Problem Solving by Search 2

Uwe Egly

Vienna University of Technology Institute of Information Systems Knowledge-Based Systems Group

Outline

Introduction

Heuristic Search

Greedy Search *A**-search

Admissible Heuristics

Dominance Relaxed Problems

Summary

Overview

Search: very important technique in CS and AI

Different kinds of search:

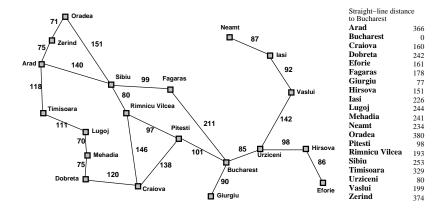
- Deterministic search
 - Uninformed ("blind") search strategies
 - Informed or heuristic search strategies: use information about problem structure
- Local search
- Search in game trees (not covered in this course)

In this lecture: Heuristic search

Basic Ideas of Heuristic Search

- Use problem- or domain-specific knowledge during search
- Implemented by a heuristic function h vo "desirability" (expand "most-desired" node next (= a kind of best-first search))
- Evaluation function f(n): estimation for a function $f^*(n)$
- h(n): estimates minimal costs from state n to a goal state (h(n) = 0 always holds for a goal state)
- Computation of h(n) must be easy
- Consider two algorithms:
 - greedy search and
 - A* search

Romania Again

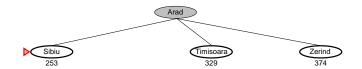


Greedy Search

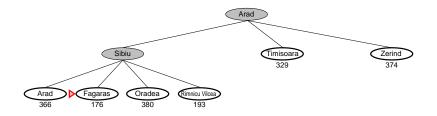
- Uses evaluation function f(n) = h(n)
- Does not take already "spent" costs into account (decisions are based on local information)
- Example: h(n) = straight-line distance from n to Bucharest
- Greedy search expands the node with the smallest *f*-value (node appears to be closest to goal)

Expand the only node Arad

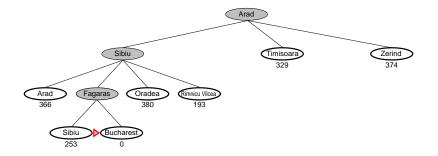
Expand the node Sibiu, because it has the smallest f-value



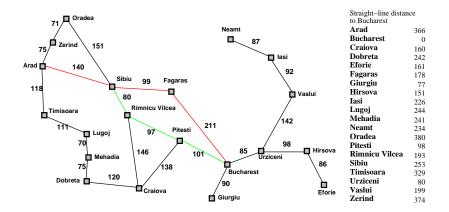
Expand the node Fagaras, because it has the smallest f-value



Solution found: Arad–Sibiu–Fagaras–Bucharest (450km)



An Alternative and Optimal Solution



Non-optimal solution: Arad–Sibiu–Fagaras–Bucharest (450km) Arad–Sibiu–Rimnicu Vilcea–Pitesti–Bucharest is shorter

Properties of Greedy Search

Completeness:	No (can get stuck in loops) Yes with loop checks
Space complexity: (keep any node)	$O(b^m)$, i.e., exponential in m
Time complexity:	$O(b^m)$, i.e., exponential in m
Optimality:	No

A*-search

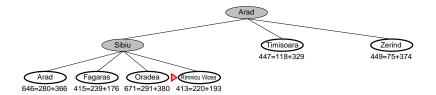
- Problems of greedy search: loops and non-optimality (induced by the use of only local info)
- A*: Use evaluation function f(n) = g(n) + h(n) (and avoid expanding paths that are already expensive)
 - g(n): path costs from start to n, (i.e., costs so far to reach n)
 - h(n): estimated cost to goal from n (like in greedy search)
 - f(n): estimated total cost of path through n to goal
- h(n) has to be admissible, i.e., for all *n*, it holds:
 - h(n) ≤ h*(n) where h*(n) is the true cost from n (h(n) is "optimistic")
 - h(g) = 0 for any goal g
 - h(n) > 0 for any non-goal state n

http://en.wikipedia.org/wiki/A*_search_algorithm

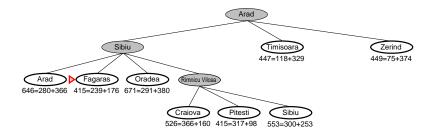
We use the straight-line distance to obtain an optimistic heuristic Expand the only node Arad

Expand the node Sibiu, because it has the smallest *f*-value

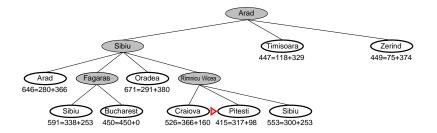
Expand the node Rimnicu Vilcea (and not Fagaras as in GS)



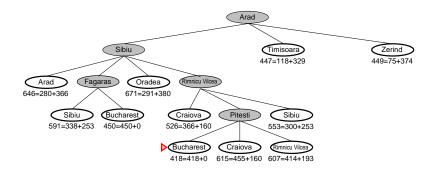
Expand the node Fagaras, because it has the smallest *f*-value



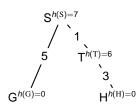
Expand the node Pitesti, because it has the smallest f-value



Solution: Arad–Sibiu–Rimnicu Vilcea–Pitesti–Bucharest Since *f*-value of all other open nodes are bigger \rightsquigarrow terminate



Do we Really Need Admissible Heuristics?



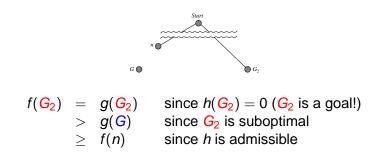
- S is the start state
- h is not optimistic
- S expands immediately to G and T
- f(G) = 5 and f(T) = 7, so we are done
- Solution is obviously not optimal
- Hence, heuristics must be optimistic!

Theorem

If h is admissible, then A* using tree search is optimal.

Optimality of A*: The Standard Proof

- ► Let *h* be admissible, goals *G* optimal and *G*₂ suboptimal
- Suppose some suboptimal goal G₂ has been generated
- Let n be an unexpanded node on a shortest path to G



Since $f(G_2) > f(n)$, A^* will never select G_2 for expansion

Problems with Optimality of A* Using Graph Search

- A^{*} does not require for a path start–*n* that g(n) is minimal
- No problem for tree search (there is only one path)
- In graph search (GS), we can reach nodes with non-optimal costs
- GS can discard optimal paths even if *h* is admissible
 optimality is lost
- Two possibilities to fix the problem:
 - Change algorithm and add more complicated bookkeeping (But what's the effect on the run time?)
 - Impose a stronger restriction, consistency, on the heuristic
 - → Implies that *f*-value is non-decreasing on any path

Optimality of A* Using Graph Search

Definition A heuristic is consistent if, for every node n, every successor n' of n and any operator a,

$$h(n) \leq c(n, a, n') + h(n')$$

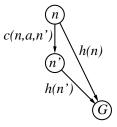
holds, where c(n, a, n') are the path costs for *a*.

If *h* is consistent, then *f* is non-decreasing along any path, i.e.,

$$\begin{array}{rcl} f(n') & = & g(n') + h(n') & = & g(n) + c(n,a,n') + h(n') \\ & \geq & g(n) + h(n) & = & f(n) \end{array}$$

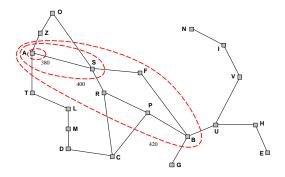
Theorem

If h is consistent, the A* using graph search is optimal



Optimality of A*

- ► A* expands nodes in order of increasing *f*-values
- The "f-contours" of nodes are added gradually (cf. BFS adds layers)
- Contour *i* has all nodes with $f = f_i$, where $f_i < f_{i+1}$



Properties of A*

- Completeness: Yes unless there are infinite many nodes with $f \le f(G)$
- Space complexity: Exponential (Keeps all nodes in memory)
- Time complexity:Exponential in
[relative error in $h \times$ length of solution].

Optimality: Yes

- A^* expands all nodes with $f(n) < C^*$
- A^* expands some nodes with $f(n) = C^*$
- A^* expands no nodes with $f(n) > C^*$

Admissible Heuristics

Consider the following heuristics for the 8-puzzle:

- $h_1(n)$: number of misplaced tiles
- h₂(n): total Manhattan distance (no. of squares (↔ and 1) from desired location of each tile)

Start State

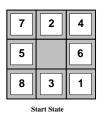
Goal State

 $h_1(\text{Start State}) = ?$ $h_2(\text{Start State}) = ?$

Admissible Heuristics

Consider the following heuristics for the 8-puzzle:

- h₁(n): number of misplaced tiles
- h₂(n): total Manhattan distance (no. of squares (↔ and 1) from desired location of each tile)



Goal State

 h_1 (Start State) = 6 h_2 (Start State) = 4+0+3+3+1+0+2+1 = 14

Dominance

- Given two admissible heuristics h_1 and h_2
- ▶ h_2 dominates h_1 (and is better for search) if $h_2(n) \ge h_1(n)$
- Typical search costs:
 - d = 14 DFIDS requires 3,473,941 nodes

 A^* with h_1 requires 539 nodes

- A^* with h_2 requires 113 nodes
- d = 24 DFIDS requires $\approx 54,000,000,000$ nodes

 A^* with h_1 requires 39,135 nodes

 A^* with h_2 requires 1,641 nodes

• Given any admissible heuristics h_1 , h_2 ,

$$h(n) = \max(h_1(n), h_2(n))$$

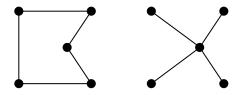
is also admissible and dominates h1, h2

Admissible Heuristics from Relaxed Problems

- Derive admissible heuristics from exact solution cost of a relaxed version of the problem
- If the rules of the 8-puzzle are relaxed so that a tile can move anywhere, then h₁(n) gives the shortest solution
- If the rules are relaxed so that a tile can move to any adjacent square, then h₂(n) gives the shortest solution
- Key point: optimal solution cost of a relaxed problem is not greater than the optimal solution cost of the real problem

Relaxed problems cont'd

Well-known example: traveling salesperson problem (TSP) Find the shortest tour visiting all cities exactly once



Minimum spanning tree (MST) can be computed in $O(n^2)$ (e.g., by the algorithms of Kruskal or Prim) and is a lower bound on the shortest (open) tour

Recall: A ST of a connected, undirected graph G is a subgraph of G which is a tree and connects all the vertices together

Summary

- Heuristic functions estimate costs of shortest paths
- Good heuristics can dramatically reduce search cost
- Greedy best-first search expands lowest h
 - Incomplete and not always optimal
- A^* search expands lowest g + h
 - Complete and optimal but space complexity exponential
 - Iterative-deepening A* (IDA*) reduces space complexity to polynomial
- Admissible heuristics can be derived from exact solution of relaxed problems