
Problem Solving by Search 3

Uwe Egly

Vienna University of Technology
Institute of Information Systems

Knowledge-Based Systems Group

Outline

Introduction

Formulation of the Problem

Basic Idea Behind Local Search

Hill Climbing

Simulated Annealing

Genetic Algorithms

Overview

Search: very important technique in CS and AI

Different kinds of search:

◮ Deterministic search
◮ Uninformed (“blind”) search strategies ✔
◮ Informed or heuristic search strategies: ✔

use information about problem structure

◮ Local search
◮ Search in game trees (not covered in this course)

In this lecture: Local search

What is the Problem?

◮ Search methods mentioned so far are often too expensive
◮ They systematically explore the state space

(state space = set of "complete" configurations)

◮ Solution was a path from the start to a goal
◮ From now on:

◮ path to goal is irrelevant (goal state itself is the solution)
◮ Each state n has a score (or objective function) f (n)
◮ Goal: Find a goal state with best (or reasonable) score

◮ The focus is therefore on optimization problems

Examples

◮ N-queens problem:
◮ Put N queens on the board

without conflicts
◮ Let f (n) be the number of conflicting

queens in state n
◮ Search s with lowest score f (s)

Examples

◮ N-queens problem:
◮ Put N queens on the board

without conflicts
◮ Let f (n) be the number of conflicting

queens in state n
◮ Search s with lowest score f (s)

◮ Traveling Salesperson problem (TSP)
◮ Start at, e.g., A and make a tour
◮ Visit each city ones and return to A
◮ State: order of cities, f (s): total kms
◮ Problem is NP-hard

b
A

b
B

b
C b

D

b E
b

Fb

G

bH

Basic Idea Behind Local Search

◮ Basic Idea: Perform an iterative improvement
◮ Keep a single "current" state (rather than multiple paths)
◮ Try to improve it

◮ Move iteratively to neighbors of the current state
◮ Do not retain search path
◮ Constant space, often rather fast, but incomplete
◮ What is a neighbor?

◮ Neighborhood has to be defined application-dependent

4-queens

◮ Take leftmost state s with h(s) = 5 and try to improve
◮ Generate neighbor by moving a queen in the column
◮ For the state t in the middle, h(t) < h(s)

◮ Again, generate neighbor by moving a queen in the column
◮ Resulting state has score 0 and is a solution

h = 5 h = 2 h = 0

TSP

◮ State s: A-B-C-D-E-F-G-H-A
◮ f (s): length of the tour
◮ One possibility: 2-change

b
A

b
B

b
C b

D

b E
b

Fb

G

bH

TSP

◮ State s: A-B-C-D-E-F-G-H-A
◮ f (s): length of the tour
◮ One possibility: 2-change

b
A

b
B

b
C b

D

b E
b

Fb

G

bH

A-B-C-D-E-F-G-H-A

A-E-D-C-B-F-G-H-A

flip b
A

b
B

b
C b

D

b E
b

Fb

G

bH

Hill Climbing (or Gradient Ascent/Descent)

1. Choose an initial state n

2. Compute all neighbors m of n with largest f (m)

3. If f (m) ≤ f (n) then return n and stop

4. Otherwise, let n = m and continoue with 2

Problems

◮ Very simple algorithm, get easily stuck in local optima
◮ How to get the neighbors?

◮ By small changes of the state
◮ Must be easy to compute

◮ Choise how to generate the neighbors crucial

Hill Climbing cont’d

How does f (the objective function) evolve for varying states?

current
state

objective function

state space

global maximum

local maximum

"flat" local maximum

shoulder

◮ Random-restart hill climbing overcomes local maxima
◮ Random sideways moves

◮ Escape from shoulders
◮ Loop on flat maxima

Simulated Annealing

Basic Idea

◮ Escape local optima by allowing some “bad” moves
◮ But gradually increase their size and frequency

1. Choose an initial state n

2. Randomly pick m from the neighbors of n

3. If f (m) is better than f (n) then set n = m

4. Otherwise /* if m is worse than n */
With a small probability p, set n = m

5. Continoue with 2. until time limit is reached

◮ p decreases over time and when |f (n) − f (m)| increases

Simulated Annealing Cont’d

◮ If f (m) better than f (n), then always continoue with m
◮ Otherwise, take m with probablilty

exp
(

−
|f (n) − f (m)|

T

)

◮ Probability decreases exponentially with the badness
|f (n) − f (m)|

◮ The temperature parameter T is decreased over time
(“cooling” or “annealing”)

◮ If badness is large, the probability is small

Genetic Algorithms (GAs)

◮ GAs: heuristic stochastic search algos
◮ GAs require states encoded as strings
◮ State (right) encodes as (3 2 7 5 2 4 1 1)

(places of the queens from bottom)

◮ f (n) is called the fitness of n
Goal: Find fittest n, i.e., find global optimum

◮ Keep a fixed number of states
(They are called the population)

Genetic Algorithms Cont’d

◮ GAs generate neighbors by crossover, mutation and
natural selection

32252124

Selection Cross−Over Mutation

24748552

32752411

24415124

24

23

20

32543213 11

29%

31%

26%

14%

32752411

24748552

32752411

24415124

32748552

24752411

32752124

24415411

24752411

32748152

24415417

Fitness Pairs

Genetic Algorithms Cont’d

◮ GAs generate neighbors by crossover, mutation and
natural selection

◮ Crossover helps iff substrings are meaningful components
◮ GAs 6= evolution: e.g., real genes encode replication

machinery

+ =

	Introduction
	Formulation of the Problem
	Basic Idea Behind Local Search
	Hill Climbing
	Simulated Annealing
	Genetic Algorithms

