
Problem Solving by Search 2

Uwe Egly

Vienna University of Technology
Institute of Information Systems

Knowledge-Based Systems Group



Outline

Introduction

Heuristic Search
Greedy Search
A∗-search

Admissible Heuristics
Dominance
Relaxed Problems

Summary



Overview

Search: very important technique in CS and AI

Different kinds of search:

◮ Deterministic search
◮ Uninformed (“blind”) search strategies ✔
◮ Informed or heuristic search strategies:

use information about problem structure

◮ Local search
◮ Search in game trees (not covered in this course)

In this lecture: Heuristic search



Basic Ideas of Heuristic Search

◮ Use problem- or domain-specific knowledge during search
◮ Implemented by a heuristic function h “desirability”

(expand “most-desired” node next (= a kind of best-first search))

◮ Evaluation function f (n): estimation for a function f ∗(n)

◮ h(n): estimates minimal costs from state n to a goal state
(h(n) = 0 always holds for a goal state)

◮ Computation of h(n) must be easy
◮ Consider two algorithms:

◮ greedy search and
◮ A∗ search



Romania Again

Bucharest

Giurgiu

Urziceni

Hirsova

Eforie

Neamt
Oradea

Zerind

Arad

Timisoara

Lugoj
Mehadia

Dobreta
Craiova

Sibiu

Fagaras

Pitesti
Rimnicu Vilcea

Vaslui

Iasi

Straight−line distance
to Bucharest

 0
160
242
161

77
151

241

366

193

178

253
329
80

199

244

380

226

234

374

98

Giurgiu

Urziceni
Hirsova

Eforie

Neamt

Oradea

Zerind

Arad

Timisoara

Lugoj

Mehadia

Dobreta

Craiova

Sibiu Fagaras

Pitesti

Vaslui

Iasi

Rimnicu Vilcea

Bucharest

71

75

118

111

70

75
120

151

140

99

80

97

101

211

138

146 85

90

98

142

92

87

86



Greedy Search

◮ Uses evaluation function f (n) = h(n)

◮ Does not take already “spent” costs into account
(decisions are based on local information)

◮ Example: h(n) = straight-line distance from n to Bucharest
◮ Greedy search expands the node with the smallest f -value

(node appears to be closest to goal)



Greedy Search for the Travel Example

Expand the only node Arad

Arad

366



Greedy Search for the Travel Example

Expand the node Sibiu, because it has the smallest f -value

Zerind

Arad

Sibiu Timisoara

253 329 374



Greedy Search for the Travel Example

Expand the node Fagaras, because it has the smallest f -value

Rimnicu Vilcea

Zerind

Arad

Sibiu

Arad Fagaras Oradea

Timisoara

329 374

366 176 380 193



Greedy Search for the Travel Example

Solution found: Arad–Sibiu–Fagaras–Bucharest (450km)

Rimnicu Vilcea

Zerind

Arad

Sibiu

Arad Fagaras Oradea

Timisoara

Sibiu Bucharest

329 374

366 380 193

253 0



An Alternative and Optimal Solution

Bucharest

Giurgiu

Urziceni

Hirsova

Eforie

Neamt
Oradea

Zerind

Arad

Timisoara

Lugoj
Mehadia

Dobreta
Craiova

Sibiu

Fagaras

Pitesti
Rimnicu Vilcea

Vaslui

Iasi

Straight−line distance
to Bucharest

 0
160
242
161

77
151

241

366

193

178

253
329
80

199

244

380

226

234

374

98

Giurgiu

Urziceni
Hirsova

Eforie

Neamt

Oradea

Zerind

Arad

Timisoara

Lugoj

Mehadia

Dobreta

Craiova

Sibiu Fagaras

Pitesti

Vaslui

Iasi

Rimnicu Vilcea

Bucharest

71

75

118

111

70

75
120

151

140

99

80

97

101

211

138

146 85

90

98

142

92

87

86

Non-optimal solution: Arad–Sibiu–Fagaras–Bucharest (450km)
Arad–Sibiu–Rimnicu Vilcea–Pitesti–Bucharest is shorter



Properties of Greedy Search

Completeness: No (can get stuck in loops)
Yes with loop checks

Space complexity: O(bm), i.e., exponential in m
(keep any node)

Time complexity: O(bm), i.e., exponential in m

Optimality: No



A∗-search

◮ Problems of greedy search: loops and non-optimality
(induced by the use of only local info)

◮ A∗: Use evaluation function f (n) = g(n) + h(n)
(and avoid expanding paths that are already expensive)

◮ g(n): path costs from start to n, (i.e., costs so far to reach n)
◮ h(n): estimated cost to goal from n (like in greedy search)
◮ f (n): estimated total cost of path through n to goal

◮ h(n) has to be admissible, i.e., for all n, it holds:
◮ h(n) ≤ h∗(n) where h∗(n) is the true cost from n

(h(n) is “optimistic”)
◮ h(g) = 0 for any goal g
◮ h(n) > 0 for any non-goal state n

http://en.wikipedia.org/wiki/A*_search_algorithm



A∗-search for the Travel Example

We use the straight-line distance to obtain an optimistic heuristic
Expand the only node Arad

Arad

366=0+366



A∗-search for the Travel Example

Expand the node Sibiu, because it has the smallest f -value

Zerind

Arad

Sibiu Timisoara

447=118+329 449=75+374393=140+253



A∗-search for the Travel Example

Expand the node Rimnicu Vilcea (and not Fagaras as in GS)

Zerind

Arad

Sibiu

Arad

Timisoara

Rimnicu VilceaFagaras Oradea

447=118+329 449=75+374

646=280+366 413=220+193415=239+176 671=291+380



A∗-search for the Travel Example

Expand the node Fagaras, because it has the smallest f -value

Zerind

Arad

Sibiu

Arad

Timisoara

Fagaras Oradea

447=118+329 449=75+374

646=280+366 415=239+176

Rimnicu Vilcea

Craiova Pitesti Sibiu

526=366+160 553=300+253415=317+98

671=291+380



A∗-search for the Travel Example

Expand the node Pitesti, because it has the smallest f -value

Zerind

Arad

Sibiu

Arad

Timisoara

Sibiu Bucharest

Rimnicu VilceaFagaras Oradea

Craiova Pitesti Sibiu

447=118+329 449=75+374

646=280+366

591=338+253 450=450+0 526=366+160 553=300+253415=317+98

671=291+380



A∗-search for the Travel Example

Solution: Arad–Sibiu–Rimnicu Vilcea–Pitesti–Bucharest
Since f -value of all other open nodes are bigger terminate

Zerind

Arad

Sibiu

Arad

Timisoara

Sibiu Bucharest

Rimnicu VilceaFagaras Oradea

Craiova Pitesti Sibiu

Bucharest Craiova Rimnicu Vilcea

418=418+0

447=118+329 449=75+374

646=280+366

591=338+253 450=450+0 526=366+160 553=300+253

615=455+160 607=414+193

671=291+380



Do we Really Need Admissible Heuristics?

Sh(S)=7

Gh(G)=0

5 Th(T)=6

1

Hh(H)=0

3

◮ S is the start state

◮ h is not optimistic

◮ S expands immediately to G and T

◮ f (G) = 5 and f (T) = 7, so we are done

◮ Solution is obviously not optimal

◮ Hence, heuristics must be optimistic!

Theorem
If h is admissible, then A∗ using tree search is optimal.



Optimality of A∗: The Standard Proof

◮ Let h be admissible, goals G optimal and G2 suboptimal
◮ Suppose some suboptimal goal G2 has been generated
◮ Let n be an unexpanded node on a shortest path to G

G

n

G2

Start

f (G2) = g(G2) since h(G2) = 0 (G2 is a goal!)
> g(G) since G2 is suboptimal
≥ f (n) since h is admissible

Since f (G2) > f (n), A∗ will never select G2 for expansion



Problems with Optimality of A∗ Using Graph Search

◮ A∗ does not require for a path start–n that g(n) is minimal
◮ No problem for tree search (there is only one path)
◮ In graph search (GS), we can reach nodes with

non-optimal costs
◮ GS can discard optimal paths even if h is admissible

➥ optimality is lost
◮ Two possibilities to fix the problem:

◮ Change algorithm and add more complicated bookkeeping
(But what’s the effect on the run time?)

◮ Impose a stronger restriction, consistency, on the heuristic
➥ Implies that f -value is non-decreasing on any path



Optimality of A∗ Using Graph Search

Definition
A heuristic is consistent if, for every node n,
every successor n′ of n and any operator a,

h(n) ≤ c(n, a, n′) + h(n′)

holds, where c(n, a, n′) are the path costs for a.

n

c(n,a,n’)

h(n’)

h(n)

G

n’

If h is consistent, then f is non-decreasing along any path, i.e.,

f (n′) = g(n′) + h(n′) = g(n) + c(n, a, n′) + h(n′)

≥ g(n) + h(n) = f (n)

Theorem
If h is consistent, the A∗ using graph search is optimal



Optimality of A∗

◮ A∗ expands nodes in order of increasing f -values
◮ The “f -contours” of nodes are added gradually

(cf. BFS adds layers)
◮ Contour i has all nodes with f = fi , where fi < fi+1

O

Z

A

T

L

M

D
C

R

F

P

G

B
U

H

E

V

I

N

380

400

420

S



Properties of A∗

Completeness: Yes unless there are infinite many nodes
with f ≤ f (G)

Space complexity: Exponential (Keeps all nodes in memory)

Time complexity: Exponential in
[relative error in h × length of solution].

Optimality: Yes

◮ A∗ expands all nodes with f (n) < C∗

◮ A∗ expands some nodes with f (n) = C∗

◮ A∗ expands no nodes with f (n) > C∗



Admissible Heuristics

Consider the following heuristics for the 8-puzzle:

◮ h1(n): number of misplaced tiles
◮ h2(n): total Manhattan distance

(no. of squares (↔ and l) from desired location of each tile)

2

Start State Goal State

51 3

4 6

7 8

5

1

2

3

4

6

7

8

5

h1(Start State) = ?
h2(Start State) = ?



Admissible Heuristics

Consider the following heuristics for the 8-puzzle:

◮ h1(n): number of misplaced tiles
◮ h2(n): total Manhattan distance

(no. of squares (↔ and l) from desired location of each tile)

2

Start State Goal State

51 3

4 6

7 8

5

1

2

3

4

6

7

8

5

h1(Start State) = 6
h2(Start State) = 4+0+3+3+1+0+2+1 = 14



Dominance

◮ Given two admissible heuristics h1 and h2

◮ h2 dominates h1 (and is better for search) if h2(n) ≥ h1(n)

◮ Typical search costs:
d = 14 DFIDS requires 3,473,941 nodes

A∗ with h1 requires 539 nodes
A∗ with h2 requires 113 nodes

d = 24 DFIDS requires ≈ 54,000,000,000 nodes
A∗ with h1 requires 39,135 nodes
A∗ with h2 requires 1,641 nodes

◮ Given any admissible heuristics h1, h2,

h(n) = max(h1(n), h2(n))

is also admissible and dominates h1, h2



Admissible Heuristics from Relaxed Problems

◮ Derive admissible heuristics from exact solution cost of a
relaxed version of the problem

◮ If the rules of the 8-puzzle are relaxed so that a tile can
move anywhere, then h1(n) gives the shortest solution

◮ If the rules are relaxed so that a tile can move to any
adjacent square, then h2(n) gives the shortest solution

◮ Key point: optimal solution cost of a relaxed problem is not
greater than the optimal solution cost of the real problem



Relaxed problems cont’d

Well-known example: traveling salesperson problem (TSP)
Find the shortest tour visiting all cities exactly once

Minimum spanning tree (MST) can be computed in O(n2)
(e.g., by the algorithms of Kruskal or Prim) and is a lower
bound on the shortest (open) tour

Recall: A ST of a connected, undirected graph G is a subgraph
of G which is a tree and connects all the vertices together



Summary

◮ Heuristic functions estimate costs of shortest paths
◮ Good heuristics can dramatically reduce search cost
◮ Greedy best-first search expands lowest h

◮ Incomplete and not always optimal
◮ A∗ search expands lowest g + h

◮ Complete and optimal but space complexity exponential
◮ Iterative-deepening A∗ (IDA∗) reduces space complexity to

polynomial

◮ Admissible heuristics can be derived from exact solution of
relaxed problems


	Introduction
	Heuristic Search
	Greedy Search
	A*-search 

	Admissible Heuristics
	Dominance
	Relaxed Problems

	Summary

