Propositional Logic for Forgetters

Uwe Egly

Vienna University of Technology Institute of Information Systems Knowledge-Based Systems Group

Outline

Introduction

Propositional Logic (PL0)

Syntax of PL0 Semantics of PL0 Deduction in PL0

Summary of PL0

Human Reasoning

- From given knowledge W, infer new knowledge B
 Make implicitly represented knowledge explicit
- ▶ If possible then (*W*, *B*) is in the inference relation R, i.e.,

 $(W, B) \in R$: (raining, street_is_wet) $\in R$

Otherwise, it is not, i.e.,

 $(W, B) \notin R$: (raining, light_is_green) $\notin R$

How can a computer perform inferences (i.e., decide R)?
 Represent W and B and
 apply deduction methods on the representation of W and B

Human Reasoning

- From given knowledge W, infer new knowledge B Make implicitly represented knowledge explicit
- ▶ If possible then (*W*, *B*) is in the inference relation R, i.e.,

 $(W, B) \in R$: (raining, street_is_wet) $\in R$

Otherwise, it is not, i.e.,

 $(W, B) \notin R$: (raining, light_is_green) $\notin R$

- How can a computer perform inferences (i.e., decide R)?
 - Represent W and B and
 - apply deduction methods on the representation of W and B

Formalizing a Logical System

... or the ingredients for an automated inference system

Old dream of mankind

(At least of some "logicians" like G. W. Leibniz (1646-1716))

Goal of artificial intelligence

What is needed?

- Syntax (= construction rules for formulas)
- Semantics (= meaning of formulas)
- Inference rules
- Correctness (no false conclusions are drawn)
- Completeness (all correct conclusions are drawn)

Formalizing a Logical System

... or the ingredients for an automated inference system

- Old dream of mankind
 - (At least of some "logicians" like G. W. Leibniz (1646–1716))
- Goal of artificial intelligence
- What is needed?
 - Syntax (= construction rules for formulas)
 - Semantics (= meaning of formulas)
 - Inference rules
 - Correctness (no false conclusions are drawn)
 - Completeness (all correct conclusions are drawn)

The Syntax of PL0

- ► Given a countable set, *BV*, of boolean variables
- Boolean variables like p, q, r, p₁,... represent facts: e.g., r represents "it is raining"
- Inductive definition of the set of propositional formulas

B1: Every $p \in BV$ is a formula (called atomic formula or atom) B2: \top (verum) and \perp (falsum) are formulas S1: If ϕ is a formula, then so is $(\neg \phi)$ (negation) S2: If ϕ_1 and ϕ_2 are formulas, then so are $(\phi_1 \land \phi_2)$ (conjunction), $(\phi_1 \lor \phi_2)$ (disjunction), $(\phi_1 \rightarrow \phi_2)$ (implication) and $(\phi_1 \leftrightarrow \phi_2)$ (equivalence)

- ► To save parenthesis, use the following ranking of binding strength: ¬, ∧, ∨, →, ↔ (i.e., ¬ binds stronger than ∧, etc.)
- ▶ Example: $\neg p \land q \rightarrow r \lor s$ means $((\neg p) \land q) \rightarrow (r \lor s)$

The Syntax of PL0

- ► Given a countable set, *BV*, of boolean variables
- Boolean variables like p, q, r, p₁, ... represent facts: e.g., r represents "it is raining"
- Inductive definition of the set of propositional formulas
 - B1: Every $p \in BV$ is a formula (called atomic formula or atom)
 - B2: \top (verum) and \perp (falsum) are formulas
 - S1: If ϕ is a formula, then so is $(\neg \phi)$ (negation)
 - S2: If ϕ_1 and ϕ_2 are formulas, then so are $(\phi_1 \land \phi_2)$ (conjunction), $(\phi_1 \lor \phi_2)$ (disjunction), $(\phi_1 \to \phi_2)$ (implication) and $(\phi_1 \leftrightarrow \phi_2)$ (equivalence)
- ► To save parenthesis, use the following ranking of binding strength: ¬, ∧, ∨, →, ↔ (i.e., ¬ binds stronger than ∧, etc.)
- ▶ Example: $\neg p \land q \rightarrow r \lor s$ means $((\neg p) \land q) \rightarrow (r \lor s)$

The Syntax of PL0

- ► Given a countable set, *BV*, of boolean variables
- Boolean variables like p, q, r, p₁, ... represent facts: e.g., r represents "it is raining"
- Inductive definition of the set of propositional formulas
 - B1: Every $p \in BV$ is a formula (called atomic formula or atom)
 - B2: \top (verum) and \perp (falsum) are formulas
 - S1: If ϕ is a formula, then so is $(\neg \phi)$ (negation)
 - S2: If ϕ_1 and ϕ_2 are formulas, then so are $(\phi_1 \land \phi_2)$ (conjunction), $(\phi_1 \lor \phi_2)$ (disjunction), $(\phi_1 \to \phi_2)$ (implication) and $(\phi_1 \leftrightarrow \phi_2)$ (equivalence)
- To save parenthesis, use the following ranking of binding strength: ¬, ∧, ∨, →, ↔ (i.e., ¬ binds stronger than ∧, etc.)
- ▶ Example: $\neg p \land q \rightarrow r \lor s$ means $((\neg p) \land q) \rightarrow (r \lor s)$

- A literal is an atom or a negated atom
- A clause is a disjunction of literals
- Immediate subformula (relation)
 - ϕ is an immediate subformula (isf) of $\neg \phi$
 - ϕ_1 and ϕ_2 are isfs of $(\phi_1 \circ \phi_2)$ for $\circ \in \{\land, \lor, \rightarrow, \leftrightarrow\}$
- Subformula relation: reflexive-transitive closure of the immediate subformula relation
- ► Example: all subformulas of $\neg p \land q \rightarrow r \lor s$ $\neg p \land q \rightarrow r \lor s$, $\neg p \land q$, $r \lor s$, $\neg p$, q, r, s, p

- A literal is an atom or a negated atom
- A clause is a disjunction of literals
- Immediate subformula (relation)
 - ϕ is an immediate subformula (isf) of $\neg \phi$
 - ϕ_1 and ϕ_2 are isfs of $(\phi_1 \circ \phi_2)$ for $\circ \in \{\land, \lor, \rightarrow, \leftrightarrow\}$
- Subformula relation: reflexive-transitive closure of the immediate subformula relation
- ► Example: all subformulas of $\neg p \land q \rightarrow r \lor s$ $\neg p \land q \rightarrow r \lor s, \neg p \land q, r \lor s, \neg p, q, r, s, p$

- A literal is an atom or a negated atom
- A clause is a disjunction of literals
- Immediate subformula (relation)
 - ϕ is an immediate subformula (isf) of $\neg \phi$
 - ϕ_1 and ϕ_2 are isfs of $(\phi_1 \circ \phi_2)$ for $\circ \in \{\land, \lor, \rightarrow, \leftrightarrow\}$
- Subformula relation: reflexive-transitive closure of the immediate subformula relation
- ► Example: all subformulas of $\neg p \land q \rightarrow r \lor s$ $\neg p \land q \rightarrow r \lor s, \neg p \land q, r \lor s, \neg p, q, r, s, p$

- A literal is an atom or a negated atom
- A clause is a disjunction of literals
- Immediate subformula (relation)
 - ϕ is an immediate subformula (isf) of $\neg \phi$
 - ϕ_1 and ϕ_2 are isfs of $(\phi_1 \circ \phi_2)$ for $\circ \in \{\land, \lor, \rightarrow, \leftrightarrow\}$
- Subformula relation: reflexive-transitive closure of the immediate subformula relation
- ► Example: all subformulas of $\neg p \land q \rightarrow r \lor s$ $\neg p \land q \rightarrow r \lor s, \neg p \land q, r \lor s, \neg p, q, r, s, p$

- A literal is an atom or a negated atom
- A clause is a disjunction of literals
- Immediate subformula (relation)
 - ϕ is an immediate subformula (isf) of $\neg \phi$
 - ϕ_1 and ϕ_2 are isfs of $(\phi_1 \circ \phi_2)$ for $\circ \in \{\land, \lor, \rightarrow, \leftrightarrow\}$
- Subformula relation: reflexive-transitive closure of the immediate subformula relation
- ► Example: all subformulas of $\neg p \land q \rightarrow r \lor s$ $\neg p \land q \rightarrow r \lor s, \neg p \land q, r \lor s, \neg p, q, r, s, p$

Propositional Formulas as Trees

- Formulas can be depicted as formula trees
- ► Example: $((p \land q) \rightarrow r) \leftrightarrow (p \rightarrow (q \rightarrow r))$

The Semantics of PL0

- A boolean value (or truth value) is either 0 (false) or 1 (true)
- ► An interpretation function for a set *P* of boolean variables:

mapping $I: \mathcal{P} \mapsto \{0, 1\}$

- Interpretation functions are often called truth assignments e.g., *I* assigns 1 to *p* ∈ *P*, i.e., *I*(*p*) = 1
- Since we want to "evaluate" formulas under *I*, we have to extend *I* to formulas

The Extension of I to Formulas

Equivalent notations:

 ϕ is true under *I* iff *I* satisfies ϕ iff $I(\phi) = 1$ iff $I \models \phi$ ϕ is false under *I* iff *I* does not satisfy ϕ iff $I(\phi) = 0$ iff $I \not\models \phi$

Truth Tables

- Another representation of the extension of I from above
- One table for each connective

Even More Notations

- If I satisfies φ, we call I a model of φ
- $Mod(\psi)$ is the set of all models of ψ
- ϕ is satisfiable (valid) if ϕ is true in some (all) interpretations
- ϕ is unsatisfiable if ϕ is false in all interpretations
- Formulas φ and ψ are equivalent, denoted by φ ≡ ψ, iff they have exactly the same models, i.e., Mod(φ) = Mod(ψ)
- ► Example: $(\phi \rightarrow \psi) \equiv (\neg \psi \rightarrow \neg \phi)$: Take $I \in Mod(\phi \rightarrow \psi)$ $I(\phi \rightarrow \psi) = 1$ iff $I(\phi) = 0$ or $I(\psi) = 1$ iff $I(\neg \phi) = 1$ or $I(\psi) = 1$ iff $I(\neg \phi) = 1$ or $I(\neg \psi) = 0$ iff $I(\neg \psi \rightarrow \neg \phi) = 1$

Some Useful Equivalences

Commutativity Idempotence Tautology Unsatisfiability Neutrality

Negation

Double Negation Implication

$\phi\circ\psi$	\equiv	$\psi\circ\phi$
$\phi\circ\phi$	\equiv	ϕ
$\phi \vee \top$	\equiv	Т
$\phi \wedge \bot$	\equiv	\perp
$\phi \wedge \top$	\equiv	ϕ
$\phi \lor \bot$	\equiv	ϕ
$\phi \vee \neg \phi$	\equiv	Т
$\phi \wedge \neg \phi$	\equiv	\perp
$\neg \neg \phi$	\equiv	ϕ
$\phi \rightarrow \psi$	\equiv	$\neg\phi\lor\psi$

for
$$\circ \in \{\lor, \land, \leftrightarrow\}$$

for $\circ \in \{\lor, \land\}$

Some Useful Equivalences Cont'd

Connections Between the Different Notations

Distinguish between

- tautologies: all interpretations are models
- satisfiable formulas: some interpretations are models
- contradictions: no interpretation is a model
- ► A formula φ is valid iff ¬φ is unsatisfiable Recall that this is the basis for a "proof by contradiction"
- A formula ϕ is satisfiable iff $\neg \phi$ is not valid
- ▶ Two formulas ϕ and ψ are equivalent iff $\phi \leftrightarrow \psi$ is valid
- A formula ϕ is valid iff ϕ is equivalent to \top
- A formula ϕ is unsatisfiable iff ϕ is equivalent to \perp

Entailment

- So far, \models relates an interpretation and a formula
- Allow also a set of formulas on the left side
- Important: a set of formulas coincides with the conjunction of its elements, i.e., {φ₁,..., φ_n} is Λⁿ_{i=1} φ_i
- Important: an empty conjunction is 1 in all interpretations i.e., it is equivalent to ⊤
- *W* entails ϕ , *W* $\models \phi$, iff *Mod*(*W*) \subseteq *Mod*(ϕ)
- $W \models \phi$ iff $I \models \phi$ for all models I of W (for all $I \in Mod(W)$)
- Important for KBSs: Does KB W entails query ϕ

Properties of Entailment

• $W \models \psi$ implies $W \cup \{\phi\} \models \psi$

$$\blacktriangleright W \cup \{\phi\} \models \psi \text{ iff } W \models \phi \to \psi$$

•
$$W \cup \{\phi\} \models \neg \psi \text{ iff } W \cup \{\psi\} \models \neg \phi$$

• $W \cup \{\phi\}$ is unsatisfiable iff $W \models \neg \phi$

Monotonicity for PL0 Deduction Thm Contraposition Thm Contradiction Thm

Important Questions to Answer

Q1 How can we algorithmicly check whether $I \models \phi$ holds?

- Solution of a formula ϕ under a given interpretation I
- Q2 When does $W \models \phi$ hold?
- Q2' When does $\models \phi$ hold?
 - This is a special case of Q2 with empty W!
 - Q2' asks: when is ϕ a tautology (1 in all interpretations)?
- Q3 Can we define deduction (based on syntactic rules), s.t. the result of deduction and entailment coincides?
 - ▶ Write $W \vdash_i \phi$ if ϕ is derived from W by deduction proc. *i*
 - ▶ *i* is sound: if $W \vdash_i \phi$ holds, then $W \models \phi$ also holds
 - *i* is complete: if $W \models \phi$ holds, then $W \vdash_i \phi$ also holds

Evaluate
$$\phi: (p \rightarrow q) \land (p \land q \rightarrow r) \rightarrow (p \rightarrow r)$$
 under $I = \{p \mapsto 1, q \mapsto 0, r \mapsto 1\}$ starting with p

	formula	value
1	$(p ightarrow q) \land (p \land q ightarrow r) ightarrow (p ightarrow r)$	1
3	$(ho ightarrow q) \wedge (ho \wedge q ightarrow r)$	0
4	$p \land q ightarrow r$	1
5	ho ightarrow q	0
6	$p \wedge q$	0
7	р р р	1
	q q	0

Evaluate
$$\phi: (p \rightarrow q) \land (p \land q \rightarrow r) \rightarrow (p \rightarrow r)$$
 under $I = \{p \mapsto 1, q \mapsto 0, r \mapsto 1\}$ starting with p

	formula	value
1	$(p ightarrow q) \land (p \land q ightarrow r) ightarrow (p ightarrow r)$	1
3	$(p ightarrow q) \wedge (p \wedge q ightarrow r)$	0
4	$p \wedge q ightarrow r$	1
5	p ightarrow q	0
6	$p \wedge q$	0
7	р р р	1
8	q q	0
	r r	

Evaluate
$$\phi: (p \rightarrow q) \land (p \land q \rightarrow r) \rightarrow (p \rightarrow r)$$
 under $I = \{p \mapsto 1, q \mapsto 0, r \mapsto 1\}$ starting with p

	formula	value
1	$(p ightarrow q) \wedge (p \wedge q ightarrow r) ightarrow (p ightarrow r)$	1
3	$(p ightarrow q)\wedge (p\wedge q ightarrow r)$	0
4	$p \land q ightarrow r$	1
5	$oldsymbol{ ho} ightarrow oldsymbol{q}$	0
6	$oldsymbol{ ho}\wedgeoldsymbol{q}$	0
7	р р р	1
8	q q	0
	r r	

Evaluate
$$\phi: (p \rightarrow q) \land (p \land q \rightarrow r) \rightarrow (p \rightarrow r)$$
 under $I = \{p \mapsto 1, q \mapsto 0, r \mapsto 1\}$ starting with p

	formula	value
1	$(p ightarrow q) \land (p \land q ightarrow r) ightarrow (p ightarrow r)$	1
3	$(p ightarrow q) \wedge (p \wedge q ightarrow r)$	0
4	$oldsymbol{ ho} \wedge oldsymbol{q} ightarrow oldsymbol{r}$	1
5	$oldsymbol{ ho} ightarrow oldsymbol{q}$	0
6	$oldsymbol{p}\wedgeoldsymbol{q}$	0
7	р р р	1
8	q q	0
	r r	

Evaluate
$$\phi: (p \rightarrow q) \land (p \land q \rightarrow r) \rightarrow (p \rightarrow r)$$
 under $I = \{p \mapsto 1, q \mapsto 0, r \mapsto 1\}$ starting with p

	formula	value
1	$(p ightarrow q) \wedge (p \wedge q ightarrow r) ightarrow (p ightarrow r)$	1
3	$({m ho} o {m q}) \wedge ({m ho} \wedge {m q} o {m r})$	0
4	$oldsymbol{ ho} \wedge oldsymbol{q} ightarrow oldsymbol{r}$	1
5	$oldsymbol{ ho} ightarrow oldsymbol{q}$	0
6	$oldsymbol{ ho}\wedgeoldsymbol{q}$	0
7	р р р	1
8	q q	0

Evaluate
$$\phi: (p \rightarrow q) \land (p \land q \rightarrow r) \rightarrow (p \rightarrow r)$$
 under $I = \{p \mapsto 1, q \mapsto 0, r \mapsto 1\}$ starting with p

	formula	value
1	$(p ightarrow q) \wedge (p \wedge q ightarrow r) ightarrow (p ightarrow r)$	1
3	$(p ightarrow q) \wedge (p \wedge q ightarrow r)$	0
4	$oldsymbol{ ho} \wedge oldsymbol{q} ightarrow oldsymbol{r}$	1
5	$oldsymbol{ ho} ightarrow oldsymbol{q}$	0
6	$oldsymbol{ ho}\wedgeoldsymbol{q}$	0
7	р р р	1
8	q q	0
	r r	1

Evaluate
$$\phi: (p \rightarrow q) \land (p \land q \rightarrow r) \rightarrow (p \rightarrow r)$$
 under $I = \{p \mapsto 1, q \mapsto 0, r \mapsto 1\}$ starting with p

	formula	value
1	$(p ightarrow q) \wedge (p \wedge q ightarrow r) ightarrow (p ightarrow r)$	1
2	ho ightarrow r	1
3	$({m ho} o {m q}) \wedge ({m ho} \wedge {m q} o {m r})$	0
4	$oldsymbol{ ho} \wedge oldsymbol{q} ightarrow oldsymbol{r}$	1
5	$oldsymbol{ ho} ightarrow oldsymbol{q}$	0
6	$oldsymbol{ ho}\wedgeoldsymbol{q}$	0
7	р р р	1
8	q q	0
9	r r	1

Evaluate $\phi : (p \rightarrow q) \land (p \land q \rightarrow r) \rightarrow (p \rightarrow r)$ under $I = \{p \mapsto 1, q \mapsto 0, r \mapsto 1\}$ starting with r

	formula	value
1	$(p ightarrow q) \land (p \land q ightarrow r) ightarrow (p ightarrow r)$	1
2	ho ightarrow r	1
4	$p \land q ightarrow r$	1
9	r r	1

Evaluate $\phi: (p \rightarrow q) \land (p \land q \rightarrow r) \rightarrow (p \rightarrow r)$ under $I = \{p \mapsto 1, q \mapsto 0, r \mapsto 1\}$ starting with r

	formula	value
1	$(p ightarrow q) \land (p \land q ightarrow r) ightarrow (p ightarrow r)$	1
2	$oldsymbol{ ho} ightarrow oldsymbol{r}$	1
	$(oldsymbol{p} ightarrow oldsymbol{q}) \wedge (oldsymbol{p} \wedge oldsymbol{q} ightarrow oldsymbol{r})$	
4	$oldsymbol{ ho} \wedge oldsymbol{q} ightarrow oldsymbol{r}$	1
9	r r	1

Evaluate
$$\phi: (p \rightarrow q) \land (p \land q \rightarrow r) \rightarrow (p \rightarrow r)$$
 under $I = \{p \mapsto 1, q \mapsto 0, r \mapsto 1\}$ starting with r

	formula	value
1	$(p ightarrow q) \wedge (p \wedge q ightarrow r) ightarrow (p ightarrow r)$	1
2	ho ightarrow r	1
	$(oldsymbol{p} ightarrow oldsymbol{q}) \wedge (oldsymbol{p} \wedge oldsymbol{q} ightarrow oldsymbol{r})$	0
4	$oldsymbol{ ho} \wedge oldsymbol{q} ightarrow oldsymbol{r}$	1
9	r r	1

Evaluate
$$\phi: (p \rightarrow q) \land (p \land q \rightarrow r) \rightarrow (p \rightarrow r)$$
 under $I = \{p \mapsto 1, q \mapsto 0, r \mapsto 1\}$ starting with r

	formula	value
1	$(p ightarrow q) \wedge (p \wedge q ightarrow r) ightarrow (p ightarrow r)$	1
2	$oldsymbol{ ho} ightarrow r$	1
3	$(p ightarrow q) \wedge (p \wedge q ightarrow r)$	0
4	$oldsymbol{ ho} \wedge oldsymbol{q} ightarrow oldsymbol{r}$	1
5	p ightarrow q	0
6	$oldsymbol{ ho}\wedgeoldsymbol{q}$	0
7	р р р	1
8	q q	0
9	r r	1

How to Check Entailments $W \models \phi$ and $\models \phi$

How can we use the evaluation procedure to answer Q2'?

- Consider formula ϕ with $\{p_1, \ldots, p_n\}$ as prop. variables
- ▶ Generate all 2^{*n*} / over these *n* variables one after the other
- Test each of the generated interpretation I
 - Evaluate with the above procedure ϕ under the current *I*
 - If $I(\phi) = 0$ then STOP and answer " ϕ is not a tautology"
- ▶ If $I(\phi) = 1$ for all *I* then STOP and answer " ϕ is a tautology"

How is Q2 handled (i.e., $W \models \phi$)?

- Assume *W* is $\{\psi_1, \ldots, \psi_m\}$ and apply the Deduction Thm
- ▶ Obtain, e.g., $\models \psi_1 \rightarrow (\psi_2 \rightarrow (\cdots (\psi_m \rightarrow \phi) \cdots))$

How to Check Entailments $W \models \phi$ and $\models \phi$

How can we use the evaluation procedure to answer Q2'?

- Consider formula ϕ with $\{p_1, \ldots, p_n\}$ as prop. variables
- ▶ Generate all 2^{*n*} / over these *n* variables one after the other
- Test each of the generated interpretation I
 - Evaluate with the above procedure ϕ under the current *I*
 - If $I(\phi) = 0$ then STOP and answer " ϕ is not a tautology"
- ▶ If $I(\phi) = 1$ for all *I* then STOP and answer " ϕ is a tautology"

How is Q2 handled (i.e., $W \models \phi$)?

- Assume *W* is $\{\psi_1, \ldots, \psi_m\}$ and apply the Deduction Thm
- ▶ Obtain, e.g., $\models \psi_1 \rightarrow (\psi_2 \rightarrow (\cdots (\psi_m \rightarrow \phi) \cdots))$

Decision Procedure for PL0

Check proc. is based on enumeration of interpretations

- ▶ For *n* atoms in the input formula: 2^{*n*} interpretations possible
- Worst case: all 2ⁿ interpretations have to be generated
- Check procedure for validity is a Decision Procedure
 - Possible answer is either yes or no
 - Decides entailment (and validity)
 - Decides satisfiability by reduction approach:
 - ϕ is satisfiable iff $\neg \phi$ is not valid (i.e., $\neg \phi$ is not a tautology)

Can we do better/differently?

Reduction to Satisfiability

Reduce validity, entailment, equivalence to satisfiability

1 Validity

- $\neg \phi$ is unsatisfiable iff ϕ is valid
- 2 Entailment
 - ϕ entails ψ ($\phi \models \psi$) iff $\phi \rightarrow \psi$ is valid (apply Deduction Thm)
 - ▶ Hence, $\phi \models \psi$ iff $\phi \land \neg \psi$ (i.e., $\neg(\phi \rightarrow \psi)$) is unsatisfiable
- 3 Equivalence
 - ϕ is equivalent to ψ ($\phi \equiv \psi$) iff $\phi \leftrightarrow \psi$ is valid
 - Hence, $\phi \equiv \psi$ iff $\phi \models \psi$ and $\psi \models \phi$ hold
 - Consequently, $\phi \equiv \psi$ iff $\phi \land \neg \psi$ and $\psi \land \neg \phi$ are unsatisfiable

Sound and complete procedure for satisfiability is sufficient!

The Tableau Calculus for PL0 (TC0)

- TC0 is a decision procedure for satisfiability
 - Answer yes means satisfiable
 - Answer no means unsatisfiable
- For a satisfiable input formula ϕ , TC0 constructs model of ϕ
- For simplicity: Restrict the input formula to be in negation normal form (NNF)
- NNF characterized by two conditions:
 - 1. Negation signs occur only in front of atoms
 - 2. The only connectives are \wedge and \vee
- ▶ NNF of ϕ (denoted by *nnf*(ϕ)) and ϕ are equivalent!
- Translation procedures are available

Preparatory Concept for NNF: Tree Replacements

- Let $\phi[\psi]$ denote that ψ occurs in ϕ
- This means that \u03c6 occurs as zero, one or more subtree(s) in the formula tree of \u03c6
- Possibility to perform subtree replacements
- Example: $\phi: \neg(p \land q) \lor r$ and $\psi_1: \neg(p \land q)$
 - Then $\phi[\psi_1]$ indicates occurrence(s) of ψ_1 in ϕ
 - Construct $\phi[\psi_2]$ with $\psi_2: \neg p \lor \neg q$ by a tree replacement

Equivalent Replacement

Lemma (Equivalent Replacement Lemma) Let *I* be an interpretation and $I \models \psi_1 \leftrightarrow \psi_2$. Then $I \models \phi[\psi_1] \leftrightarrow \phi[\psi_2]$.

Theorem (Equivalent Replacement Theorem) Let $\psi_1 \equiv \psi_2$. Then $\phi[\psi_1] \equiv \phi[\psi_2]$.

Basics of the NNF Translation

- ▶ Replace \leftrightarrow by \rightarrow using $(\phi \leftrightarrow \psi) \equiv ((\phi \rightarrow \psi) \land (\psi \rightarrow \phi))$
- Replace \rightarrow using $(\phi \rightarrow \psi) \equiv (\neg \phi \lor \psi)$
- Replace the left side of the following equivalences by the right side (order does not matter!)

$$\neg(\phi \lor \psi) \equiv \neg \phi \land \neg \psi \qquad \neg(\phi \land \psi) \equiv \neg \phi \lor \neg \psi$$

$$\phi \lor \top \equiv \top \qquad \qquad \top \lor \phi \equiv \top$$

$$\phi \land \bot \equiv \bot \qquad \qquad \bot \land \phi \equiv \bot$$

$$\phi \land \top \equiv \phi \qquad \qquad \top \land \phi \equiv \phi$$

$$\phi \lor \bot \equiv \phi \qquad \qquad \downarrow \lor \phi \equiv \phi$$

$$\neg \neg \phi \equiv \phi$$

Translation process is terminating with the NNF

The Basic Ideas for TC0

- Decompose formulas into their immediate subformulas
- This decomposition results in a decomposition tree
- Exhaustively look at all possibilities of decomposition
- Look for clashes on the branches of the trees
- Clash on a branch (i.e, p and ¬p are on the same branch) indicates that this branch is unsatifiable
- If all branches have a clash: input formula is unsatisfiable
- Eventually, a branch without clash provides a model

The Basic Steps of TC0

Input: a formula in NNF

- 1. Start with the input formula as the root of the refutation tree
- 2. Starting from the root, extend the tree by new formulas generated by completion (inference) rules
- 3. Two kinds of completion rules:
 - deterministic: add successor nodes to the same branch
 - nondeterministic: several alternative successor nodes (increases the number of branches)
- 4. Apply the completion rules until either
 - ► an explicit contradiction (clash) occurs in each branch or
 - there is a completed branch (no more rules are applicable)

The Completion (Inference) Rules of TC0

 $egin{array}{c} \phi \wedge \psi \ \phi \ \psi \end{array}$

If a model satisfies the conjunction, then it satisfies each of the conjuncts

If a model satisfies a disjunction, then it also satisfies one of the disjuncts. It is a non-deterministic rule, and it generates two alternative branches of the tableaux.

When are the Completion Rules Applicable?

This rule can be applied if ϕ and ψ are not both on the current branch

 $\begin{array}{c|c} \phi \lor \psi \\ \hline \phi & \psi \end{array}$

This rule can be applied if neither ϕ nor ψ is on the current branch

Applicability conditions prevent redundant rule applications

Necessary for termination

Example: Is ϕ : $((p \land q) \rightarrow r) \rightarrow (q \rightarrow r)$ satisfiable?

r)

- All branches are completed
- Generate models for $nnf(\phi)$
 - Take completed branch b: set every literal on b to 1
 - ► Left branch: l(p) = l(q) = 1, l(r) = 0
 - Middle brach: I(q) = 0
 - Right branch: I(r) = 1
- Are these all models?
- ► Only falsifying interpretation: *l*(*p*) = *l*(*r*) = 0, *l*(*q*) = 1

Example: Is ϕ : $((p \land q) \rightarrow r) \rightarrow (q \rightarrow r)$ satisfiable?

r)

- All branches are completed
- Generate models for $nnf(\phi)$
 - Take completed branch b: set every literal on b to 1
 - Left branch:
 I(p) = I(q) = 1, I(r) = 0
 - Middle brach: I(q) = 0
 - Right branch: I(r) = 1
- Are these all models?
- Only falsifying interpretation: l(p) = l(r) = 0, l(q) = 1

Example: Does $p \models p \land q$ hold?

- ▶ $p \models p \land q$ holds iff $p \land \neg(p \land q)$ is unsatisfiable
- Check for satisfiability of $nnf(p \land \neg(p \land q))$

- Left branch has a clash
- Right branch is completed
- Generate counter model *I* for the entailment p ⊨ p ∧ q
 - Right branch: I(p) = 1 and I(q) = 0
 - Check: $I \models p$ but $I \not\models p \land q$
 - Consequently, $Mod(p) \not\subseteq Mod(p \land q)$

TC0 as a Decision Procedure

TC0 is a decision procedure for computing satisfiability, validity, and entailment in PL0

- TC0 is purely syntactical (decomposition of formulas)
- TC0 is sound
- TC0 is complete
- TC0 is terminating

Worst-case complexity depend on:

- the structure of the input formula for TC0
- the number of atoms in the input formula for truth tables

Summary (of PL0)

We recapitulated important definitions and notations for PL0 like

- formulas, atoms, literals, clauses,
- subformulas and formula trees,
- the concept of an interpretation and models,
- validity, (un)satisfiability, and entailment
- reductions to satisfiability,
- Deduction Thm, Contraposition Thm, Contradiction Thm,
- Equivalent Replacement Thm,
- negation normal form,
- TC0 and its use