Exercise 1 (2 pts):

Let b > 1 be the maximal branching degree in the search tree and let d be its depth. Estimate the number of nodes, $n_{bfs}(d)$, generated during a bfs¹ with depth d. Show that $n_{bfs}(d) = O(b^d)$ and estimate the constant c_{bfs} .

Exercise 2 (2 pts):

Let b > 1 be the maximal branching degree in the search tree and let d be its depth. Estimate the number of nodes, $n_{dfid}(d)$, generated during a dfid with depth d. Show that $n_{dfid}(d)$ is $O(b^d)$ and estimate the constant c_{dfid} . What can you say about the overhead induced by dfid?

Exercise 3 (1 pt):

Consider dfid again. Analyze the behavior of

$$\frac{1}{(1-\frac{1}{b})^2}$$

if the branching factor b increases (you may draw a curve!). For which kind of problems is the overhead induced by dfid low? Compare it to the behaviour of

$$\frac{1}{(1-\frac{1}{b})}$$

Exercise 4 (1 pt):

Give an example that A^* on graphs (with admissible heuristics) is not optimal. The pseudo code of A^* can be found at http://en.wikipedia.org/wiki/A*_search_algorithm

Exercise 5 (2 pts):

Show the following statement: Consistent heuristics are admissible.

Exercise 6 (2 pts):

Prove that the set of nodes expanded by A^* is a subset of the set of nodes expanded by ucs (operators have the same cost).

Exercise 7 (2 pts):

Let $f(n) = c_g g(n) + c_h h(n)$ be an evaluation function, where c_g, c_h be constants.

- a. Define $c_g, c_h, h(\cdot), g(\cdot)$ such that A^* with this evaluation function is bfs.
- b. Define $c_g, c_h, h(\cdot), g(\cdot)$ such that A^* with this evaluation function is dfs.

¹bfs: breadth-first search; dfs: depth-first search; dfid: depth-first iterative deepening; ucs: uniform cost search

Exercise 8 (3 pts):

An evaluation function \tilde{f} is called *monotone* if for all nodes n and n', n' successor of n,

$$\tilde{f}(n) \leq \tilde{f}(n')$$

holds. Show that the function

$$\tilde{f}(n) = \begin{cases} f(n) & \text{if } n \text{ is the start node,} \\ \max\{f(n), \tilde{f}(m)\} & \text{if } n \text{ is the successor of } m \end{cases}$$

is (i) monotone, (ii) the corresponding heuristic \tilde{h} is admissible and (iii) \tilde{h} dominates the admissible heuristic h.

Exercise 9:

In four houses, each with a different colour, live four persons of different nationalities, each of whom grows a different kind of plants and prefers a different food. Given the following facts, the goal is to find out which house is yellow, where the Spanish person lives, who eats cheese and who grows roses.

- 1. The Italian grows cactuses.
- 2. The orchids grow in front of house three.
- 3. The person who grows the orchids likes rice.
- 4. The Norwegian does not live in house four.
- 5. The third house is pink.
- 6. The German lives directly next to the person who eats steaks.
- 7. The person eating pancakes lives directly to the right of the gray house.
- 8. The dahlias grow directly to the right of the pink house.
- 9. The person eating steaks lives directly next to the blue house.

Formulate this problem as a CSP (1 pt) and give a solution (1 pt).