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5.3.2 Extensions
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Applicability relative to a context

F  deductively closed set of formulas
K arbitrary set of formulas (called context)

A default § = 2 1. Y is applicable to F relative to K iff

X

o€ Fand —abr,...,—, & K

K = F: regular applicability of defaults (as defined earlier).
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The Operator [ 1

Given: closed default theory T = (W, A), set of closed formulas S;

(1 T is closed : «—= all formulas in A are closed.

We define ' 1-(S) as the smallest set F of closed formulas such that

1. F is deductively closed,
2. W C F, and

3. F is closed under applications of defaults relative to context S, i.e.,

for all § = £t € At holds that if ¢ € F and
-1 €8S, ... ﬂ¢n§§5 then y € F.

E is an extension of T = (W, A) iff

[+(E) =
e., Iff E is a fixed point of | T.
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The Operator 't (ctd.)

Intuitively, '+ can be seen as a logical closure operator, representing a
possible totality of knowledge of an agent.

[1 For constructing I r(E), E serves as a “context” for testing the
consistency conditions of the defaults in A.

[1 T'+(E) itself collects all formulas derivable from W by means of
e classical logic

e and those defaults in A satisfying the consistency condition
relative to E.

[] A context E is an extension of T iff it reproduces itself under the
closure operator ' (i.e., iff it is a fixed point of 7).
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Extensions: Example

{ water_creature : fish})

T = ({Water_creature}, fish

E = Cn({water_creature, fish}) extension of T,
E" = Cn({water_creature, —fish}) not an extension of T, although

(1 {water_creature} C E’,
[1 E’ is deductively closed, and
[1 E’is closed under applications of defaults (trivially)

but I (E") = Cn({water_creature})# E’!
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Computing extensions

Determining the operator [ 7:

1. Classical reduct Ag:
Ae = {/v| (¢ b1, n/7) € A and {~thn,..., ~tb} N E = 0},

e /7 is the residue of (¢ : Y1,...,0n/7).
2. Cn"E(W) = Cn(W U ;=g Ei), with

Eo = {v|p/ye€Arand Wt ¢}
E, = {’V‘g&/’}/EAE and WUE,'_1|—g0}.

3. Then: T+(E) = Cn®e(W).
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Computing extensions (ctd.)

Theorem: Let T = (W, A). Then:
E is extension of T <= Cn®6(W) =E

[] Problem: Which sets are potential candidates for being extensions?
(1 Answer: All sets of form Cn(W UC) s.t.

CC{v|(g:¢r,....0n/7) € A}

[ N.B.: This yields a naive algorithm for computing extensions which
Is exponential in the size of the default theory in the worst case!

e However, presumably, we can do no better in general as
checking whether a given propositional default theory has an
extension is Y5 -complete [Gottlob, 1992].
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Example: Nixon diamond—Reuvisited

Consider T = (W, A), where
W = {q,r},
A = {(q:p/p),(r:—p/—p)},

representing a propositional version of the Nixon diamond.

A ={(q:p/p),(r:=p/—p)} has two defaults = four candidates:

£y = Cn({g,r})  Es= Cn({q,r,—-p})
Ex = Cn({q,r,p}) Ea= Cn({q,r,p,~p})

Determining £/ := Cn”& (W) (=l 1(E;)):
AEl — {q/pa r/_'p} E] = Cn({q7 rs P, _'p}) =

Ag, ={q/p} E; = Cn({q.r.p}) = E
Ag, = {r/—p} E?/> = Cn({q,r,~p}) = E3
Ag, =10 Ey = Cn({q,r}) = E

E> and E3 are extensions of T (and there are no other extensions of
T).
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Extending default theories

T W:(Z),A:{éo:Té; a}

T has exactly one extension: E = Cn({a})

[]
[]

[]

Let Ay = {dg, 01 = Tﬁ—:bb}. T1 = (W, A1) has no extension.

Let Ay = {dg, 0n = béc}. To = (W, Ay) has still E as single
extension.

Let Az = {dg, 03 = 1 21, T3 = (W, A3) has two extensions,

—a

namely E and Cn({—a}).

Let Ay = {00,040 = 232} Ty = (W, Ay) has the extension
Cn({a, b}), containing E.
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Extending default theories (ctd.)

Extending a default theory can thus

[] eliminate extensions,
[ modify extensions, or
L] yield new extensions.

10/17



Normal defaults

[ ] A default is normal iff it is of the form

© P
(0

(] Important property:

e Normal default theories (i.e., containing only normal defaults)
always possess extensions.

[] Many common-sense reasoning patterns can be modeled in terms of
normal defaults.

e Example: birds typically fly

bird : can_fly

can_fly
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Open default theories

[ We defined extensions only for closed default theories, i.e., where all
defaults are closed—containing only closed formulas.

[1 In case a default theory T is open (i.e., not closed), one uses a

method similar to grounding in logic programming to obtain the
closure of T

e i.e., one replaces all open defaults by instantiating them with
the terms constructible from the terms mentioned by T.

[ ] However, there is a catch:

e a default theory may also determine objects only implicitly
mentioned

e e.g., objects determined by existential quantification.

e In such a case, one uses skolemisation to eliminate existential
quantifiers, making the implicitly mentioned objects explicit by
introducing new Skolem terms.
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Open default theories—Example

[1 Let T = (W, D) be the following default theory:

W = {3x Kryptonian(x)};

S Kryptonian(x) : Superpowers(x)
B B Superpowers(x) '

(1 T makes implicit reference to an object being a Kryptonian.

[ We expect that this object possesses superpowers, I.e.,
dx (Kryptonian(x) N Superpowers(x))

should be contained in an extension of T.
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Open default theories—Example (ctd.)

To achieve this, we replace the premiss dx Kryptonian(x) by its

skolemisation Kryptonian(a), introducing a new Skolem constant a.

The closure of T is then given as follows:

Kryptonian(a),
Kryptonian(a) : Superpowers(a)

Superpowers(a)

This default theory has one extension, namely
E = Cn({Kryptonian(a), Superpowers(a)})

and it holds that dx (Kryptonian(x) A Superpowers(x)) € E.
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5.3.3 Glimpses Beyond
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Modal Nonmonotonic Logics

Additional important nonmonotonic formalisms: modal nonmonotonic
logics.

[] Based on the language of modal logic.

[ Model the behaviour of an ideally rational agent reasoning about his
own beliefs.

[1 Modal operators:
o [A: Ais believed

e MA: A can be consistently assumed.

[1 E.g., “Birds typically fly" can be expressed by
Vx((Bird(x) A MFlies(x)) — Flies(x)).

L] Important modal nonmonotonic logic:
e autoepistemic logic [Moore, 1983].
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Answer-Set Semantics

[ Implementing nonmonotonic reasoning:

e logic programs with default negation under the answer-set
semantics, containing rules of form

a< by,...,b,,not c1,...,not cy,
— a,by,...,bp,c1,...,cy are atoms from a finite vocabulary;
— not denotes default negation (a.k.a. negation as failure);
— rule “fires” if by,..., b, is derivable but ¢1,...,c, are not
derivable.

[ The answer-set semantics is the result of associating logic programs
with default theories in a canonical way:

e For rule r as above, let §(r) be the following default:

5(r): b1 JANEICIAN bna:_|C1,...,_|Cm.

[ 1 The answer sets of a program P are in a one-to-one
correspondence to the extensions of the default theory

0,{d(r) [ r e P}).
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