
VU Einführung in Wissensbasierte Systeme

WS 2010/11

Hans Tompits

Institut für Informationssysteme
Arbeitsbereich Wissensbasierte Systeme

www.kr.tuwien.ac.at



3. Constraint Satisfaction

Problems



Constraint Satisfaction Problems (CSPs)

➤ Standard search problem:

• From the point of view of a search algorithm, a state is a
“black box” with no discernible internal structure.

• It is represented by an arbitrary data structure that can be
accessed only by the problem specific routines:

– the successor function,

– heuristic function,

– and goal test.

➤ Constraint satisfaction problem (CSP):

• The states and the goal test conform to a standard, structured,
and simple representation.

• Search algorithms can be defined that take advantage of the
structure of states and use general-purpose rather than
problem-specific heuristics.

1/31



Constraint Satisfaction Problems (ctd.)

➤ In a constraint satisfaction problem

• a state is defined by variables with values from an associated
domain

• the goal test is a set of constraints specifying allowable
combinations of values for subsets of variables

➥ Simple example of a formal representation language

➤ allows useful general-purpose algorithms with more power than
standard search algorithms.

2/31



CSP: Formal Definition

A constraint satisfaction problem (CSP) consists of the following
components:

➤ a finite set V = {V1, V2, . . . ,Vn} of variables;

➤ each variable Vi ∈ V has an associated non-empty domain Di of
possible values;

➤ a finite set C = {C1, C2, . . . ,Cm} of constraints.

• A constraint C ∈ C between variables Vi1 , . . . ,Vij is a subset of
Di1 × · · · × Dij .

3/31



CSP: Formal Definition (ctd.)

➤ Each constraint limits the values that variables can take, e.g.,
V1 6= V2.

➤ There are constraints of different arities:

• n-ary constraints restrict the possible assignment of n variables,
i.e., n-ary constraints are n-ary relations.

• In particular:

– Unary constraints restrict the domain Di of one variable Vi .
E.g., C (Vi ) = {1, 3, 5, 7, 8}.

– Binary constraints restrict the domains Di ×Dj of a pair of
variables Vi , Vj .
E.g., C (Vi , Vj) = {(1, 2), (3, 5), (7, 3), (8, 2)}.

– Ternary constraints,. . .

4/31



CSP: Further notions

➤ A state of a CSP is defined by an assignment of values to some or
all of the variables.

➤ An assignment that does not violate any constraints is consistent or
legal.

➤ An assignment is complete iff it mentions every variable.

➤ A solution to a CSP is a complete assignment satisfying all
constraints.

➤ Some CSPs also require a solution that maximises an objective
function

➥ these are called constrained optimisation problems.

5/31



Example: Map-colouring

Consider the task of colouring a map of Australia with the colours red,
green, and blue such that no neighbouring region have the same colour.

Western
Australia

Northern
Territory

South
Australia

Queensland

New South Wales

Victoria

Tasmania

6/31



Example: Map-colouring (ctd.)

We can formulate this problem as the following CSP:

➤ Variables: WA, NT , Q, NSW , V , SA, T

➤ Domains: Di = {red , green, blue}

➤ Constraints: adjacent regions must have different colors

• e.g., the allowable combinations of WA and NT are

C (WA, NT ) = {(red , green), (red , blue), (green, red),
(green, blue), (blue, red), (blue, green)},

• or simply written as WA 6= NT (if the language allows this).

7/31



Example: Map-colouring (ctd.)

There are many possible solutions, e.g.,
{WA = red , NT = green, Q = red , NSW = green, V = red ,

SA= blue, T = green}

Western
Australia

Northern
Territory

South
Australia

Queensland

New South Wales

Victoria

Tasmania

8/31



Constraint graph

➤ For a binary CSP (in which all constraints are binary), it is helpful to
visualize the problem as a constraint graph.

• The nodes are the variables,

• the arcs correspond to the constraints.

➤ E.g., our map-colouring problem has the following constraint graph:

Western
Australia

Northern
Territory

South
Australia

Queensland

New South Wales

Victoria

Tasmania

• General-purpose CSP algorithms use the graph structure to
speed up search.

• E.g., Tasmania is an independent subproblem!
9/31



Constraint graph (ctd.)

➤ Higher-order constraints can be represented by a constraint
hypergraph.

• Reminder: a hypergraph is a pair (X , E ), where X is a set of
nodes and E is a set of non-empty subsets of X , the
hyperedges.

➤ Cryptarithmetic puzzles are examples of higher-order constraints.

• Usually, one assumes that each letter in a cryptarithmetic
puzzle represents a different digit.

10/31



Constraint graph (ctd.)

Example:
OWTF U R

+
OWT
OWT

F O U R

X2 X1X3

➤ This is formulated as the following CSP:

• Variables: F , T , U, W , R, O, X1, X2, X3

• Domains: {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}

• Constraints:

– Alldiff (F , T , U, W , R, O);

– addition constraints:
O + O = R + 10 · X1,
X1 + W + W = U + 10 · X2,
X2 + T + T = O + 10 · X3,
X3 = F .

➤ A solution for this CSP is, e.g., 938 + 938 = 1876.
11/31



Varieties of CSPs

➤ The simplest kind of CSPs involves variables that are discrete and
have finite domains.

• E.g., map-colouring problems are of this kind.

➤ If the maximum domain size of any variable in a CSP is d , and there
are n variables, then the number of possible complete assignments is
O(dn)

➥ exponential in the number of variables!

12/31



Varieties of CSPs (ctd.)

➤ Finite domain CSPs whose variables can be either true or false are
called Boolean CSPs.

➤ E.g., 3SAT can be expressed as a Boolean CSP

• a clause like X1 ∨ ¬X2 ∨ X3 corresponds to the constraint

C (X1,X2,X3) =

({true, false} × {true, false} × {true, false}) \ {(false, true, false)}.

➤ Since 3SAT is an NP-complete problem we cannot expect to solve
finite-domain CSPs in less than exponential time (unless P=NP).

➤ However, in most practical applications, CSP algorithms can solve
problems orders of magnitude larger than those solvable via general
search algorithms.

13/31



Varieties of CSPs (ctd.)

➤ Discrete variables can also have infinite domains, e.g., the set of
integers or the set of strings.

• E.g., for construction job scheduling, variables are the start
dates and the possible values are integer numbers of days from
the current date.

➤ Note:

• With infinite domains it is no longer possible to describe
constraints by enumerating all allowed combinations of values.

• Rather, a constraint language must be used.

– E.g., if Job1, which takes 5 days, must precede Job3, then
we need a language of algebraic inequalities like
StartJob1 + 5 ≤ StartJob3.

14/31



Varieties of CSPs (ctd.)

➤ It is also no longer possible to solve constraints with infinite domains
by enumerating all possible assignments

➥ there are infinitely many of them!

➤ Special solution algorithms exist for linear constraints on integer
values

• linear constraint = variables appear only in linear form

• e.g., StartJob1 + 5 ≤ StartJob3 is linear.

➤ Non-linear constraints are undecidable—no algorithm exists for
solving such constraints!

15/31



Varieties of CSPs (ctd.)

➤ Finally, there are CSPs with continuous domains

• very common in real-world applications and widely studied in
operations research

• e.g., scheduling the start/end times for the Hubble Space
Telescope.

➤ Linear constraints can be solved with linear programming methods
in polynomial time.

16/31



Some real-world CSPs

➤ Assignment problems

• e.g., who teaches what class

➤ Timetabling problems

• e.g., which class is offered when and where?

➤ Hardware configuration

➤ Transportation scheduling

➤ Factory scheduling

➤ Floor planning

☞ Notice that many real-world problems involve real-valued variables.

17/31



CSPs as standard search problems

➤ It is straightforward to give an incremental formulation of a CSP as
a standard search problem.

• States are defined by the values assigned so far.

• Initial state: the empty assignment, ∅.

• Successor function: assign a value to an unassigned variable
providing it does not conflict with the current assignment.

• Goal test: the current assignment is complete.

➤ This is the same for all CSPs!

➥ Any standard search algorithm can be used to solve CSPs.

18/31



CSPs as standard search problems (ctd.)

Caveat: Suppose we use breadth-first search.

➤ If there are n variables and d values, the branching factor at the top
level is nd .

➤ At the next level, the branching factor is (n − 1)d , and so on for n

levels.

➥ We generate a tree with n!dn leaves although there are only dn

possible complete assignments!

19/31



Backtracking search

The naive formulation ignored one crucial property of CSPs:

➤ Variable assignments are commutative, i.e., the order of application
of any given set of actions has no effect on the outcome

➥ when assigning values to variables, we reach the same partial
assignment regardless of order.

➤ All CSP search algorithms generate successors by considering
possible assignments for a single variable at each node in the search
tree!

• E.g., in the map-colouring problem, initially we may have a
choice between SA= red , SA= green, and SA= blue,

• but we would not choose between SA= red and WA = blue.

➥ With this restriction, we generate only dn leaves as expected.

20/31



Backtracking search (ctd.)

Depth-first search for CSPs with single-variable assignments is called
backtracking search.

➤ Backtracking search is the basic uninformed algorithm for CSPs

➤ Can solve n-queens for n ≈ 25.

21/31



Backtracking search (ctd.)

Below gives part of the search tree for the Australia problem, where the
variables are assigned in the order WA, NT , Q, . . .

22/31



Backtracking search (ctd.)

➤ Since plain backtracking search is an uninformed algorithm, we do
not expect it to be very effective for large problems.

➤ Different general-purpose methods help improving the performance,
addressing the following issues:

• Which variable should be assigned next, and in what order
should its values be tried?

• What are the implications of the current variable assignments
for the other unassigned variables?

• When a path fails, can the search avoid repeating this failure in
subsequent paths?

23/31



Minimum-remaining-values heuristic

➤ The minimum-remaining-values (MRV) heuristic:

• choose the variable with the fewest legal values.

➤ If there is a variable X with 0 legal values remaining, the MRV
heuristic will select X and failure will be detected immediately

• avoiding pointless searches through other variables.

➤ E.g., in the Australia example, after the assignments for WA = red

and NT = green, there is only one possible value for SA.

➥ it makes sense to assign SA = blue next rather than assigning
Q.

• Actually, after SA is assigned, the choices for Q, NSW , and V

are all forced.

24/31



Degree heuristic

➤ The MRV heuristic does not help at all in choosing the first region
to colour.

➤ In this case, the degree heuristic comes in:

• it selects the variable that is involved in the largest number of

constraints on other unassigned variables.

➤ In the Australia example, SA is the variable with highest degree, 5.

• The others have degree 2 or 3.

• Actually, once SA is chosen, applying the degree heuristic one
more time solves the problem without any false steps.

25/31



Least-constraining-value heuristic

➤ Once a variable has been selected, to decide on the order in which
to examine its values, the least-constraining-value heuristic can be
effective:

• it prefers the value that rules out the fewest choices for the
neighbouring variables in the constraint graph.

➤ In the Australia example, suppose we have the partial assignment
WA = red and NT = green, and our next choice is for Q.

• Blue would be a bad choice, because it eliminates the last legal
value for Q’s neighbour SA.

➥ The least-constraining-value heuristic thus prefers red to blue.

Allows 1 value for SA

Allows 0 values for SA

26/31



Forward checking

➤ The methods discussed so far consider the constraints on a variable
only at the time that the variable is chosen.

➤ By looking at some of the constraints earlier in the search, or even
before the search, the search space can be drastically reduced.

➤ One such method is forward checking:

• whenever a variable X is assigned, it looks at each unassigned
variable Y that is connected to X by a constraint

• and deletes from the domain of Y any value that is inconsistent
with the value chosen for X .

27/31



Forward checking (ctd.)

➤ Consider colouring Australia using forward checking:

WA NT Q NSW V SA T

➤ Note:
• After assigning WA = red and Q = green, the domains of NT

and SA are reduced to a single value.

➥ The MRV heuristic would select SA and NT next.

• After assigning V = blue, the domain of SA is empty, so we get
failure and the algorithm backtracks.

28/31



Forward checking (ctd.)

➤ Forward checking does not provide early detection for all failures:

WA NT Q NSW V SA T

➤ NT and SA cannot both be blue!

☞ Constraint propagation is the general term for propagating the
implications of a constraint on one variable onto other variables.

29/31



Arc consistency

➤ The simplest form of constraint propagation is arc consistency:

• “arc” refers to a directed arc in the constraint graph;

• X → Y is consistent iff for every value x of X there is some

allowed value y of Y .

➤ For SA = blue in the Australia colouring, there is a consistent
assignment for NSW , namely red =⇒ the arc from SA to NSW is
consistent

• the reverse arc is not consistent, but can be made so by
deleting blue from the domain of NSW .

WA NT Q NSW V SA T

30/31



Further techniques

➤ Intelligent backtracking:

• do not backtrack to preceding variable if failure occurs, but go
back to one in the set of variables that caused the failure

– this set is the conflict set

– e.g., backjumping goes to the most recent variable in this
conflict set.

➤ Local search algorithms are very effective for solving CSPs

• the million-queens problem can be solved in an average of 50
steps.

➤ The structure of the constraint graph can be taken into account.

• E.g., colouring Tasmania is an independent subproblem of
colouring Australia.

• Tree-structured problems can be solved in linear time.

31/31


