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3. Constraint Satisfaction

Problems



Constraint Satisfaction Problems (CSPs)

➤ Standard search problem:

• From the point of view of a search algorithm, a state is a
“black box” with no discernible internal structure.

• It is represented by an arbitrary data structure that can be
accessed only by the problem specific routines:

– the successor function,

– heuristic function,

– and goal test.

➤ Constraint satisfaction problem (CSP):

• The states and the goal test conform to a standard, structured,
and simple representation.

• Search algorithms can be defined that take advantage of the
structure of states and use general-purpose rather than
problem-specific heuristics.
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Constraint Satisfaction Problems (ctd.)

➤ In a constraint satisfaction problem

• a state is defined by variables with values from an associated
domain

• the goal test is a set of constraints specifying allowable
combinations of values for subsets of variables

➥ Simple example of a formal representation language

➤ allows useful general-purpose algorithms with more power than
standard search algorithms.
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CSP: Formal Definition

A constraint satisfaction problem (CSP) consists of the following
components:

➤ a finite set V = {V1, V2, . . . ,Vn} of variables;

➤ each variable Vi ∈ V has an associated non-empty domain Di of
possible values;

➤ a finite set C = {C1, C2, . . . ,Cm} of constraints.

• A constraint C ∈ C between variables Vi1 , . . . ,Vij is a subset of
Di1 × · · · × Dij .
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CSP: Formal Definition (ctd.)

➤ Each constraint limits the values that variables can take, e.g.,
V1 6= V2.

➤ There are constraints of different arities:

• n-ary constraints restrict the possible assignment of n variables,
i.e., n-ary constraints are n-ary relations.

• In particular:

– Unary constraints restrict the domain Di of one variable Vi .
E.g., C (Vi ) = {1, 3, 5, 7, 8}.

– Binary constraints restrict the domains Di ×Dj of a pair of
variables Vi , Vj .
E.g., C (Vi , Vj) = {(1, 2), (3, 5), (7, 3), (8, 2)}.

– Ternary constraints,. . .
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CSP: Further notions

➤ A state of a CSP is defined by an assignment of values to some or
all of the variables.

➤ An assignment that does not violate any constraints is consistent or
legal.

➤ An assignment is complete iff it mentions every variable.

➤ A solution to a CSP is a complete assignment satisfying all
constraints.

➤ Some CSPs also require a solution that maximises an objective
function

➥ these are called constrained optimisation problems.
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Example: Map-colouring

Consider the task of colouring a map of Australia with the colours red,
green, and blue such that no neighbouring region have the same colour.

Western
Australia
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New South Wales

Victoria

Tasmania
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Example: Map-colouring (ctd.)

We can formulate this problem as the following CSP:

➤ Variables: WA, NT , Q, NSW , V , SA, T

➤ Domains: Di = {red , green, blue}

➤ Constraints: adjacent regions must have different colors

• e.g., the allowable combinations of WA and NT are

C (WA, NT ) = {(red , green), (red , blue), (green, red),
(green, blue), (blue, red), (blue, green)},

• or simply written as WA 6= NT (if the language allows this).
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Example: Map-colouring (ctd.)

There are many possible solutions, e.g.,
{WA = red , NT = green, Q = red , NSW = green, V = red ,

SA= blue, T = green}
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Constraint graph

➤ For a binary CSP (in which all constraints are binary), it is helpful to
visualize the problem as a constraint graph.

• The nodes are the variables,

• the arcs correspond to the constraints.

➤ E.g., our map-colouring problem has the following constraint graph:

Western
Australia

Northern
Territory

South
Australia

Queensland

New South Wales

Victoria

Tasmania

• General-purpose CSP algorithms use the graph structure to
speed up search.

• E.g., Tasmania is an independent subproblem!
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Constraint graph (ctd.)

➤ Higher-order constraints can be represented by a constraint
hypergraph.

• Reminder: a hypergraph is a pair (X , E ), where X is a set of
nodes and E is a set of non-empty subsets of X , the
hyperedges.

➤ Cryptarithmetic puzzles are examples of higher-order constraints.

• Usually, one assumes that each letter in a cryptarithmetic
puzzle represents a different digit.
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Constraint graph (ctd.)

Example:
OWTF U R

+
OWT
OWT

F O U R

X2 X1X3

➤ This is formulated as the following CSP:

• Variables: F , T , U, W , R, O, X1, X2, X3

• Domains: {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}

• Constraints:

– Alldiff (F , T , U, W , R, O);

– addition constraints:
O + O = R + 10 · X1,
X1 + W + W = U + 10 · X2,
X2 + T + T = O + 10 · X3,
X3 = F .

➤ A solution for this CSP is, e.g., 938 + 938 = 1876.
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Varieties of CSPs

➤ The simplest kind of CSPs involves variables that are discrete and
have finite domains.

• E.g., map-colouring problems are of this kind.

➤ If the maximum domain size of any variable in a CSP is d , and there
are n variables, then the number of possible complete assignments is
O(dn)

➥ exponential in the number of variables!
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Varieties of CSPs (ctd.)

➤ Finite domain CSPs whose variables can be either true or false are
called Boolean CSPs.

➤ E.g., 3SAT can be expressed as a Boolean CSP

• a clause like X1 ∨ ¬X2 ∨ X3 corresponds to the constraint

C (X1,X2,X3) =

({true, false} × {true, false} × {true, false}) \ {(false, true, false)}.

➤ Since 3SAT is an NP-complete problem we cannot expect to solve
finite-domain CSPs in less than exponential time (unless P=NP).

➤ However, in most practical applications, CSP algorithms can solve
problems orders of magnitude larger than those solvable via general
search algorithms.
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Varieties of CSPs (ctd.)

➤ Discrete variables can also have infinite domains, e.g., the set of
integers or the set of strings.

• E.g., for construction job scheduling, variables are the start
dates and the possible values are integer numbers of days from
the current date.

➤ Note:

• With infinite domains it is no longer possible to describe
constraints by enumerating all allowed combinations of values.

• Rather, a constraint language must be used.

– E.g., if Job1, which takes 5 days, must precede Job3, then
we need a language of algebraic inequalities like
StartJob1 + 5 ≤ StartJob3.
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Varieties of CSPs (ctd.)

➤ It is also no longer possible to solve constraints with infinite domains
by enumerating all possible assignments

➥ there are infinitely many of them!

➤ Special solution algorithms exist for linear constraints on integer
values

• linear constraint = variables appear only in linear form

• e.g., StartJob1 + 5 ≤ StartJob3 is linear.

➤ Non-linear constraints are undecidable—no algorithm exists for
solving such constraints!
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Varieties of CSPs (ctd.)

➤ Finally, there are CSPs with continuous domains

• very common in real-world applications and widely studied in
operations research

• e.g., scheduling the start/end times for the Hubble Space
Telescope.

➤ Linear constraints can be solved with linear programming methods
in polynomial time.
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Some real-world CSPs

➤ Assignment problems

• e.g., who teaches what class

➤ Timetabling problems

• e.g., which class is offered when and where?

➤ Hardware configuration

➤ Transportation scheduling

➤ Factory scheduling

➤ Floor planning

☞ Notice that many real-world problems involve real-valued variables.
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CSPs as standard search problems

➤ It is straightforward to give an incremental formulation of a CSP as
a standard search problem.

• States are defined by the values assigned so far.

• Initial state: the empty assignment, ∅.

• Successor function: assign a value to an unassigned variable
providing it does not conflict with the current assignment.

• Goal test: the current assignment is complete.

➤ This is the same for all CSPs!

➥ Any standard search algorithm can be used to solve CSPs.
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CSPs as standard search problems (ctd.)

Caveat: Suppose we use breadth-first search.

➤ If there are n variables and d values, the branching factor at the top
level is nd .

➤ At the next level, the branching factor is (n − 1)d , and so on for n

levels.

➥ We generate a tree with n!dn leaves although there are only dn

possible complete assignments!
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Backtracking search

The naive formulation ignored one crucial property of CSPs:

➤ Variable assignments are commutative, i.e., the order of application
of any given set of actions has no effect on the outcome

➥ when assigning values to variables, we reach the same partial
assignment regardless of order.

➤ All CSP search algorithms generate successors by considering
possible assignments for a single variable at each node in the search
tree!

• E.g., in the map-colouring problem, initially we may have a
choice between SA= red , SA= green, and SA= blue,

• but we would not choose between SA= red and WA = blue.

➥ With this restriction, we generate only dn leaves as expected.
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Backtracking search (ctd.)

Depth-first search for CSPs with single-variable assignments is called
backtracking search.

➤ Backtracking search is the basic uninformed algorithm for CSPs

➤ Can solve n-queens for n ≈ 25.
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Backtracking search (ctd.)

Below gives part of the search tree for the Australia problem, where the
variables are assigned in the order WA, NT , Q, . . .
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Backtracking search (ctd.)

➤ Since plain backtracking search is an uninformed algorithm, we do
not expect it to be very effective for large problems.

➤ Different general-purpose methods help improving the performance,
addressing the following issues:

• Which variable should be assigned next, and in what order
should its values be tried?

• What are the implications of the current variable assignments
for the other unassigned variables?

• When a path fails, can the search avoid repeating this failure in
subsequent paths?
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Minimum-remaining-values heuristic

➤ The minimum-remaining-values (MRV) heuristic:

• choose the variable with the fewest legal values.

➤ If there is a variable X with 0 legal values remaining, the MRV
heuristic will select X and failure will be detected immediately

• avoiding pointless searches through other variables.

➤ E.g., in the Australia example, after the assignments for WA = red

and NT = green, there is only one possible value for SA.

➥ it makes sense to assign SA = blue next rather than assigning
Q.

• Actually, after SA is assigned, the choices for Q, NSW , and V

are all forced.
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Degree heuristic

➤ The MRV heuristic does not help at all in choosing the first region
to colour.

➤ In this case, the degree heuristic comes in:

• it selects the variable that is involved in the largest number of

constraints on other unassigned variables.

➤ In the Australia example, SA is the variable with highest degree, 5.

• The others have degree 2 or 3.

• Actually, once SA is chosen, applying the degree heuristic one
more time solves the problem without any false steps.
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Least-constraining-value heuristic

➤ Once a variable has been selected, to decide on the order in which
to examine its values, the least-constraining-value heuristic can be
effective:

• it prefers the value that rules out the fewest choices for the
neighbouring variables in the constraint graph.

➤ In the Australia example, suppose we have the partial assignment
WA = red and NT = green, and our next choice is for Q.

• Blue would be a bad choice, because it eliminates the last legal
value for Q’s neighbour SA.

➥ The least-constraining-value heuristic thus prefers red to blue.

Allows 1 value for SA

Allows 0 values for SA
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Forward checking

➤ The methods discussed so far consider the constraints on a variable
only at the time that the variable is chosen.

➤ By looking at some of the constraints earlier in the search, or even
before the search, the search space can be drastically reduced.

➤ One such method is forward checking:

• whenever a variable X is assigned, it looks at each unassigned
variable Y that is connected to X by a constraint

• and deletes from the domain of Y any value that is inconsistent
with the value chosen for X .
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Forward checking (ctd.)

➤ Consider colouring Australia using forward checking:

WA NT Q NSW V SA T

➤ Note:
• After assigning WA = red and Q = green, the domains of NT

and SA are reduced to a single value.

➥ The MRV heuristic would select SA and NT next.

• After assigning V = blue, the domain of SA is empty, so we get
failure and the algorithm backtracks.
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Forward checking (ctd.)

➤ Forward checking does not provide early detection for all failures:

WA NT Q NSW V SA T

➤ NT and SA cannot both be blue!

☞ Constraint propagation is the general term for propagating the
implications of a constraint on one variable onto other variables.
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Arc consistency

➤ The simplest form of constraint propagation is arc consistency:

• “arc” refers to a directed arc in the constraint graph;

• X → Y is consistent iff for every value x of X there is some

allowed value y of Y .

➤ For SA = blue in the Australia colouring, there is a consistent
assignment for NSW , namely red =⇒ the arc from SA to NSW is
consistent

• the reverse arc is not consistent, but can be made so by
deleting blue from the domain of NSW .

WA NT Q NSW V SA T
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Further techniques

➤ Intelligent backtracking:

• do not backtrack to preceding variable if failure occurs, but go
back to one in the set of variables that caused the failure

– this set is the conflict set

– e.g., backjumping goes to the most recent variable in this
conflict set.

➤ Local search algorithms are very effective for solving CSPs

• the million-queens problem can be solved in an average of 50
steps.

➤ The structure of the constraint graph can be taken into account.

• E.g., colouring Tasmania is an independent subproblem of
colouring Australia.

• Tree-structured problems can be solved in linear time.

31/31


