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5. Nonmonotonic Reasoning

5.1 Introduction



Classical logic vs. commonsense reasoning

➤ Classical logic deals with the analysis of truth and valid arguments.

➤ A typical valid reasoning pattern is like the following:

All men are mortal.

Clark Kent is a man.

Therefore, Clark Kent is mortal.

Symbolised by classical first-order logic:

∀x(Man(x) → Mortal(x)),Man(Clark Kent) |= Mortal(Clark Kent)
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Classical logic vs. commonsense reasoning (ctd.)

➤ A valid argument remains valid even in the presence of new
information:

All men are mortal.

Clark Kent is a man.

Clark Kent is an alien from the planet Krypton.

Therefore, Clark Kent is mortal.

➤ Even if we add inconsistent information to the premisses, the
conclusion is still derivable:

All men are mortal.

Clark Kent is a man.

Clark Kent is an alien from the planet Krypton.

No alien is a man.

Therefore, Clark Kent is mortal.

➤ In general, classical logic satisfies the monotonicity principle:

• if S |= A and S ⊆ S ′, then S ′ |= A.
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Classical logic vs. commonsense reasoning (ctd.)

➤ On the other hand, human commonsense reasoning deals with less
strict reasoning patterns.

➤ A typical argument in commonsense reasoning is the following:

Birds typically fly.

Tweety is a bird.

Therefore, Tweety flies.
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Classical logic vs. commonsense reasoning (ctd.)

➤ Here, the conclusion is drawn in the absence of information to the

contrary:

• “Birds typically fly” means “given no information to the
contrary, a bird flies”.

• Since all we know about Tweety is that it is a bird, we conclude
that Tweety flies.

➤ A conclusion inferred this way is plausible, or rational, but may have
to be retracted given more specific information:

• if we later learn that Tweety is a penguin, it is no longer
rational that Tweety flies since penguins do not fly.

➥ “Tweety flies” is no longer asserted!
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Classical logic vs. commonsense reasoning (ctd.)

➤ To summarise: human commonsense reasoning involves a flexible
form of reasoning

• conclusions are drawn in the presence of incomplete information

• they may have to be retracted given new and more accurate
information (“jumping to conclusions”)

• assumptions are tentative, subject to revision

• typically, current information is considered the only relevant one

for a particular problem.
Example: “He has not told me that he is his brother. So, I
assume that he is not.”

➥ Commonsense reasoning is nonmonotonic, violating the
monotonicity principle.
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Classical logic vs. commonsense reasoning (ctd.)

➤ As a consequence, classical logic is not adequate to model human
commonsense reasoning

• classical logic is monotonic, satisfying the monotonicity
principle, disallowing the revision of conclusions

• it presupposes complete information about a domain under
consideration

• it only makes implicit knowledge explicit (correctness of
classical logic)

➥ Other formalisms are necessary to formalise rational conclusions!
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Formalisms for commonsense reasoning

➤ Different approaches for dealing with incomplete and uncertain
information have been proposed:

• quantitative methods:

– using probability theory (→ not discussed in this course)

• qualitative methods:

– nonmonotonic logics

➤ Most nonmonotonic logics have been defined in the early 1980s.

• closed-world assumption (CWA)

• circumscription

• modal nonmonotonic logics

• default logic

=⇒ here, we deal with the CWA and default logic
➤ Important computational approach for nonmonotonic reasoning:

• logic programming under the answer-set semantics
(→ LU EWBS and VL Logikorientierte Programmierung)
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Some notation

➤ A theory is a set of closed formulas.

➤ The deductive closure of a theory T is given by

Cn(T ) = {ϕ | T ⊢ ϕ and ϕ is closed},

where ⊢ is the derivability relation of classical first-order logic.

➤ Some properties:

• T ⊆ Cn(T ); (“inflationaryness”)

• Cn(T ) = Cn(Cn(T )) (“idempotency”);

• T ⊆ T ′ implies Cn(T ) ⊆ Cn(T ′) (“monotonicity”);

• Cn(∅) is the set of all valid formulas

– thus, in particular, Cn(∅) 6= ∅;

• Cn(T ) is the set of all formulas iff T is inconsistent.

• If ϕ ∈ Cn(T ), then Cn(T ∪ {ϕ}) = Cn(T ).
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5.2 Closed-world assumption



The closed-world assumption (CWA)

Method for an efficient representation of negative facts.

➤ Introduced by Raymond Reiter in 1978.

Observation: Number of negative facts is often much
higher than number of positive facts.

Example: library database

Assumption: 1000 readers; 10.000 books;
each reader may borrow at most 5 books.

=⇒ not sensible to store 9.995.000∼10.000.000 data entries of
books per reader which are not borrowed!
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Basic idea of CWA

➤ Store only positive information.

➤ Assumption:

• every positive fact which is not derivable is assumed to be false!

• Example: train timetable

➥ Trains which are not explicitly mentioned in the timetable
are assumed to be non-existing.

➤ CWA is nonmonotonic:

• After adding new facts, some negative facts may no longer be
derivable.
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CWA: Formal definition

➤ Given: theory T (= set of closed formulas).

➤ Ground atoms: closed atomic formulas (i.e., variable-free atoms).

• Examples: p(a), q(f (b, g(a))), . . .

• Here and henceforth, constants are denoted by a, b, c , . . . and
variables by x , y , z , . . ..

➤ Closed-world assumption (CWA) of T :

Tasm = {¬P | P ground atom, T 6⊢ P};

CWA(T ) = {ϕ | T ∪ Tasm ⊢ ϕ, ϕ closed} = Cn(T ∪ Tasm).

• Intuition: CWA(T ) is the logical closure of all assumptions
(explicit and implicit ones).
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Some properties

Definition: A theory T is complete iff, for each ground atom P, P ∈ T

or ¬P ∈ T holds.

Example: T = {p(a), (p(a) → q(a)), p(b)}.

➤ T is not complete: q(a),¬q(a) 6∈ T ; q(b),¬q(b) 6∈ T .

➤ But: q(a) ∈ CWA(T ), since T ⊢ q(a);
¬q(b) ∈ CWA(T ), since T 6⊢ q(b).

CWA(T ) is complete =⇒ completes T by adding negative facts.
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Some properties (ctd.)

Problem: Satisfiability (consistency) of the CWA?

Example: T = {p(a) ∨ p(b)}.

➤ T 6⊢ p(a), T 6⊢ p(b).

➥ ¬p(a) ∧ ¬p(b) ∈ CWA(T );

➥ inconsistent with p(a) ∨ p(b).

Theorem: Let T be a consistent theory. Then:
CWA(T ) is inconsistent ⇐⇒ there are ground atoms A1, . . . ,An such
that T |= A1 ∨ . . . ∨ An, but T 6|= Ai , for all i = 1, . . . , n.

Note: Result depends on the chosen language!
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Some properties (ctd.)

Example: T = {∀x(p(x) ∨ q(x)), p(a), q(b)}

➤ Assumption: language contains only constants a and b =⇒
CWA(T ) is consistent.

➤ Additional constant c =⇒ CWA(T ) is inconsistent:
(T ⊢ p(c) ∨ q(c) and T 6⊢ p(c), T 6⊢ q(c)).

Theorem: Let T be a set of definite Horn clauses. Then, CWA(T ) is
consistent.

➤ Recall: A definite Horn clause is a clause having precisely one

positive literal.

➤ Example: ¬p ∨ ¬q ∨ s is a definite Horn clause; ¬p ∨ ¬q is not a
definite Horn clause.
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Generalisations of the CWA

➤ CWA relative to a predicate symbol q =⇒ application of the CWA
only to predicates containing the predicate symbol q.

Formally:

T
q
asm = {¬P | P ground atom with predicate symbol q, T 6⊢ P};

CWA
q(T ) = {ϕ | T ∪ T

q
asm ⊢ ϕ, ϕ closed} = Cn(T ∪ T

q
asm).

➤ CWA relative to a set {q1, . . . , qn} of predicate symbols
=⇒ similarly defined!

➤ Example: Let T be the following set of formulas:
∀x(q(x) → p(x))
q(a)
r(b) ∨ p(b)

• CWA relative to p yields ¬p(b) ∈ CWA
p(T ), and thus

r(b) ∈ CWA
p(T ).

• Unrestricted CWA yields ¬p(b) ∧ ¬r(b) ∈ CWA(T ) =⇒
inconsistent with T !
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5.3 Default logic

5.3.1 General considerations and basic definitions



Default logic

➤ Method for dealing with incomplete information and exceptions.

➤ Represent facts which hold typically by means of special inference
rules (default rules).

➤ Default rules extend classical inference rules by additional
consistency conditions.

➤ Default logic was introduced by Reiter in 1980.
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Default rules

➤ A default rule (or simply a default), δ, is an inference rule of the
form

ϕ : ψ1, . . . , ψn

χ

➤ Intuitive meaning:

• if ϕ is known and every ψi can be consistently assumed (i.e.,
¬ψi is not derivable), then infer χ.

➤ Notation:

• ϕ = pre(δ): prerequisite;

• {ψ1, . . . , ψn} = just(δ): justifications;

• χ = cons(δ): consequent.
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Default rules: Examples

➤ Rules with exceptions:

bird (X ) : can fly (X )

can fly (X )

• Unless known otherwise, a bird can fly.

➤ Rules which hold in general, usually, or typically:

go to work : take bus

take bus

• Typically, I take the bus when I go to work.

➤ Rules which hold unless the contrary is explicitly known:

accused : innocent

innocent

• The accused is innocent unless proven otherwise.
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Default theory

➤ In default logic, knowledge about the world is represented in terms
of a default theory T = (W ,∆):

W : set of closed formulas of first-order logic
(certain knowledge, premisses);

∆: set of defaults (plausible inferences).

➤ Basic idea of default reasoning:

• apply the defaults in ∆ to the facts in W to derive plausible
inferences from certain knowledge;

• apply the defaults to the extended knowledge until no new
knowledge is generated → extension E of T .
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Extensions of default theories

An extension E should have the following properties:

➤ E is a theory, i.e., a set of closed classical formulas;

➤ E contains the facts: W ⊆ E .

➤ E is deductively closed, i.e., Cn(E ) = E , since we want to derive
more knowledge than by classical means.

➤ E is closed under applications of defaults, i.e., if δ = ϕ : ψ1,...,ψn

χ
∈ ∆

is applicable to E , then χ ∈ E , where:

δ is applicable to E iff ϕ ∈ E and ¬ψ1 /∈ E , . . . ,¬ψn /∈ E
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Extensions of default theories (ctd.)

We have to address two issues:

1. How can extensions be defined formally?

Applicability of defaults:

• default prerequisite ϕ ∈ E ;
• default justification ¬ψ1 /∈ E , . . . ,¬ψn /∈ E → difficult!

2. How can extensions be computed (efficiently)?
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Example: Tweety

➤ Consider the following default theory T = (W ,∆):

W = {Bird(Tweety))};

∆ =

{

δ =
Bird(x) : Flies(x)

Flies(x)

}

.

➤ An extension E of T should contain Bird(Tweety) and
Flies(Tweety), and all formulas which can be classically derived

from them.
=⇒ It should hold that E = Cn({Bird(Tweety),Flies(Tweety)}).
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Example: Tweety (ctd.)

➤ Consider now T ′ = (W ′,∆), where

W ′ = W ∪ {Penguin(Tweety),∀x(Penguin(x) → ¬Flies(x))}.

➥ Extension E ′ of T ′ should contain W ′, but not Flies(Tweety), since
the application of δ is “blocked”:

• with

– Penguin(Tweety) ∈ E ′

– and ∀x(Penguin(x) → ¬Flies(x)) ∈ E ′,

it follows that ¬Flies(Tweety) ∈ E ′ (since E ′ is closed under
classical logic).

➥ Flies(Tweety) can no longer be consistently assumed!

➥ It should hold that E ′ = Cn(W ′).

☞ Note the nonmonotonic behaviour: although W ⊂ W ′, we have
E 6⊆ E ′ (since Flies(Tweety) ∈ E but Flies(Tweety) 6∈ E ′)!
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Example: Nixon Diamond

➤ Consider the following default theory T = (W ,∆):

W = {Republican(Nixon),Quaker(Nixon))};

∆ =

{

δ1 =
Republican(x) : ¬Pacifist(x)

¬Pacifist(x)
,

δ2 =
Quaker(x) : Pacifist(x)

Pacifist(x)

}

,

representing the following commonsense knowledge:

• Nixon is both a Republican and a Quaker.

• Republicans are normally not pacifists.

• Quakers are normally pacifists.

➤ Defaults δ1 and δ2 are mutually conflicting! (The application of δ1
blocks δ2 and vice versa.)
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Example: Nixon Diamond (ctd.)

➤ Thus, there are two alternatives for extensions:

E1 = Cn({Republican(Nixon),Quaker(Nixon),¬Pacifist(Nixon)});
E2 = Cn({Republican(Nixon),Quaker(Nixon),Pacifist(Nixon)}).

☞ Formal definition of an extension follows next!
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