Declarative Knowledge Processing
Lecture 7: Lightweight DLs

Magdalena Ortiz

Knowledge Base Systems Group
Institute of Information Systems

ortiz@kr.tuwien.ac.at

WS 2012/2013
A Bit of History
(based on slides by C. Lutz)

Ancient Period of DLs (until mid 1990s)

- Reasoning must be efficient, hence we cannot include all Booleans
- Applications need conjunction and universal restrictions (which make reasoning NP hard)

The $SHIQ$ era (since mid 1990s)

- Efficient reasoners for ExpTime logics are possible (FaCT reasoner)
- We need all the Booleans and more (but preserving decidability):
 \[
 ALC \rightsquigarrow SHIQ \rightsquigarrow OWL\;1\; (SHOIQ) \rightsquigarrow OWL\;2\; (SROIQ)
 \]
A Bit of History (cont’d)
(based on slides by C. Lutz)

With the transition

\[ALC \sim SHIQ \sim OWL ~ 1 \ (SHOIQ) \sim OWL ~ 2 \ (SROIQ) \]

the promise of efficiency on natural inputs became increasingly untrue

- In some applications this complexity is unacceptable

The \mathcal{EL} and DL-Lite era (since ca. 2005)

- Scalable lightweight DLs are sufficient for many applications
- Existential restrictions are more important than universal ones
Lightweight DLs

In this lecture, we study the \mathcal{EL} and DL-$Lite$ families of description logics

- Core language
- Motivation and applications
- Reasoning techniques
- Computational advantages
- Extensions of the core language and limits of the fragment

We also discuss how some of the positive features of \mathcal{EL} and DL-$Lite$ families can be extended to more expressive languages in Horn DLs.
Outline

1. Introduction

2. \(\mathcal{EL} \)
 2.1 Core Language
 2.2 Motivation and Applications
 2.3 Reasoning Techniques
 2.4 Extensions and Limits

3. \(DL\text{-}Lite \)
 3.1 Core Language
 3.2 Motivation and Applications
 3.3 Reasoning Techniques
 3.4 Data Complexity in \(DL\text{-}Lite \)
 3.5 Extensions and Limits

4. Lightweight Profiles for OWL 2

5. Other Horn DLs
Recommended Reading and Links

- **Pushing the EC Envelope Further**. Franz Baader, Sebastian Brandt, and Carsten Lutz. In OWLED 2008.

The Basic \(\mathcal{EL} \)

Essentially, \(\mathcal{EL} \) is a half of \(\mathcal{ALC} \):

- It supports existential restrictions \(\exists R.C \), but no universal ones
- It supports conjunction \(C \sqcap D \), but no disjunction
- Of course, it does not allow for negation
 - but we can use \(\bot \) to express a restricted form of negation, see later

\(\mathcal{EL} \) concepts are defined inductively as follows

\[
C, D \rightarrow A \mid \top \mid C \sqcap D \mid \exists R.C
\]

where \(A \in N_C \) is a concept name and \(R \in N_R \) is a role.
Motivation and Applications

In many applications existential restrictions and conjunction seem to play a central role.

- Many medical and Life Sciences ontologies rely on this kind of axioms:

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ViralPneumonia</td>
<td>⊑ ∃CausitiveAgent.Virus</td>
</tr>
<tr>
<td>ViralPneumonia</td>
<td>⊑ InfectiousPneumonia</td>
</tr>
<tr>
<td>InfectiousPneumonia</td>
<td>⊑ Pneumonia ⊓ InfectiousDisease</td>
</tr>
<tr>
<td>Pneumonia</td>
<td>⊑ ∃AssociatedMorphology.Inflammation</td>
</tr>
<tr>
<td>Pneumonia</td>
<td>⊑ ∃FindingSite.Lung</td>
</tr>
</tbody>
</table>
Motivation and Applications (cont’d)

- **SNOMED CT** (Systematized Nomenclature of Medicine – Clinical Terms) is written in (a minor extension of) \mathcal{EL}

- So are
 - large fragments of the GALEN ontology (Generalized Architecture for Languages, Encyclopaedias and Nomenclatures in medicine), another very important medical ontology
 http://www.openclinical.org/prj_galen.html
 - etc.
Satisfiability in \mathcal{EL}

In the basic \mathcal{EL}

- Every concept C is satisfiable:
 - C induces a description tree that can be seen as a representation of a model

- It is also easy to show that every concept C is satisfiable w.r.t. every TBox and w.r.t. every KB.

Theorem

Satisfiability (w.r.t. a TBox / KB) is trivial in \mathcal{EL}.

Hence, we concentrate on deciding subsumption
Canonical Models in \mathcal{EL}

As usual, we use $\text{sub}(C)$ to denote the set of subconcepts of C.

Definition

Let C be an \mathcal{EL} concept. We define

$$\text{ex}(C) = \{C\} \cup \{D \mid \exists R.D \in \text{sub}(C)\}$$

Then the *canonical model* of C is the interpretation \mathcal{I}_C such that:

- The domain $\Delta^\mathcal{I}$ contains one element d_D for each $D \in \text{ex}(C)$
- $A^\mathcal{I} = \{d_D \mid A \text{ is a conjunct in the concept } D\}$
- $R^\mathcal{I} = \{(d_D, d_{D'}) \mid \exists R.D' \text{ is a conjunct in the concept } D\}$

Intuitively, the canonical model can simulate any model.
Subsumption in \mathcal{EL} (w.r.t. empty TBoxes)

Lemma

Let C and D be \mathcal{EL} concepts. Then $C \sqsubseteq D$ iff $d_C \in D^I_C$.

Hence deciding $C \sqsubseteq D$ can be done in polynomial time:

1. Building \mathcal{I}_C is possible in polynomial time (because $|\Delta^\mathcal{I}| \leq |C|$)

2. Testing whether $d_C \in D^\mathcal{I}_C$ is also possible in polynomial time.
Subsumption in \mathcal{EL} w.r.t. TBoxes

- To decide subsumption w.r.t. to a TBox \mathcal{T}, one can build a canonical model $\mathcal{I}_\mathcal{T}$ of \mathcal{T}
 - it is not hard to ensure that $\mathcal{I}_\mathcal{T}$ is also a model of a given concept C

- The construction is iterative:
 - We start form a very simple interpretation \mathcal{I}_0 that only has one $d_A \in A^{\mathcal{I}_\mathcal{T}}$ for each concept name A, and where the interpretation of all roles is empty
 - At each step a new \mathcal{I}_{i+1} is obtained from \mathcal{I}_i by adding some object/pair of objects to the interpretation of a concept or role, as required by some GCI
 - $\mathcal{I}_\mathcal{T}$ is the limit of this iteration, where no more changes are required

$\mathcal{I}_\mathcal{T}$ can be constructed in polynomial time (only polynomially many iterations needed)
Subsumption in \mathcal{EL} w.r.t. TBoxes (cont’d)

Lemma

- \mathcal{I}_T is a model of T.
- For every \mathcal{EL} TBox T and every pair A, B of concept names, $T \models A \sqsubseteq B$ iff $d_A \in B^{IT}$.

An algorithm for deciding subsumption of concept names is enough:

$$T \models C \sqsubseteq D \text{ iff } T \cup \{A_C \sqsubseteq C, D \sqsubseteq A_D\} \models A_C \sqsubseteq A_D$$

Hence we have:

Theorem

Subsumption (w.r.t. a TBox) in \mathcal{EL} can be decided in polynomial time.
\(\mathcal{EL}^\perp \)

A relevant extension of \(\mathcal{EL} \) is \(\mathcal{EL}^\perp \), which also allows \(\perp \) as a concept

- Satisfiability is not trivial anymore, but it can be decided in polynomial time

- We simply build the canonical model of \(C \), and answer unsatisfiable iff some element must satisfy \(\perp \)

In \(\mathcal{EL}^\perp \), satisfiability and subsumption are interreducible:

- \(C \) is satisfiable w.r.t. \(\langle T, A \rangle \) iff \(\langle T, A \rangle \nvDash C \sqsubseteq \perp \)

- \(\langle T, A \rangle \models C \sqsubseteq D \) iff \(C \sqcap A_{\neg D} \) is unsatisfiable w.r.t. \(\langle T \cup \{ A_{\neg D} \sqcap D \sqsubseteq \perp \}, A \rangle \), where \(A_{\neg D} \) is a fresh concept name.
Other polynomial Extensions of \(\mathcal{EL} \)

Additionally to \(\bot \), we can also add the following to \(\mathcal{EL} \):

- Nominals \(\{a\} \)

- Range restrictions \(\top \sqsubseteq \forall R.C \) (also written \(\exists R^{-}.\top \sqsubseteq C \))

 (domain restrictions \(\exists R.\top \sqsubseteq C \) are naturally supported in \(\mathcal{EL} \))

- Complex role inclusions \(R_1 \circ \ldots \circ R_n \sqsubseteq R \)

We can still adapt the canonical model construction to accommodate these features, and reasoning is still feasible in polynomial time.

The resulting DL is called \(\mathcal{EL}^{++} \)

(possibly modulo some additional details)
ExpTime-hard Extensions of \mathcal{EL}

In other extensions of \mathcal{EL} reasoning (w.r.t. arbitrary TBoxes) becomes ExpTime-hard:

- $\mathcal{ELU} \bot$ that extends $\mathcal{EL} \bot$ with disjunction
 - We can reduce concept satisfiability w.r.t. to a TBox in \mathcal{ALC} to TBox satisfiability in $\mathcal{ELU} \bot$

- \mathcal{ELU} that extends \mathcal{EL} with disjunction
 - We can reduce concept satisfiability w.r.t. to a TBox in $\mathcal{ELU} \bot$ to concept subsumption w.r.t. to a TBox in \mathcal{ELU}

- $\mathcal{EL} \forall$ that extends \mathcal{EL} with value (or universal) restrictions $\forall R.C$
 - We can reduce concept subsumption w.r.t. to a TBox in \mathcal{ELU} to the same problem in $\mathcal{EL} \forall$

There is no known extension of \mathcal{EL} for between P and ExpTime.
The Basic \textit{DL-Lite}

In \textit{DL-Lite}, we distinguish between two kinds of concepts

\begin{enumerate}
 \item \textbf{Basic concepts} B, with the following syntax:

 \[B \rightarrow A \mid \exists R \mid \exists R^- \]

 where $\exists R$ is an alternative syntax for $\exists R.\top$

 \item \textbf{(General) concepts} C, which additionally allow for negation and conjunction

 \[C \rightarrow B \mid \neg B \mid C_1 \sqcap C_2 \]

\end{enumerate}

GCIs are a bit \textit{asymmetric} and allow general concepts only on the r.h.s.

\[B \sqsubseteq C \]
Motivation and Applications

DL-Lite was specially tailored in such a way that:

- traditional reasoning problems are all solvable in polynomial time
- the data described by the ontology can be queried efficiently
 - it has very low computational complexity
 - it can be achieved by relying on existing database technologies (we discuss this kind of querying in more detail later)
- basic data and conceptual modeling formalisms, such as ER-diagrams and UML class diagrams, can be expressed in (variations of) *DL-Lite*
 - among other advantages, this allows for formal reasoning in these formalisms, and for studying its complexity
Motivation and Applications (cont’d)

The application of DL-$Lite$ has been specially successful in areas like:

- ontology based data access
- information and data integration
- conceptual modeling

and similar data-oriented fields.
Model construction in DL-$Lite$

- Similarly to \mathcal{EL}, a satisfiable DL-$Lite$ concept/KB has a **canonical model** that can be used for solving all the standard reasoning tasks.

- The canonical model can be built using a DB-like **chase procedure** as known from databases.
 - In fact, the chase is just another presentation for tableau.

- The straightforward chase does not terminate, but it is easy to show that only a small (i.e., polynomial) part of it is relevant for reasoning.

- Moreover, we can solve all reasoning problems without constructing the canonical model.
Reasoning in **DL-Lite**

- Unsatisfiability in **DL-Lite** can only arise due to some $C \sqsubseteq \neg D$ implied by the TBox that is violated in the ABox

 - To check satisfiability, we only need to derive all the $C \sqsubseteq \neg D$ that follow form the TBox and check them

 - This can be done in polynomial time

- Subsumption is reducible to KB unsatisfiability

\[
\langle \mathcal{T}, \mathcal{A} \rangle \models C \sqsubseteq D \quad \text{iff} \quad \langle \mathcal{T}', \mathcal{A}' \rangle \text{ is unsatisfiable}
\]

where $\mathcal{T}' = \mathcal{T} \cup \{ A \sqsubseteq C, A \sqsubseteq \neg D \}$ and $\mathcal{A}' = \mathcal{A} \cup \{ A(d) \}$ for fresh A and d
Combined vs. Data Complexity

- So far, our complexity considerations have assumed **combined complexity**
 - ‘standard’ measure of complexity
 - takes into account the size of the full input, i.e., the full KB, plus possibly one or two concepts, individuals, ...

- In many settings, it makes sense to consider more fine-grained notions of complexity known from databases

- When the ABox may contain big amounts of data and its much larger than the terminological component, we focus on **data complexity**

Definition (Data complexity)

Data complexity is the complexity of reasoning w.r.t. to an input ABox, where the terminological component (TBox, concepts) is assumed to be fixed
Data Complexity in DLs

- All expressive DLs are intractable in data complexity
 - practically all of them NP- or coNP-complete depending on the reasoning task

- \mathcal{EL} is P-complete in data complexity

A crucial difference between \mathcal{EL} and DL-Lite is that DL-lite has lower data complexity
Data Complexity in DL-Lite

Theorem

The data complexity of reasoning in DL-Lite is not higher than that of evaluating an SQL query over a database.

- **DL-Lite** has very low complexity
 - feasible in logarithmic space, and inside a (highly parallelizable) complexity class called AC$\text{\textsubscript{0}}$

- Any reasoning problem over a DL-Lite KB can be reduced to evaluating an SQL query over a database corresponding to the ABox
 - particularly appealing if we indeed have a very large and dynamic ABox
 - the implementation of this idea has made DL-Lite a very popular formalism
Extensions of DL-$Lite$

There are many well known extensions of DL-$Lite$ that preserve its nice computational features, for example:

- In DL-$Lite_\mathcal{F}$ the TBox may include **functionality assertions** $\text{funct}(R)$, $\text{funct}(R^-)$

- In DL-$Lite_\mathcal{R}$ we have **role inclusions**, also of the form $R \sqsubseteq \neg S$ (sometimes called DL-$Lite^\mathcal{H}$)

- DLR-$Lite$, and the respective \mathcal{F} and \mathcal{R} extensions, allow for predicates of **arity higher than 2**

Many other extensions are defined in a ‘less standard’ way (e.g., DL-$Lite_{\text{horn}}, \ DL$-$Lite_{\text{krom}}$)
Beyond LogSpace

It is well known that, essentially, adding any other DL construct to \textit{DL-Lite} increases the data complexity beyond logarithmic space.

For example,

- adding concepts of the form $\exists R.A$ on the l.h.s. of GCIs, $\forall R.A$ on the r.h.s. or $\exists R^{-}.A$ on the l.h.s. makes reasoning NLogSpace-hard.

- If we additionally allow conjunction on the l.h.s. reasoning becomes PTime hard (like in \mathcal{EL}).

- Concept negation, concept disjunction, or concepts of the form $\forall R.A$ on the l.h.s., make reasoning already NP-hard.
Lightweight Profiles for OWL 2

The new OWL 2 standard has two profiles that are intended to support scalable reasoning:

- OWL EL is based on $\mathcal{EL}^{\text{++}}$

- OWL QL is based on $\mathcal{DL-Lite}$
5. Other Horn DLs

Horn fragments of other DLs

We know that most extensions of \mathcal{EL} and DL-Lite lead to increased complexity of reasoning, but ... are some of the positive features of these DLs preserved in more expressive logics?

Fortunately, yes:

- Horn fragments of DLs are obtained by restricting the syntax of expressive DLs in such a way that disjunction can not be expressed
- They fall inside the (well-known) Horn fragment of FOL
- This is usually enough to ensure the existence of one canonical model that suffices for all reasoning problems, as in \mathcal{EL} and DL-Lite
Complexity of Horn DLs

- The data complexity of reasoning in Horn-DLs is usually PTime-complete
 - This holds for Horn-SHIQ, Horn-SHOIQ, Horn-SRIQ, Horn-SROIQ
- The combined complexity is not much lower than that of the non-Horn variant
 - Horn-SHIQ and Horn-SHOIQ are ExpTime-complete
 - Horn-SRIQ and Horn-SROIQ are 2ExpTime-complete

Roughly, this is because the (representation of) the canonical model may be as large and complex as in the non-Horn case

Horn DLs allow to reason efficiently in the presence of large amounts of data
Summary

- We are now familiar with the most important lightweight description logics

1. The \mathcal{EL} family
2. The DL-$Lite$ family
3. Other Horn-DLs

They are all tractable in data complexity, and often also in combined complexity

- Our last DL topic will be an overview of query answering in DLs