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5.3.2 Extensions
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Applicability relative to a context

F deductively closed set of formulas
K arbitrary set of formulas (called context)

A default δ =
ϕ : ψ1, . . . , ψn

χ
is applicable to F relative to K iff

ϕ ∈ F and ¬ψ1, . . . ,¬ψn /∈ K

K = F : regular applicability of defaults (as defined earlier).
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The Operator ΓT

Given: closed default theory T = (W ,∆), set of closed formulas S ;

☞ T is closed :⇐⇒ all formulas in ∆ are closed.

We define ΓT (S) as the smallest set F of closed formulas such that

1. F is deductively closed,

2. W ⊆ F , and

3. F is closed under applications of defaults relative to context S , i.e.,
for all δ = ϕ : ψ1,...,ψn

χ
∈ ∆ it holds that if ϕ ∈ F and

¬ψ1 /∈ S , . . . ,¬ψn /∈ S , then χ ∈ F .

E is an extension of T = (W ,∆) iff

ΓT (E ) = E

i.e., iff E is a fixed point of ΓT .
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The Operator ΓT (ctd.)

Intuitively, ΓT can be seen as a logical closure operator, representing a
possible totality of knowledge of an agent.

➤ For constructing ΓT (E ), E serves as a “context” for testing the
consistency conditions of the defaults in ∆.

➤ ΓT (E ) itself collects all formulas derivable from W by means of

• classical logic

• and those defaults in ∆ satisfying the consistency condition
relative to E .

➤ A context E is an extension of T iff it reproduces itself under the
closure operator ΓT (i.e., iff it is a fixed point of ΓT ).
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Extensions: Example

T = ({water creature}, { water creature : fish
fish

})

E = Cn({water creature, fish}) extension of T ,
E ′ = Cn({water creature,¬fish}) not an extension of T , although

➤ {water creature} ⊆ E ′,

➤ E ′ is deductively closed, and

➤ E ′ is closed under applications of defaults (trivially)

but ΓT (E ′) = Cn({water creature})6= E ′!
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Computing extensions

Determining the operator ΓT :

1. Classical reduct ∆E :
∆E := {ϕ/γ | (ϕ : ψ1, . . . , ψn/γ) ∈ ∆ and {¬ψ1, . . . ,¬ψn} ∩ E = ∅}.

• ϕ/γ is the residue of (ϕ : ψ1, . . . , ψn/γ).

2. Cn∆E (W ) := Cn(W ∪
⋃

i≥0 Ei ), with

E0 := {γ | ϕ/γ ∈ ∆E and W ⊢ ϕ};

Ei := {γ | ϕ/γ ∈ ∆E and W ∪ Ei−1 ⊢ ϕ}.

3. Then: ΓT (E ) = Cn∆E (W ).
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Computing extensions (ctd.)

Theorem: Let T = (W ,∆). Then:
E is extension of T ⇐⇒ Cn∆E (W ) = E .

➤ Problem: Which sets are potential candidates for being extensions?

➤ Answer: All sets of form Cn(W ∪ C) s.t.

C ⊆ {γ | (ϕ : ψ1, . . . , ψn/γ) ∈ ∆}.

➤ N.B.: This yields a naive algorithm for computing extensions which
is exponential in the size of the default theory in the worst case!

• However, presumably, we can do no better in general as
checking whether a given propositional default theory has an
extension is ΣP

2 -complete [Gottlob, 1992].
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Example: Nixon diamond—Revisited

➤ Consider T = (W ,∆), where
W = {q, r},
∆ = {(q : p/p), (r : ¬p/¬p)},

representing a propositional version of the Nixon diamond.

➤ ∆ = {(q : p/p), (r : ¬p/¬p)} has two defaults =⇒ four candidates:

E1 = Cn({q, r}) E3 = Cn({q, r ,¬p})
E2 = Cn({q, r , p}) E4 = Cn({q, r , p,¬p})

➤ Determining E ′
i
:= Cn∆Ei (W ) (=ΓT (Ei )):

∆E1 = {q/p, r/¬p} E ′
1 = Cn({q, r , p,¬p}) = E4

∆E2 = {q/p} E ′
2 = Cn({q, r , p}) = E2

∆E3 = {r/¬p} E ′
3 = Cn({q, r ,¬p}) = E3

∆E4 = ∅ E ′
4 = Cn({q, r}) = E1

➥ E2 and E3 are extensions of T (and there are no other extensions of
T ).
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Extending default theories

T : W = ∅, ∆ =

{

δ0 =
⊤ : a

a

}

T has exactly one extension: E = Cn({a})

➤ Let ∆1 = {δ0, δ1 = ⊤ : b

¬b
}. T1 = (W ,∆1) has no extension.

➤ Let ∆2 = {δ0, δ2 = b : c

c
}. T2 = (W ,∆2) has still E as single

extension.

➤ Let ∆3 = {δ0, δ3 = ⊤ : ¬a

¬a
}. T3 = (W ,∆3) has two extensions,

namely E and Cn({¬a}).

➤ Let ∆4 = {δ0, δ4 = a : b

b
}. T4 = (W ,∆4) has the extension

Cn({a, b}), containing E .
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Extending default theories (ctd.)

Extending a default theory can thus

➤ eliminate extensions,
➤ modify extensions, or
➤ yield new extensions.
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Normal defaults

➤ A default is normal iff it is of the form

ϕ : ψ

ψ

➤ Important property:

• Normal default theories (i.e., containing only normal defaults)
always possess extensions.

➤ Many common-sense reasoning patterns can be modeled in terms of
normal defaults.

• Example: birds typically fly

bird : can fly

can fly
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Open default theories

➤ We defined extensions only for closed default theories, i.e., where all
defaults are closed—containing only closed formulas.

➤ In case a default theory T is open (i.e., not closed), one uses a
method similar to grounding in logic programming to obtain the
closure of T

• i.e., one replaces all open defaults by instantiating them with
the terms constructible from the terms mentioned by T .

➤ However, there is a catch:

• a default theory may also determine objects only implicitly

mentioned

• e.g., objects determined by existential quantification.

• In such a case, one uses skolemisation to eliminate existential
quantifiers, making the implicitly mentioned objects explicit by
introducing new Skolem terms.
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Open default theories—Example

➤ Let T = 〈W ,D〉 be the following default theory:

W = {∃x Kryptonian(x)};

D =

{

d =
Kryptonian(x) : Superpowers(x)

Superpowers(x)

}

.

➤ T makes implicit reference to an object being a Kryptonian.

➤ We expect that this object possesses superpowers, i.e.,

∃x (Kryptonian(x) ∧ Superpowers(x))

should be contained in an extension of T .
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Open default theories—Example (ctd.)

➤ To achieve this, we replace the premiss ∃x Kryptonian(x) by its
skolemisation Kryptonian(a), introducing a new Skolem constant a.

➥ The closure of T is then given as follows:

Kryptonian(a),

Kryptonian(a) : Superpowers(a)

Superpowers(a)

➤ This default theory has one extension, namely

E = Cn({Kryptonian(a),Superpowers(a)})

and it holds that ∃x (Kryptonian(x) ∧ Superpowers(x)) ∈ E .
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5.3.3 Glimpses Beyond
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Modal Nonmonotonic Logics

Additional important nonmonotonic formalisms: modal nonmonotonic
logics.

➤ Based on the language of modal logic.

➤ Model the behaviour of an ideally rational agent reasoning about his
own beliefs.

➤ Modal operators:

• LA: A is believed

• MA: A can be consistently assumed.

➤ E.g., “Birds typically fly” can be expressed by

∀x
(

(Bird(x) ∧ MFlies(x)) → Flies(x)
)

.

➤ Important modal nonmonotonic logic:

• autoepistemic logic [Moore, 1983].
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Answer-Set Semantics

➤ Implementing nonmonotonic reasoning:

• logic programs with default negation under the answer-set
semantics, containing rules of form

a← b1, . . . , bn, not c1, . . . , not cm

– a, b1, . . . , bn, c1, . . . , cm are atoms from a finite vocabulary;

– not denotes default negation (a.k.a. negation as failure);

– rule “fires” if b1, . . . , bn is derivable but c1, . . . , cm are not

derivable.

➤ The answer-set semantics is the result of associating logic programs
with default theories in a canonical way:

• For rule r as above, let δ(r) be the following default:

δ(r) =
b1 ∧ · · · ∧ bn : ¬c1, . . . ,¬cm

a .

➥ The answer sets of a program P are in a one-to-one
correspondence to the extensions of the default theory
〈∅, {δ(r) | r ∈ P}〉.
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