Lightweight DLs

1. Introduction

A Bit of History (cont’d)
(based on slides by C. Lutz)

With the transition

\[\text{ALC} \leadsto \text{SHIQ} \leadsto \text{OWL 1 (SHOIQ)} \leadsto \text{OWL 2 (SROIQ)} \]

the promise of efficiency on natural inputs became increasingly untrue

- In some applications this complexity is unacceptable

The \(\mathcal{EL} \) and \(DL\text{-}Lite \) era (since ca. 2005)

- Scalable lightweight DLs are sufficient for many applications
- Existential restrictions are more important than universal ones

Lightweight DLs

In this lecture, we study the \(\mathcal{EL} \) and \(DL\text{-}Lite \) families of description logics

- Core language
- Motivation and applications
- Reasoning techniques
- Computational advantages
- Extensions of the core language and limits of the fragment

We also discuss how some of the positive features of \(\mathcal{EL} \) and \(DL\text{-}Lite \) families can be extended to more expressive languages in Horn DLs.
Outline

1. Introduction
2. EL
 2.1 Core Language
 2.2 Motivation and Applications
 2.3 Reasoning Techniques
 2.4 Extensions and Limits
3. DL-Lite
 3.1 Core Language
 3.2 Motivation and Applications
 3.3 Reasoning Techniques
 3.4 Data Complexity in DL-Lite
 3.5 Extensions and Limits
4. Lightweight Profiles for OWL 2
5. Other Horn DLs

Recommended Reading and Links

- **Pushing the EL Envelope Further.** Franz Baader, Sebastian Brandt, and Carsten Lutz. In OWLED 2008.

The Basic EL

Essentially, EL is a half of ALC:

- It supports existential restrictions $\exists R.C$, but no universal ones
- It supports conjunction $C \cap D$, but no disjunction
- Of course, it does not allow for negation
 - but we can use \bot to express a restricted form of negation, see later

EL concepts are defined inductively as follows

$$C, D \rightarrow A \mid \top \mid C \cap D \mid \exists R.C$$

where $A \in N_C$ is a concept name and $R \in N_R$ is a role.

Motivation and Applications

In many applications existential restrictions and conjunction seem to play a central role.

- Many medical and Life Sciences ontologies rely on this kind of axioms:

 - ViralPneumonia $\sqsubseteq \exists$CausitiveAgent.Virus
 - ViralPneumonia \sqsubseteq InfectiousPneumonia
 - InfectiousPneumonia \sqsubseteq Pneumonia \sqcap InfectiousDisease
 - Pneumonia \sqsubseteq \existsAssociatedMorphology.Inflammation
 - Pneumonia \sqsubseteq \existsFindingSite.Lung
Motivation and Applications (cont’d)

- SNOMED CT (Systematized Nomenclature of Medicine – Clinical Terms) is written in (a minor extension of) \mathcal{EL}
- So are
 - large fragments of the GALEN ontology (Generalized Architecture for Languages, Encyclopaedias and Nomenclatures in medicine), another very important medical ontology
 http://www.openclinical.org/prj_galen.html
 - the Gene Ontology, and ontology for biology with the aim of “standardizing the representation of gene and gene product attributes across species and databases” http://www.geneontology.org/
 - etc.

Satisfiability in \mathcal{EL}

In the basic \mathcal{EL}

- Every concept C is satisfiable:
 - C induces a description tree that can be seen as a representation of a model
- It is also easy to show that every concept C is satisfiable w.r.t. every TBox and w.r.t. every KB.

Theorem

Satisfiability (w.r.t. a TBox / KB) is trivial in \mathcal{EL}.

Hence, we concentrate on deciding subsumption

Canonical Models in \mathcal{EL}

As usual, we use $\text{sub}(C)$ to denote the set of subconcepts of C.

Definition

Let C be an \mathcal{EL} concept. We define

$$\text{ex}(C) = \{C\} \cup \{D \mid \exists R. D \in \text{sub}(C)\}$$

Then the canonical model of C is the interpretation I_C such that:

- The domain Δ^I contains one element d_D for each $D \in \text{ex}(C)$
- $A^I = \{d_D \mid A$ is a conjunct in the concept $D\}$
- $R^I = \{(d_D, d_{D'}) \mid \exists R. D'$ is a conjunct in the concept $D\}$

Intuitively, the canonical model can simulate any model.

Subsumption in \mathcal{EL} (w.r.t. empty TBoxes)

Lemma

Let C and D be \mathcal{EL} concepts. Then $C \sqsubseteq D$ iff $d_C \in D^I_C$.

Hence deciding $C \sqsubseteq D$ can be done in polynomial time:

1. Building I_C is possible in polynomial time (because $|\Delta^I| \leq |C|$)
2. Testing whether $d_C \in D^I_C$ is also possible in polynomial time.
Subsumption in \mathcal{EL} w.r.t. TBoxes

- To decide subsumption w.r.t. to a TBox T, one can build a canonical model I_T of T
 - it is not hard to ensure that I_T is also a model of a given concept C
- The construction is iterative:
 - We start form a very simple interpretation I_0 that only has one object $d_A \in A^{I_T}$ for each concept name A, and where the interpretation of all roles is empty
 - At each step a new I_{i+1} is obtained from I_i by adding some object/pair of objects to the interpretation of a concept or role, as required by some GCI
- I_T is the limit of this iteration, where no more changes are required
 - I_T can be constructed in polynomial time (only polynomially many iterations needed)

$\mathcal{EL} \perp$

- A relevant extension of \mathcal{EL} is $\mathcal{EL} \perp$, which also allows \perp as a concept
 - Satisfiability is not trivial anymore, but it can be decided in polynomial time
 - We simply build the canonical model of C, and answer unsatisfiable iff some element must satisfy \perp

In $\mathcal{EL} \perp$, satisfiability and subsumption are interreducible:

- C is satisfiable w.r.t. $\langle T, A \rangle$ iff $\langle T, A \rangle \not\models C \subseteq \perp$
- $\langle T, A \rangle \models C \subseteq D$ iff $C \cap A_{\neg D}$ is unsatisfiable w.r.t. $\langle T \cup \{A_{\neg D} \sqcap D \subseteq \perp\}, A \rangle$, where $A_{\neg D}$ is a fresh concept name.

Other polynomial Extensions of \mathcal{EL}

- Additionally to \perp, we can also add the following to \mathcal{EL}:
 - Nominals $\{a\}$
 - Range restrictions $\top \sqsubseteq \forall R.C$, $\top \sqsubseteq \forall R^- . C$
 - Complex role inclusions $R_1 \circ \ldots \circ R_n \sqsubseteq R$

We can still adapt the canonical model construction to accommodate these features, and reasoning is still feasible in polynomial time

The resulting DL is called \mathcal{EL}^{++} (possibly modulo some additional details)
ExpTime-hard Extensions of \mathcal{EL}

In other extensions of \mathcal{EL} reasoning (w.r.t. arbitrary TBoxes) becomes ExpTime-hard:

- $\mathcal{EL}U^\sqcup$ that extends \mathcal{EL}^\sqcup with disjunction
 - We can reduce concept satisfiability w.r.t. to a TBox in \mathcal{ALC} to TBox satisfiability in $\mathcal{EL}U^\sqcup$
- $\mathcal{EL}U$ that extends \mathcal{EL} with disjunction
 - We can reduce concept satisfiability w.r.t. to a TBox in \mathcal{ALC} to the same problem in $\mathcal{EL}U^\sqcup$
- \mathcal{EL}^\forall that extends \mathcal{EL} with value (or universal) restrictions $\forall R.C$
 - We can reduce concept satisfiability w.r.t. to a TBox in $\mathcal{EL}U$ to the same problem in \mathcal{EL}^\forall

There is no known extension of \mathcal{EL} for between P and ExpTime

The Basic $\mathcal{DL-Lite}$

In $\mathcal{DL-Lite}$, we distinguish between two kinds of concepts

1. **Basic concepts** B, with the following syntax:

 $$B \rightarrow A \mid \exists R \mid \exists R^-$$

 where $\exists R$ is an alternative syntax for $\exists R.\top$

2. **(General) concepts** C, which additionally allow for negation and conjunction

 $$C \rightarrow B \mid \neg B \mid C_1 \sqcap C_2$$

GCIs are a bit asymmetric and allow general concepts only on the r.h.s.

$$B \sqsubseteq C$$

Motivation and Applications

$\mathcal{DL-Lite}$ was specially tailored in such a way that:

- traditional reasoning problems are all solvable in polynomial time
- the data described by the ontology can be queried efficiently
 - it has very low computational complexity
 - it can be achieved by relying on existing database technologies (we discuss this kind of querying in more detail later)
- basic data and conceptual modeling formalisms, such as ER-diagrams and UML class diagrams, can be expressed in (variations of) $\mathcal{DL-Lite}$
 - among other advantages, this allows for formal reasoning in these formalisms, and for studying its complexity

Motivation and Applications (cont'd)

The application of $\mathcal{DL-Lite}$ has been specially successful in areas like:

- ontology based data access
- information and data integration
- conceptual modeling
- and similar data-oriented fields.
Model construction in *DL-Lite*

- Similarly to \mathcal{EL}, a satisfiable *DL-Lite* concept/KB has a **canonical model** that can be used for solving all the standard reasoning tasks.

- The canonical model can be built using a DB-like **chase procedure** as known from databases.
 - In fact, the chase is just another presentation for tableau.

- The straightforward chase does not terminate, but it is easy to show that only a small (i.e., polynomial) part of it is relevant for reasoning.

- Moreover, we can solve all reasoning problems without constructing the canonical model.

Reasoning in *DL-Lite*

- Unsatisfiability in *DL-Lite* can only arise due to some $C \subseteq \neg D$ implied by the TBox that is violated in the ABox.
 - To check satisfiability, we only need to derive all the $C \subseteq \neg D$ that follow from the TBox and check them.
 - This can be done in polynomial time.

- Subsumption is reducible to KB unsatisfiability.

$$\langle T, A \rangle \models C \subseteq D \iff \langle T', A' \rangle \text{ is unsatisfiable}$$

where $T' = T \cup \{ A \subseteq C, A \subseteq \neg D \}$ and $A' = A \cup \{ A(d) \}$ for fresh A and d.

Combined vs. Data Complexity

- So far, our complexity considerations have assumed **combined complexity**
 - 'standard' measure of complexity
 - takes into account the size of the full input, i.e., the full KB, plus possibly one or two concepts, individuals, ...

- In many settings, it makes sense to consider more fine-grained notions of complexity known from databases.

- When the ABox may contain big amounts of data and its much larger than the terminological component, we focus on **data complexity**.

Definition (Data complexity)

Data complexity is the complexity of reasoning w.r.t. to an **input ABox**, where the **terminological component** (TBox, concepts) is assumed to be **fixed**.

Data Complexity in DLs

- All expressive DLs are **intractable** in data complexity.
 - practically all of them NP- or coNP-complete depending on the reasoning task.

- \mathcal{EL} is **P-complete** in data complexity.

A crucial difference between \mathcal{EL} and *DL-Lite* is that **DL-lite has lower data complexity**.
Data Complexity in DL-Lite

Theorem

The data complexity of reasoning in DL-Lite is not higher than that of evaluating an SQL query over a database.

- DL-Lite has very low complexity
 - feasible in logarithmic space, and inside a (highly parallelizable) complexity class called AC_0
 - Any reasoning problem over a DL-Lite KB can be reduced to evaluating an SQL query over a database corresponding to the ABox
 - particularly appealing if we indeed have a very large and dynamic ABox
 - the implementation of this idea has made DL-Lite a very popular formalism

Extensions of DL-Lite

There are many well known extensions of DL-Lite that preserve its nice computational features, for example:

- In DL-Lite$_F$ the TBox may include *functionality assertions* $\text{funct}(R)$, $\text{funct}(R^-)$
- In DL-Lite$_R$ we have *role inclusions*, also of the form $R \subseteq \neg S$ (sometimes called DL-LiteH)
- DLR-Lite, and the respective F and R extensions, allow for predicates of *arity higher than 2*

Many other extensions are defined in a 'less standard' way (e.g., DL-Lite$_{\text{horn}}$, DL-Lite$_{\text{krom}}$)

Beyond LogSpace

It is well known that, essentially, adding any other DL construct to DL-Lite increases the data complexity beyond logarithmic space.

For example,

- adding concepts of the form $\exists R.A$ on the l.h.s. of GCIs, $\forall R.A$ on the r.h.s. or $\exists R^- . A$ on the l.h.s. makes reasoning NLogSpace-hard
- If we additionally allow conjunction on the l.h.s. reasoning becomes PTime hard (like in \mathcal{EL})
- Concept negation, concept disjunction, or concepts of the form $\forall R.A$ on the l.h.s., make reasoning already NP-hard

Lightweight Profiles for OWL 2

The new OWL 2 standard has two profiles that are intended to support scalable reasoning:

- OWL EL is based on \mathcal{EL}^{++}
- OWL QL is based on DL-Lite
Horn fragments of other DLs

We know that most extensions of \mathcal{EL} and \mathcal{DL}-Lite lead to increased complexity of reasoning, but . . .

are some of the positive features of these DLs preserved in more expressive logics?

Fortunately, yes:

- Horn fragments of DLs are obtained by restricting the syntax of expressive DLs in such a way that disjunction can not be expressed
- They fall inside the (well-known) Horn fragment of FOL
- This is usually enough to ensure the existence of one canonical model that suffices for all reasoning problems, as in \mathcal{EL} and \mathcal{DL}-Lite

Complexity of Horn DLs

- The data complexity of reasoning in Horn-DLs is usually PTime-complete
 - This holds for Horn-SHIQ, Horn-SHIOIQ, Horn-SRIQ, Horn-SROIQ
- The combined complexity is not much lower than that of the non-Horn variant
 - Horn-SHIQ and Horn-SHOIQ are ExpTime-complete
 - Horn-SRIQ and Horn-SROIQ are 2ExpTime-complete

Roughly, this is because the (representation of) the canonical model may be as large and complex as in the non-Horn case

Horn DLs allow to reason efficiently in the presence of large amounts of data

Summary

- We are now familiar with the most important lightweight description logics
 1. The \mathcal{EL} family
 2. The \mathcal{DL}-Lite family
 3. Other Horn-DLs

They are all tractable in data complexity, and often also in combined complexity

- Our last DL topic will be an overview of query answering in DLs