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5. Nonmonotonic Reasoning

5.1 Introduction



Classical logic vs. commonsense reasoning

[] Classical logic deals with the analysis of truth and valid arguments.

[] A typical valid reasoning pattern is like the following:

All men are mortal.
Clark Kent is a man.
Therefore, Clark Kent is mortal.

Symbolised by classical first-order logic:

Vx(Man(x) — Mortal(x)), Man(Clark_Kent) = Mortal(Clark_Kent)
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Classical logic vs. commonsense reasoning (ctd.)

[] A valid argument remains valid even in the presence of new
information:

All men are mortal.
Clark Kent is a man.

Clark Kent is an alien from the planet Krypton.
Therefore, Clark Kent is mortal.

[1 Even if we add inconsistent information to the premisses, the
conclusion is still derivable:

All men are mortal.
Clark Kent is a man.

Clark Kent is an alien from the planet Krypton.
No alien is a man.

Therefore, Clark Kent is mortal.

[1 In general, classical logic satisfies the monotonicity principle:
e if SEAand S C S then S’ = A.
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Classical logic vs. commonsense reasoning (ctd.)

[] On the other hand, human commonsense reasoning deals with less
strict reasoning patterns.

[] A typical argument in commonsense reasoning is the following:
Birds typically fly.
Tweety is a bird.
Therefore, Tweety flies.
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Classical logic vs. commonsense reasoning (ctd.)

[1 Here, the conclusion is drawn in the absence of information to the
contrary:

e "Birds typically fly" means “given no information to the
contrary, a bird flies”.

e Since all we know about Tweety is that it is a bird, we conclude
that Tweety flies.

[1 A conclusion inferred this way is plausible, or rational, but may have
to be retracted given more specific information:

e if we later learn that Tweety is a penguin, it is no longer
rational that Tweety flies since penguins do not fly.

L1 “Tweety flies” is no longer asserted!
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Classical logic vs. commonsense reasoning (ctd.)

[ To summarise: human commonsense reasoning involves a flexible
form of reasoning
e conclusions are drawn in the presence of incomplete information

e they may have to be retracted given new and more accurate
information (“jumping to conclusions”)

e assumptions are tentative, subject to revision

e typically, current information is considered the only relevant one
for a particular problem.
Example: “He has not told me that he is his brother. So, |
assume that he is not.”

[ 1 Commonsense reasoning is nonmonotonic, violating the
monotonicity principle.
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Classical logic vs. commonsense reasoning (ctd.)

[] As a consequence, classical logic is not adequate to model human
commonsense reasoning

e classical logic is monotonic, satisfying the monotonicity
principle, disallowing the revision of conclusions

e it presupposes complete information about a domain under
consideration

e it only makes implicit knowledge explicit (correctness of
classical logic)

L1 Other formalisms are necessary to formalise rational conclusions!
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Formalisms for commonsense reasoning

Different approaches for dealing with incomplete and uncertain
information have been proposed:

e quantitative methods:
— using probability theory (— not discussed in this course)
e qualitative methods:
— nonmonotonic logics
Most nonmonotonic logics have been defined in the early 1980s.
e closed-world assumption (CWA)
e circumscription
e modal nonmonotonic logics
e default logic

— here, we deal with the CWA and default logic
Important computational approach for nonmonotonic reasoning:

e logic programming under the answer-set semantics
(— LU EWBS and VL Logikorientierte Programmierung)
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[]
[]

Some notation

A theory is a set of closed formulas.

The deductive closure of a theory T is given by

Cn(T)={¢| T F ¢ and ¢ is closed},

where - is the derivability relation of classical first-order logic.

Some properties:

e TCCn(T); (“inflationaryness")
e Cn(T)=Cn(Cn(T)) ("idempotency");
o T C T implies Cn(T) C Cn(T') ("monotonicity”);
e Cn(0) is the set of all valid formulas

— thus, in particular, Cn(0) # 0;
e Cn(T) is the set of all formulas iff T is inconsistent.
o If pe Cn(T), then Cn(T U{p})=Cn(T).
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5.2 Closed-world assumption



The closed-world assumption (CWA)

Method for an efficient representation of negative facts.

[] Introduced by Raymond Reiter in 1978.

Observation: Number of negative facts is often much
higher than number of positive facts.

Example: library database

Assumption: 1000 readers; 10.000 books;
each reader may borrow at most 5 books.

— not sensible to store 9.995.000~10.000.000 data entries of
books per reader which are not borrowed!
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Basic idea of CWA

[] Store only positive information.

[1 Assumption:
e every positive fact which is not derivable is assumed to be false!
e Example: train timetable

L1 Trains which are not explicitly mentioned in the timetable
are assumed to be non-existing.

[ CWA is nonmonotonic:

e After adding new facts, some negative facts may no longer be
derivable.
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CWA: Formal definition

[1 Given: theory T (= set of closed formulas).

[1 Ground atoms: closed atomic formulas (i.e., variable-free atoms).

e Examples: p(a), q(f(b,g(a))), ...

e Here and henceforth, constants are denoted by a, b, c,... and
variables by x, y,z,....

[1 Closed-world assumption (CWA) of T

Tosm = {—P| P ground atom, T I/ P};
CWA(T) = {o]| TUTaemF o, pclosed} = Cn(T U Tasm).

e Intuition: CWA(T) is the logical closure of all assumptions
(explicit and implicit ones).
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Some properties

Definition: A theory T is complete iff, for each ground atom P, P € T
or =P & T holds.

Example: T = {p(a), (p(a) — q(a)), p(b)}.
[1 T is not complete: g(a),—q(a) € T; q(b),—q(b) & T.

[1 But: g(a) €« CWA(T), since T - q(a);
—q(b) € CWA(T), since T t/ q(b).

CWA(T) is complete = completes T by adding negative facts.
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Some properties (ctd.)

Problem: Satisfiability (consistency) of the CWA?
Example: T ={p(a) V p(b)}.

T p(a), TV p(b).
L] =p(a) A —p(b) € CWA(T);
L] inconsistent with p(a) V p(b).

Theorem: Let T be a consistent theory. Then:
CWA(T) is inconsistent <= there are ground atoms Aj,
that T=A1 V... VA, but TEA;, foralli=1,...,n

Note: Result depends on the chosen language!

..., Ap such
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Some properties (ctd.)

Example: T = {Vx(p(x) V q(x)), p(a), q(b)}
[ Assumption: language contains only constants a and b —>
CWA(T) is consistent.

[1 Additional constant ¢ = CWA(T) is inconsistent:
(TFp(c) vV g(c)and T p(c), T q(c)).

Theorem: Let T be a set of definite Horn clauses. Then, CWA(T) is
consistent.

[1 Recall: A definite Horn clause is a clause having precisely one
positive literal.

[ Example: =p V =g V s is a definite Horn clause; —p V —q is not a
definite Horn clause.
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Generalisations of the CWA

[] CWA relative to a predicate symbol g = application of the CWA
only to predicates containing the predicate symbol gq.

Formally:

Tssm = {—P | P ground atom with predicate symbol g, T t/ P};
CWAYT) ={e| TUTimt ¢, pclosed} = Cn(T U Tispm).

[1 CWA relative to a set {q1,...,qn} of predicate symbols
—> similarly defined!

[] Example: Let T be the following set of formulas:
vx(q(x) — p(x))
q(a)
r(b) V p(b)
e CWA relative to p yields —p(b) € CWAP(T), and thus
r(b) € CWAP(T).
e Unrestricted CWA yields —p(b) N —r(b) € CWA(T) —

Inconsistent with 7!
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5.3 Default logic

5.3.1 General considerations and basic definitions



Default logic

Method for dealing with incomplete information and exceptions.

Represent facts which hold typically by means of special inference
rules (default rules).

Default rules extend classical inference rules by additional
consistency conditions.

Default logic was introduced by Reiter in 1980.
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Default rules

[ A default rule (or simply a default), d, is an inference rule of the
form

O YPLy...,Wn
X

L] Intuitive meaning:

e if ¢ is known and every v); can be consistently assumed (i.e.,
—); is not derivable), then infer x.

[ Notation:

e = pre(d): prerequisite;
o {U1,...,¥n} = just(d): justifications;
e x = cons(d): consequent.
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Default rules: Examples

[ Rules with exceptions:

bird(X) : can_fly(X)
can_fly (X)

e Unless known otherwise, a bird can fly.

[1 Rules which hold in general, usually, or typically:

go_to_work : take_bus
take_bus

e Typically, | take the bus when | go to work.

[] Rules which hold unless the contrary is explicitly known:

accused : Innocent

innocent

e [he accused is innocent unless proven otherwise.
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Default theory

(1 In default logic, knowledge about the world is represented in terms
of a default theory T = (W, A):

W': set of closed formulas of first-order logic
(certain knowledge, premisses);

A set of defaults (plausible inferences).

[] Basic idea of default reasoning:

e apply the defaults in A to the facts in W to derive plausible
inferences from certain knowledge;

e apply the defaults to the extended knowledge until no new
knowledge is generated — extension E of T.
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Extensions of default theories

An extension E should have the following properties:
(1 E is a theory, i.e., a set of closed classical formulas;
[1 E contains the facts: W C E.

[1 E is deductively closed, i.e., Cn(E) = E, since we want to derive
more knowledge than by classical means.

[0 E is closed under applications of defaults, i.e., if § = £ MX’“W” c A
Is applicable to E, then y € E, where:

d is applicable to E iff p € Eand ¢1 ¢ E,...,—p, ¢ E
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Extensions of default theories (ctd.)

We have to address two issues:

1. How can extensions be defined formally?

Applicability of defaults:

e default prerequisite ¢ € E;
e default justification =1 ¢ E,... =, ¢ E  — difficult!

2. How can extensions be computed (efficiently)?
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Example: Tweety

[1 Consider the following default theory T = (W, A):

W = {Bird(Tweety))};

N { o Bird(i_)/ie:s(f;ies(x)}.

[1 An extension E of T should contain Bird( Tweety) and

Flies( Tweety), and all formulas which can be classically derived
from them.

— It should hold that £ = Cn({Bird( Tweety), Flies( Tweety)}).
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Example: Tweety (ctd.)

Consider now 7' = (W’ A), where
W' = W U {Penguin( Tweety), Vx(Penguin(x) — —Flies(x))}.

Extension E" of T’ should contain W’, but not Flies( Tweety), since
the application of 0 is “blocked":

e with
— Penguin( Tweety) € E’
— and Vx(Penguin(x) — —Flies(x)) € E’,
it follows that —Flies( Tweety) € E’ (since E' is closed under
classical logic).

L] Flies( Tweety) can no longer be consistently assumed!

It should hold that E/ = Cn(W').

Note the nonmonotonic behaviour: although W < W', we have
E ¢ E’ (since Flies( Tweety) € E but Flies( Tweety) ¢ E')!
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Example: Nixon Diamond

[1 Consider the following default theory T = (W, A):

W = {Republican(Nixon), Quaker(Nixon))};
Republican(x) : —Pacifist(x)
A = <01 = —
—Pacifist(x)
~ Quaker(x) : Pacifist(x)
B Pacifist(x) ’

I

02

representing the following commonsense knowledge:

e Nixon is both a Republican and a Quaker.
e Republicans are normally not pacifists.

e Quakers are normally pacifists.

[1 Defaults 61 and 6> are mutually conflicting! (The application of d;
blocks &> and vice versa.)
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Example: Nixon Diamond (ctd.)

[1 Thus, there are two alternatives for extensions:

E1 = Cn({ Republican(Nixon), Quaker(Nixon), = Pacifist( Nixon)});
E>, = Cn({Republican(Nixon), Quaker(Nixon), Pacifist( Nixon)}).

[ Formal definition of an extension follows next!
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