Lightweight DLs

1. Introduction

A Bit of History (cont’d)
(based on slides by C. Lutz)

With the transition

\[ALC \sim SHIQ \sim OWL1 (SHOIQ) \sim OWL2 (SROIQ) \]

the promise of efficiency on natural inputs became increasingly untrue

- In some applications this complexity is unacceptable

The \(\mathcal{EL} \) and \(DL\text{-}Lite \) era (since ca. 2005)

- Scalable lightweight DLs are sufficient for many applications
- Existential restrictions are more important than universal ones

Lightweight DLs

In this lecture, we study the \(\mathcal{EL} \) and \(DL\text{-}Lite \) families of description logics

- Core language
- Motivation and applications
- Reasoning techniques
- Computational advantages
- Extensions of the core language and limits of the fragment

We also discuss how some of the positive features of \(\mathcal{EL} \) and \(DL\text{-}Lite \) families can be extended to more expressive languages in Horn DLs.
Outline

1. Introduction
2. \(\mathcal{EL} \)
 2.1 Core Language
 2.2 Motivation and Applications
 2.3 Reasoning Techniques
 2.4 Extensions and Limits
3. \(DL\text{-}Lite \)
 3.1 Core Language
 3.2 Motivation and Applications
 3.3 Reasoning Techniques
 3.4 Data Complexity in \(DL\text{-}Lite \)
 3.5 Extensions and Limits
4. Lightweight Profiles for OWL 2
5. Other Horn DLs

The Basic \(\mathcal{EL} \)

Essentially, \(\mathcal{EL} \) is a half of \(\mathcal{ALC} \):

- It supports existential restrictions \(\exists R.C \), but no universal ones
- It supports conjunction \(C \cap D \), but no disjunction
- Of course, it does not allow for negation
 - but we can use \(\bot \) to express a restricted form of negation, see later

\(\mathcal{EL} \) concepts are defined inductively as follows

\[
C, D \rightarrow A | \top | C \cap D | \exists R.C
\]

where \(A \in N_C \) is a concept name and \(R \in N_R \) is a role.

Motivation and Applications

In many applications existential restrictions and conjunction seem to play a central role.

- Many medical and Life Sciences ontologies rely on this kind of axioms:
Motivation and Applications (cont’d)

- SNOMED CT (Systematized Nomenclature of Medicine – Clinical Terms) is written in (a minor extension of) \mathcal{EL}
- So are
 - large fragments of the GALEN ontology (Generalized Architecture for Languages, Encyclopaedias and Nomenclatures in medicine), another very important medical ontology http://www.openclinical.org/prj_galen.html
 - the Gene Ontology, and ontology for biology with the aim of “standardizing the representation of gene and gene product attributes across species and databases” http://www.geneontology.org/
 - etc.

Satisfiability in \mathcal{EL}

In the basic \mathcal{EL}

- Every concept C is satisfiable:
 - C induces a description tree that can be seen as a representation of a model
- It is also easy to show that every concept C is satisfiable w.r.t. every TBox and w.r.t. every KB.

Theorem

Satisfiability (w.r.t. a TBox / KB) is trivial in \mathcal{EL}.

Hence, we concentrate on deciding subsumption

Canonical Models in \mathcal{EL}

As usual, we use $\text{sub}(C)$ to denote the set of subconcepts of C.

Definition

Let C be an \mathcal{EL} concept. We define

$$\text{ex}(C) = \{C\} \cup \{D \mid \exists R.D \in \text{sub}(C)\}$$

Then the canonical model of C is the interpretation I_C such that:

- The domain Δ^I contains one element d_D for each $D \in \text{ex}(C)$
- $A^I = \{d_D \mid A \text{ is a conjunct in the concept } D\}$
- $R^I = \{(d_D,d_D') \mid \exists R.D' \text{ is a conjunct in the concept } D\}$

Intuitively, the canonical model can simulate any model.

Subsumption in \mathcal{EL} (w.r.t. empty TBoxes)

Lemma

Let C and D be \mathcal{EL} concepts. Then $C \sqsubseteq D$ iff $d_C \in D^I$.

Hence deciding $C \sqsubseteq D$ can be done in polynomial time:

1. Building I_C is possible in polynomial time (because $|\Delta^I| \leq |C|$)
2. Testing whether $d_C \in D^I$ is also possible in polynomial time.
Subsumption in \mathcal{EL} w.r.t. TBoxes

To decide subsumption w.r.t. TBox \mathcal{T}, one can build a canonical model I_T of \mathcal{T}.

- It is not hard to ensure that I_T is also a model of a given concept C.

The construction is iterative:

- We start from a very simple interpretation I_0 that only has one $d_A \in A_I$ for each concept name A, and where the interpretation of all roles is empty.
- At each step a new $I_i + 1$ is obtained from I_i by adding some object/pair of objects to the interpretation of a concept or role, as required by some GCI.
- I_T is the limit of this iteration, where no more changes are required.

I_T can be constructed in polynomial time (only polynomially many iterations needed).

Lemma

- I_T is a model of \mathcal{T}.
- For every \mathcal{EL} TBox \mathcal{T} and every pair A, B of concept names, $\mathcal{T} \models A \sqsubseteq B$ iff $d_A \in B^{2\mathcal{T}}$.

An algorithm for deciding subsumption of concept names is enough:

$$\mathcal{T} \models C \sqsubseteq D \text{ iff } \mathcal{T} \cup \{A_C \sqsubseteq C, D \sqsubseteq A_D\} \models A_C \sqsubseteq A_D$$

Hence we have:

Theorem

Subsumption (w.r.t. a TBox) in \mathcal{EL} can be decided in polynomial time.

\mathcal{EL}^\perp

A relevant extension of \mathcal{EL} is \mathcal{EL}^\perp, which also allows \perp as a concept.

- Satisfiability is not trivial anymore, but it can be decided in polynomial time.
- We simply build the canonical model of C, and answer unsatisfiable iff some element must satisfy \perp.

In \mathcal{EL}^\perp, satisfiability and subsumption are interreducible:

- C is satisfiable w.r.t. $\langle \mathcal{T}, A \rangle$ iff $\langle \mathcal{T}, A \rangle \not\models C \sqsubseteq \perp$.
- $\langle \mathcal{T}, A \rangle \models C \sqsubseteq D$ iff $C \cap A_{\neg D}$ is unsatisfiable w.r.t. $\langle \mathcal{T} \cup \{A_{\neg D} \sqsubseteq D \sqsubseteq \perp\}, A \rangle$, where $A_{\neg D}$ is a fresh concept name.

Other polynomial Extensions of \mathcal{EL}

Additionally to \perp, we can also add the following to \mathcal{EL}:

- Nominals $\{a\}$
- Range restrictions $\top \sqsubseteq \forall R.C$ (also written $\exists R^- \top \sqsubseteq C$) (domain restrictions $\exists R. \top \sqsubseteq C$ are naturally supported in \mathcal{EL})
- Complex role inclusions $R_1 \circ \ldots \circ R_n \sqsubseteq R$

We can still adapt the canonical model construction to accommodate these features, and reasoning is still feasible in polynomial time.

The resulting DL is called \mathcal{EL}^{++} (possibly modulo some additional details).
ExpTime-hard Extensions of \mathcal{EL}

In other extensions of \mathcal{EL} reasoning (w.r.t. arbitrary TBoxes) becomes ExpTime-hard:

- \mathcal{ELU}^\bot that extends \mathcal{EL}^\bot with disjunction
 - We can reduce concept satisfiability w.r.t. to a TBox in \mathcal{ALC} to TBox satisfiability in \mathcal{ELU}^\bot
- \mathcal{ELU} that extends \mathcal{EL} with disjunction
 - We can reduce concept satisfiability w.r.t. to a TBox in \mathcal{ELU}^\bot to concept subsumption w.r.t. to a TBox in \mathcal{ELU}
- \mathcal{EL}^\forall that extends \mathcal{EL} with value (or universal) restrictions $\forall R.C$
 - We can reduce concept subsumption w.r.t. to a TBox in \mathcal{EL}^\forall to the same problem in \mathcal{EL}^\forall

There is no known extension of \mathcal{EL} for between P and ExpTime

The Basic $\mathcal{DL-Lite}$

In $\mathcal{DL-Lite}$, we distinguish between two kinds of concepts

1. **Basic concepts B**, with the following syntax:

 $$B \rightarrow A \mid \exists R \exists R^-$$

 where $\exists R$ is an alternative syntax for $\exists R.\top$

2. **(General) concepts C**, which additionally allow for negation and conjunction

 $$C \rightarrow B \mid \neg B \mid C_1 \cap C_2$$

GCIs are a bit asymmetric and allow general concepts only on the r.h.s.

$$B \sqsubseteq C$$

Motivation and Applications

$\mathcal{DL-Lite}$ was specially tailored in such a way that:

- traditional reasoning problems are all solvable in polynomial time
- the data described by the ontology can be queried efficiently
 - it has very low computational complexity
 - it can be achieved by relying on existing database technologies (we discuss this kind of querying in more detail later)
- basic data and conceptual modeling formalisms, such as ER-diagrams and UML class diagrams, can be expressed in (variations of) $\mathcal{DL-Lite}$
 - among other advantages, this allows for formal reasoning in these formalisms, and for studying its complexity

Motivation and Applications (cont’d)

The application of $\mathcal{DL-Lite}$ has been specially successful in areas like:

- ontology based data access
- information and data integration
- conceptual modeling
- and similar data-oriented fields.
Model construction in **DL-Lite**

- Similarly to \mathcal{EL}, a satisfiable **DL-Lite** concept/KB has a **canonical model** that can be used for solving all the standard reasoning tasks.

- The canonical model can be built using a DB-like **chase procedure** as known from databases.
 - In fact, the chase is just another presentation for tableau.

- The straightforward chase does not terminate, but it is easy to show that only a small (i.e., polynomial) part of it is relevant for reasoning.

- Moreover, we can solve all reasoning problems without constructing the canonical model.

Reasoning in **DL-Lite**

- Unsatisfiability in **DL-Lite** can only arise due to some $C \subseteq \neg D$ implied by the TBox that is violated in the ABox.
 - To check satisfiability, we only need to derive all the $C \subseteq \neg D$ that follow form the TBox and check them.
 - This can be done in polynomial time.

- Subsumption is reducible to KB unsatisfiability:

 \[
 \langle T, A \rangle \models C \subseteq D \quad \text{iff} \quad \langle T', A' \rangle \text{ is unsatisfiable}
 \]

 where $T' = T \cup \{ A \subseteq C, A \subseteq \neg D \}$ and $A' = A \cup \{ A(d) \}$ for fresh A and d.

Combined vs. Data Complexity

- So far, our complexity considerations have assumed **combined complexity**
 - 'standard' measure of complexity
 - takes into account the size of the full input, i.e., the full KB, plus possibly one or two concepts, individuals, . . .

- In many settings, it makes sense to consider more fine-grained notions of complexity known from databases.

- When the ABox may contain big amounts of data and its much larger than the terminological component, we focus on **data complexity**.

Definition (Data complexity)

Data complexity is the complexity of reasoning w.r.t. to an input ABox, where the **terminological component** (TBox, concepts) is assumed to be fixed.

Data Complexity in DLs

- All expressive DLs are **intractable** in data complexity.
 - practically all of them NP- or coNP-complete depending on the reasoning task.

- \mathcal{EL} is **P-complete** in data complexity.

A crucial difference between \mathcal{EL} and **DL-Lite** is that **DL-lite** has lower data complexity.
Data Complexity in **DL-Lite**

Theorem

The data complexity of reasoning in **DL-Lite** is not higher than that of evaluating an SQL query over a database.

- **DL-Lite** has very low complexity
 - feasible in logarithmic space, and inside a (highly parallelizable) complexity class called \(AC_0 \)

- Any reasoning problem over a **DL-Lite** KB can be reduced to evaluating an SQL query over a database corresponding to the ABox
 - particularly appealing if we indeed have a very large and dynamic ABox
 - the implementation of this idea has made **DL-Lite** a very popular formalism

Beyond LogSpace

It is well known that, essentially, adding any other DL construct to **DL-Lite** increases the data complexity beyond logarithmic space.

For example,

- adding concepts of the form \(\exists R.A \) on the l.h.s. of GCIs, \(\forall R.A \) on the r.h.s. or \(\exists R^- .A \) on the l.h.s. makes reasoning NLogSpace-hard

- If we additionally allow conjunction on the l.h.s. reasoning becomes PTime hard (like in **EL**)

- Concept negation, concept disjunction, or concepts of the form \(\forall R.A \) on the l.h.s., make reasoning already NP-hard

Extensions of **DL-Lite**

There are many well known extensions of **DL-Lite** that preserve its nice computational features, for example:

- In **DL-Lite**\(_{\textit{f}}\) the TBox may include functionality assertions \(\text{funct}(R) \), \(\text{funct}(R^-) \)

- In **DL-Lite**\(_{\textit{r}}\) we have role inclusions, also of the form \(R \sqsubseteq \neg S \) (sometimes called **DL-Lite**\(_{\textit{H}}\))

- **DLR-Lite**, and the respective \(_{\textit{f}} \) and \(_{\textit{r}} \) extensions, allow for predicates of arity higher than 2

Many other extensions are defined in a 'less standard' way (e.g., **DL-Lite**\(_{\textit{horn}}\), **DL-Lite**\(_{\textit{krom}}\))

Lightweight Profiles for OWL 2

The new OWL 2 standard has two profiles that are intended to support scalable reasoning:

- **OWL EL** is based on \(\mathcal{EL}^{++} \)

- **OWL QL** is based on **DL-Lite**
Lightweight DLs

5. Other Horn DLs

Horn fragments of other DLs

We know that most extensions of \mathcal{EL} and \mathcal{DL}-Lite lead to increased complexity of reasoning, but ... are some of the positive features of these DLs preserved in more expressive logics?

Fortunately, yes:

- Horn fragments of DLs are obtained by restricting the syntax of expressive DLs in such a way that disjunction can not be expressed
- They fall inside the (well-known) Horn fragment of FOL
- This is usually enough to ensure the existence of one canonical model that suffices for all reasoning problems, as in \mathcal{EL} and \mathcal{DL}-Lite

Complexity of Horn DLs

- The data complexity of reasoning in Horn-DLs is usually PTime-complete
 - This holds for Horn-\mathcal{SHIQ}, Horn-\mathcal{SHOIQ}, Horn-\mathcal{SRIQ}, Horn-\mathcal{SROIQ}
- The combined complexity is not much lower than that of the non-Horn variant
 - Horn-\mathcal{SHIQ} and Horn-\mathcal{SHOIQ} are ExpTime-complete
 - Horn-\mathcal{SRIQ} and Horn-\mathcal{SROIQ} are 2ExpTime-complete

Roughly, this is because the (representation of) the canonical model may be as large and complex as in the non-Horn case

Horn DLs allow to reason efficiently in the presence of large amounts of data

Summary

- We are now familiar with the most important lightweight description logics
 1. The \mathcal{EL} family
 2. The \mathcal{DL}-Lite family
 3. Other Horn-DLs

They are all tractable in data complexity, and often also in combined complexity

- Our last DL topic will be an overview of query answering in DLs