq \forall R.C$, $\top \sqsubseteq \forall R^-.C$
- Complex role inclusions $R_1 \circ \ldots \circ R_n \sqsubseteq R$

We can still adapt the canonical model construction to accommodate these features, and reasoning is still feasible in polynomial time.

The resulting DL is called \mathcal{EL}^{++}

(possibly modulo some additional details)
ExpTime-hard Extensions of \mathcal{EL}

In other extensions of \mathcal{EL} reasoning (w.r.t. arbitrary TBoxes) becomes ExpTime-hard:

- \mathcal{ELU}^\perp that extends \mathcal{EL}^\perp with disjunction
 - We can reduce concept satisfiability w.r.t. to a TBox in \mathcal{ALC} to TBox satisfiability in \mathcal{ELU}^\perp

- \mathcal{ELU} that extends \mathcal{EL} with disjunction
 - We can reduce concept satisfiability w.r.t. to a TBox in \mathcal{ALC} to the same problem in \mathcal{ELU}^\perp

- \mathcal{EL}^\forall that extends \mathcal{EL} with value (or universal) restrictions $\forall R.C$
 - We can reduce concept satisfiability w.r.t. to a TBox in \mathcal{ELU} to the same problem in \mathcal{EL}^\forall

There is no known extension of \mathcal{EL} for between P and ExpTime
The Basic *DL-Lite*

In *DL-Lite*, we distinguish between two kinds of concepts

1. **Basic concepts** B, with the following syntax:

 $$ B \rightarrow A \mid \exists R \mid \exists R^{-} $$

 where $\exists R$ is an alternative syntax for $\exists R.\top$

2. **(General) concepts** C, which additionally allow for negation and conjunction

 $$ C \rightarrow B \mid \neg B \mid C_1 \cap C_2 $$

GCIs are a bit *asymmetric* and allow general concepts only on the r.h.s.

$$ B \sqsubseteq C $$
Motivation and Applications

DL-Lite was specially tailored in such a way that:

- traditional reasoning problems are all solvable in polynomial time
- the data described by the ontology can be queried efficiently
 - it has very low computational complexity
 - it can be achieved by relying on existing database technologies
 (we discuss this kind of querying in more detail later)
- basic data and conceptual modeling formalisms, such as ER-diagrams and UML class diagrams, can be expressed in (variations of) *DL-Lite*
 - among other advantages, this allows for formal reasoning in these formalisms, and for studying its complexity
Motivation and Applications (cont’d)

The application of *DL-Lite* has been specially successful in areas like:

- ontology based data access
- information and data integration
- conceptual modeling

and similar data-oriented fields.
Model construction in \textit{DL-Lite}

- Similarly to $\mathcal{E}L$, a satisfiable \textit{DL-Lite} concept/KB has a canonical model that can be used for solving all the standard reasoning tasks.

- The canonical model can be built using a DB-like chase procedure as known from databases.
 - In fact, the chase is just another presentation for tableau.

- The straightforward chase does not terminate, but it is easy to show that only a small (i.e., polynomial) part of it is relevant for reasoning.

- Moreover, we can solve all reasoning problems without constructing the canonical model.
Unsatisfiability in *DL-Lite* can only arise due to some $C \sqsubseteq \neg D$ implied by the TBox that is violated in the ABox

- To check satisfiability, we only need to derive all the $C \sqsubseteq \neg D$ that follow form the TBox and check them
- This can be done in polynomial time

Subsumption is reducible to KB unsatisfiability

$$\langle T, A \rangle \models C \sqsubseteq D \iff \langle T', A' \rangle \text{ is unsatisfiable}$$

where $T' = T \cup \{A \sqsubseteq C, A \sqsubseteq \neg D\}$ and $A' = A \cup \{A(d)\}$ for fresh A and d
Combined vs. Data Complexity

- So far, our complexity considerations have assumed combined complexity
 - ‘standard’ measure of complexity
 - takes into account the size of the full input, i.e., the full KB, plus possibly one or two concepts, individuals, ...

- In many settings, it makes sense to consider more fine-grained notions of complexity known from databases

- When the ABox may contain big amounts of data and its much larger than the terminological component, we focus on data complexity

Definition (Data complexity)

Data complexity is the complexity of reasoning w.r.t. to an input ABox, where the **terminological component** (TBox, concepts) is assumed to be fixed
Data Complexity in DLs

- All expressive DLs are **intractable** in data complexity

 - practically all of them NP- or coNP-complete depending on the reasoning task

- \mathcal{EL} is **P-complete** in data complexity

A crucial difference between \mathcal{EL} and DL-$Lite$ is that DL-lite has lower data complexity
Data Complexity in DL-$Lite$

Theorem

The data complexity of reasoning in DL-$Lite$ is not higher than that of evaluating an SQL query over a database

- DL-$Lite$ has very low complexity
 - feasible in logarithmic space, and inside a (highly parallelizable) complexity class called AC_0

- Any reasoning problem over a DL-$Lite$ KB can be reduced to evaluating an SQL query over a database corresponding to the ABox
 - particularly appealing if we indeed have a very large and dynamic ABox
 - the implementation of this idea has made DL-$Lite$ a very popular formalism
Extensions of *DL-Lite*

There are many well known extensions of *DL-Lite* that preserve its nice computational features, for example:

- In *DL-Lite*$_F$ the TBox may include *functionality assertions* $\text{funct}(R), \text{funct}(R^-)$

- In *DL-Lite*$_R$ we have *role inclusions*, also of the form $R \sqsubseteq \neg S$ (sometimes called *DL-Lite*$_H$)

- *DLR-Lite*, and the respective *F* and *R* extensions, allow for predicates of *arity* higher than 2

Many other extensions are defined in a ‘less standard’ way (e.g., *DL-Lite*$_\text{horn}$, *DL-Lite*$_\text{krom}$)
Beyond LogSpace

It is well known that, essentially, adding any other DL construct to \textit{DL-Lite} increases the data complexity beyond logarithmic space.

For example,

- adding concepts of the form $\exists R . A$ on the l.h.s. of GCIs, $\forall R . A$ on the r.h.s. or $\exists R^- . A$ on the l.h.s. makes reasoning NLogSpace-hard

- If we additionally allow conjunction on the l.h.s. reasoning becomes PTime hard (like in \mathcal{EL})

- Concept negation, concept disjunction, or concepts of the form $\forall R . A$ on the l.h.s., make reasoning already NP-hard
Lightweight Profiles for OWL 2

The new OWL 2 standard has two profiles that are intended to support scalable reasoning:

- OWL EL is based on \mathcal{EL}^{++}
- OWL QL is based on DL-Lite
Horn fragments of other DLs

We know that most extensions of \mathcal{EL} and DL-$Lite$ lead to increased complexity of reasoning, but . . .

are some of the positive features of these DLs preserved in more expressive logics?

Fortunately, yes:

- Horn fragments of DLs are obtained by restricting the syntax of expressive DLs in such a way that disjunction can not be expressed

- They fall inside the (well-known) Horn fragment of FOL

- This is usually enough to ensure the existence of one canonical model that suffices for all reasoning problems, as in \mathcal{EL} and DL-$Lite$
Complexity of Horn DLs

- The data complexity of reasoning in Horn-DLs is usually PTime-complete
 - This holds for Horn-SHIQ, Horn-SHOIQ, Horn-SRIQ, Horn-SROIQ

- The combined complexity is not much lower than that of the non-Horn variant
 - Horn-SHIQ and Horn-SHOIQ are ExpTime-complete
 - Horn-SRIQ and Horn-SROIQ are 2ExpTime-complete

Roughly, this is because the (representation of) the canonical model may be as large and complex as in the non-Horn case

Horn DLs allow to reason efficiently in the presence of large amounts of data
Summary

- We are now familiar with the most important lightweight description logics

 1. The \mathcal{EL} family
 2. The DL-Lite family
 3. Other Horn-DLs

 They are all tractable in data complexity, and often also in combined complexity

- Our last DL topic will be an overview of query answering in DLs