Rule-based Systems

Uwe Egly

Vienna University of Technology
Institute of Information Systems
Knowledge-Based Systems Group

1/289

Overview

v

Knowledge is often formulated in if-then manner
We often have to deal with situations like

v

if Condl A ... A Condn then perform some actions
Such a statement is called production rule or simply rule
Often given by domain experts during knowledge
acquisition
In this lecture, we deal with rule-based systems (RBSs)

» Presentation of the fundamentals of RBSs
» Examples for such systems used (not only) for KBSs
» Brief description is based on JBoss Drools

v

v

v

v

Next lecture: Example of a rule-based system in geodesy

271929

Why Rules?

» Rules are easier to read than source code
» Non-programmers (esp. domain experts) can write rules

» Rules are better for describing complex systems
(because rules are declarative)

» Declarative means to describe what to do, not how to do it
» Rules are often independent from each other

» Rules have no predefined sequence for the application
(they do not describe the control)

27129

What are Rules and Rule-based Systems?

» Rules may express different types of reasoning:

premise — conclusion logical implication
antecedence — consequence infer from given precondition
evidence — hypothesis interpretation of facts
situation — action situated behavior

IF — THEN informal paraphrases
left-side — right-side can mean anything

» Well-known successful system include
ILOG, JBoss Drools, CLIPS, Ruby ROOLS, NOBRE

» Historically: Rules used for XPS (e.g., DEC’s XCon et al.)
» Today: “Business Rules”, in the Semantic Web or Games

A]929

Expert Systems @ DEC (1)

Initial situation (around 1975)

» VAX computers were sold especially tailored for each client
» Need for 1000 technical editors (TES)
(=expert for configuring computer systems)
» No chance to hire them or to educate them
» ldea: Write a support program to boost efficency of TEs

» The program failed because

» the problem complexity was too high
» there were nondeterministic solutions
» the configuration data changed too quickly

» How to overcome these difficulties?

5/29

Expert Systems @ DEC (2)

The solution

» Develop an expert system (named R1 and later XCon)

Developed together with CMU

Rule-based (final version had approximately 5000 rules)
Configured VAX computers from customer orders
Success rate 99%

» Success of XCon yielded the development of further XPSs
» J. McDermott received AAAI Classic Paper Award 1999 for
R1: An Expert in the Computer Systems Domain

vV vy VvYy

A/129

What is a Rule-based System?

» RBSs consists of the following parts
» A collection of facts
(short term knowledge of the KB, often case-specific)
» A collection of rules (i.e., one or more rule bases)
(long term knowledge of the KB, often domain-specific)
» An inference engine

» Knowledge representation and reasoning are separated
» Two principle tasks:

» Derive new facts
» Determine whether a specific fact can be derived with the
given rules and already known facts

7129

Control Regimes for RBSs

» Two principle tasks imply two control regimes:

» Forward chaining (data driven):
start with facts, determine applicable rules, and apply one
» Backward chaining (goal oriented):
look for rules which decompose goal; solve smaller goals
» |s one better than the other?
No general answer possible (depends on the application)

» We focus on forward chaining systems here

Q/29

The Working Memory

» Place where the facts (objects relevant for rules) are stored

» Consists of Agenda (= Conflict Set), Truth Maintenance
System , WM Event Support, etc.
» Some operations on the WM are (there are much more):

» insert: put a new fact into the WM

retract: delete a fact from the WM

» update: update a fact already in the WM

» fireAllRules: find applicable rules and fire one of them

v

» Example:

Cheese brie = new Cheese("brie");
Fact Handl e bHandl e = session.insert(brie);

Q/29

The Rules

vV vy VvV .y

v

» Keep RHS simple and readable

Rules have the form shown on the right

Each rule typically stored in own file
Rules cannot be called directly
Most important attribute:

» salience: Rule priority as an int
LHS: Can be highly complex (exa below)
» RHS:

» Small code part (usually insert, retract,
update WM data)
» No complicated program structure

@n

\ ‘rule’ \

-G,
—
- ()

L=

10 /28

Examples for LHSs

Cheese type is "brie" or price < 10, and age is mature
Cheese(type=="brie" || price<l0, age=="nmture")
Check for earlier

Cheese(bestBefore < "27-Cct-2008")

Return Value Restriction: girlAge takes age from first
Person(girl Age : age, sex == "F")
Person(age == (girlAge + 2)), sex == 'M)

» Positive conditions check for existence of something in WM

v

not checks for non-existence of something in the WM
not (Bus(color=="red") and Bus(col or=="blue"))

With not, nonmonotonic behavior comes into play

11 /28

Rule Bases

» Contains the rules (usually
ready to run, i.e., compiled)
» Contains the WMs

» Initializes WMs (initial facts)

» Usually contains parts of the Working Mermory

inference engine Working Mamory
. . Event Support Agenda
» Usually highly configurable

Truth Maintenance
System

Agenda
Event Support

127129

The Inference Engine

» Matches facts in the WM against rules (= productions)
» |s able to scale to a large number of rules and facts

» Matching determines the applicable relevant knowledge in
the given situation

» Matching of many rules against many facts computationally
expensive (use special algorithms like Rete, ReteOO, etc.)

» Matching often yields > 1 applicable rule (put in Agenda)
(these rule instances are said to be in conflict)

» Use conflict resolution to pick one for firing
» Firing: executing the RHS of an applicable rule instance

12/29

What is a Rule Instance?

» Rule instance consists of

» areference to a rule and
» list of references to objects in WM satisfying the pos conds
(positive means no not at the beginning)

» Each reference is a witness that corresponding cond is true
(I.e., there is an object in the WM which satisfies the condition)

» Clearly, no reference for the negative conditions (why?)

147128

An Architectural Overview of the

Production

Memory

(rules)

Inference Engine

Inference
Engine
(ReteOO/Leaps)
Pattern Working
Matcher Memory
. (facts)

Agenda

15/29

The Recognize-Act-Cycle

Datermine
»| possible rules to |-
fire:

Working Memory Action

=
Fire: Rule

Agenda Evaluation 7\

N

Rule
Found Select
Rule to Fire

Found

16/28

Conflict Resolution (CR)

» It is required if multiple rule instances are on the agenda

» Do not count on the rules firing in any particular order
(In general, we represent in a declarative way!)

» Sometimes. declarative way violated for efficency

» Standard custom conflict resolution strategies are often

» Salience (=rule priority given by the knowledge engineer)
» LIFO
» Custom CR strategies possible and may be based on:
» Specificity:
Rules with more specific conditions in the LHS are preferred
» Rule instances with newer information are preferred
» Rule instances with rules recently fired are preferred
» Or simply choose randomly

177128

An Introductory Example

Assume that we have | t ens which are strings and
Cust oner s who have a cart (array of items)

Cust onmer customer = new Custoner("Fred Flinstone");
custoner. addltem(new Iten{"brie"));

cust oner. addl ten(new Item("cheddar"));

custoner. addltem(new Iten{"feta"));

wor ki ngMenory. i nsert (custoner);

rule "Msg to custoners who haven't bought any brie"
when
$c : Custoner($cart : cart ->
(!$cart.includes(new Item("brie"))))
t hen
$c. sendMessage("Brie is your best friend");
end

1Q2/29

A More Complicated Example: The Age Problem

An old man (O) asks a mathematician (M) to guess the ages of
his three sons. Listen to their conversation:

O : The product of their ages is 36.

M : I need more information.

O : Over there you can see a building. The sum of their ages
equals the number of the windows in that building.

M : I need more information.
O : The eldest son has blue eyes.
M :lgotit.
What are the ages of the three sons of the old man? And how

many windows does the building have? Solve the problem with
a rule-based approach!

19/289

Analysis of the Age Problem

» This problem was the first one of the Drools contest
(a similar one occurs in How to Solve It: Modern Heuristics by
Michalewicz and Fogel)

» We discuss the solution of EImo Nazareno
(http://ningning.org/blog2/?p=120)

» First grasp and formalize info given by O (next slides)

20/ 29

Analysis of the Age Problem (cont'd)

» ai, a, as: the age of the youngest, middle, eldest son
» The product of their ages is 36: a; - a, - a3 = 36
» How many such products are possible?

QD
fly

as
36
18
12
9
6
9
6
4

I N N N Y
©
WWNOAWNERES

w

» We do not know the ages; can be every possibility

21 /29

Analysis of the Age Problem (cont'd)

» (M) knows the number of windows, but we do not!

a; a, as sum
1 1 36 38
1 2 18 21
1 3 12 16
1 4 9 14
1 6 6 13
2 2 9 13
2 3 6 11
3 3 4 10

» The solution must be one of the indicated blue lines since
otherwise (M) would have the solution already

29129

Analysis of the Age Problem (cont'd)

» (M) knows the number of windows, but we do not!

a; a, as sum
1 1 36 38
1 2 18 21
1 3 12 16
1 4 9 14
1 6 6 13
2 2 9 13
2 3 6 11
3 3 4 10

» The solution must be one of the indicated blue lines since
otherwise (M) would have the solution already

» The eldest son has blue eyes; therefore a; < a, < as
» How can we use this info to come up with facts and rules?

22/29

A Solution of the Age Problem: The Facts

» Facts are instances of objects with an attribute age
» Generate the facts Son with age i

for (int i =1; i <=36; i++)

if ((36 %i) == 0)
wor ki ngMenory. i nsert (new Son(i));

24129

A Solution of the Age Problem: The Rule (1)

Basic idea: Search for the two different ordered sequences with
identical sums and choose the good sequence

» Find two different ordered sequences of three ages
» The product of each sequence must equal 36

» The sums of the two sequences must be equal

» The eldest must not have a twin

215 /29

A Solution of the Age Problem: The Rule (2)

rul e "deterni ne ages"
when
Son($a3: age)
Son($a2: age < $a3)
Son($al: age <= $a2)

Son($w3: age)
Son($w2: age <= $w3)
Son($wl: age <= $w2)

eval ($all =$wl && $a2! =$w2 && $a3! =$wB)

eval (($al * $a2 » $a3) == 36)

eval (($wl = $wW2 » $w3) == 36)

eval (($al + $a2 + $a3) == ($wl + $w2 + $w3))
t hen

Systemout.println("eldest: " + $a3 +

"'middle: " + $a2 + " youngest: " + $al);

end

26129

Solution of the Age Problem

» Try to figure out a solution and ...
» answer the two questions mentioned before

» You may want to use Drools; the next slide gives a rough
impression of the integration into Eclipse and some
corresponding tools.

» Infos can be found using the link
http://I abs.jboss. com drool s/

» Next lecture: a report of a KBS in geology
(to detect/classify mass movements like land slides)

27129

Screenshot Drools in Eclipse with Rete Viewer

= T Gl G o

o s il
ek ngin raseen st i) s etk
A BT RED e 1 s

»
5 el yoker, S, Faando) - 21
i, e s 2

[————

= ¢ Seate(name ==

e L Ln (3 getNe () + 7 £inisned
A aerSane (Sane . FINTSRED)5

scare rane

- nn, atace == Seece rmsEID)
e T T L T N e

)

)

- Symtem oue.pEsnbLn (b aetNape () £ © Cinished”)5

e
‘ o ' canges
s

) 5 roperies

we==o
e vz
o ——
=012 owine % =
- L =W s
[r—
3

Dcon.. 5 Sme| = D)0 Gobelbta i 52 [5= 0| 0 auevmn 55 4 =00 v 52 (557 01 © werrgareey v 55 Bl
i I B s erndsroeine (1259 (3 & (o=
LE e B8 = i e et o) || & o1 e (405
= Corec ssreed (0 BUSTRND 5a
= e et D 2 e iz
& inishea e o ot 5 4 1A M e
FuleBootrap s=ANOTRUNKL) ey
omumuufmm Aot - ghedl = oo
Y e] a2 e iz
et st o Ao ENGTRLNRE) 2 e G
)
o B o c=C{UOTUNES)
% At et 100 AN
e i L)
e modeid (3 TS £D)
pelismiman m.wmmmumm
[L .

29 /29

