
Rule-based Systems

Uwe Egly

Vienna University of Technology
Institute of Information Systems

Knowledge-Based Systems Group

1 / 28

Overview

◮ Knowledge is often formulated in if-then manner
◮ We often have to deal with situations like

if Cond1 ∧ . . .∧ Condn then perform some actions
◮ Such a statement is called production rule or simply rule
◮ Often given by domain experts during knowledge

acquisition
◮ In this lecture, we deal with rule-based systems (RBSs)

◮ Presentation of the fundamentals of RBSs
◮ Examples for such systems used (not only) for KBSs
◮ Brief description is based on JBoss Drools

◮ Next lecture: Example of a rule-based system in geodesy

2 / 28

Why Rules?

◮ Rules are easier to read than source code
◮ Non-programmers (esp. domain experts) can write rules
◮ Rules are better for describing complex systems

(because rules are declarative)
◮ Declarative means to describe what to do, not how to do it
◮ Rules are often independent from each other
◮ Rules have no predefined sequence for the application

(they do not describe the control)

3 / 28

What are Rules and Rule-based Systems?

◮ Rules may express different types of reasoning:

premise → conclusion logical implication
antecedence → consequence infer from given precondition
evidence → hypothesis interpretation of facts
situation → action situated behavior
IF → THEN informal paraphrases
left-side → right-side can mean anything

◮ Well-known successful system include
ILOG, JBoss Drools, CLIPS, Ruby ROOLS, NOBRE

◮ Historically: Rules used for XPS (e.g., DEC’s XCon et al.)
◮ Today: “Business Rules”, in the Semantic Web or Games

4 / 28

Expert Systems @ DEC (1)
Initial situation (around 1975)

◮ VAX computers were sold especially tailored for each client
◮ Need for 1000 technical editors (TEs)

(=expert for configuring computer systems)
◮ No chance to hire them or to educate them
◮ Idea: Write a support program to boost efficency of TEs
◮ The program failed because

◮ the problem complexity was too high
◮ there were nondeterministic solutions
◮ the configuration data changed too quickly

◮ How to overcome these difficulties?

5 / 28

Expert Systems @ DEC (2)
The solution

◮ Develop an expert system (named R1 and later XCon)
◮ Developed together with CMU
◮ Rule-based (final version had approximately 5000 rules)
◮ Configured VAX computers from customer orders
◮ Success rate 99%

◮ Success of XCon yielded the development of further XPSs
◮ J. McDermott received AAAI Classic Paper Award 1999 for

R1: An Expert in the Computer Systems Domain

6 / 28

What is a Rule-based System?

◮ RBSs consists of the following parts
◮ A collection of facts

(short term knowledge of the KB, often case-specific)
◮ A collection of rules (i.e., one or more rule bases)

(long term knowledge of the KB, often domain-specific)
◮ An inference engine

◮ Knowledge representation and reasoning are separated
◮ Two principle tasks:

◮ Derive new facts
◮ Determine whether a specific fact can be derived with the

given rules and already known facts

7 / 28

Control Regimes for RBSs

◮ Two principle tasks imply two control regimes:
◮ Forward chaining (data driven):

start with facts, determine applicable rules, and apply one
◮ Backward chaining (goal oriented):

look for rules which decompose goal; solve smaller goals

◮ Is one better than the other?
No general answer possible (depends on the application)

◮ We focus on forward chaining systems here

8 / 28

The Working Memory

◮ Place where the facts (objects relevant for rules) are stored
◮ Consists of Agenda (= Conflict Set), Truth Maintenance

System , WM Event Support, etc.
◮ Some operations on the WM are (there are much more):

◮ insert: put a new fact into the WM
◮ retract: delete a fact from the WM
◮ update: update a fact already in the WM
◮ fireAllRules: find applicable rules and fire one of them

◮ Example:

Cheese brie = new Cheese("brie");
FactHandle bHandle = session.insert(brie);

9 / 28

The Rules

◮ Rules have the form shown on the right
◮ Each rule typically stored in own file
◮ Rules cannot be called directly
◮ Most important attribute:

◮ salience: Rule priority as an int

◮ LHS: Can be highly complex (exa below)
◮ RHS:

◮ Small code part (usually insert, retract,
update WM data)

◮ No complicated program structure
◮ Keep RHS simple and readable

10 / 28

Examples for LHSs

◮ Cheese type is "brie" or price < 10, and age is mature
Cheese(type=="brie" || price<10, age=="mature")

◮ Check for earlier
Cheese(bestBefore < "27-Oct-2008")

◮ Return Value Restriction: girlAge takes age from first
Person(girlAge : age, sex == "F")

Person(age == (girlAge + 2)), sex == ’M’)

◮ Positive conditions check for existence of something in WM
◮ not checks for non-existence of something in the WM

not (Bus(color=="red") and Bus(color=="blue"))

◮ With not, nonmonotonic behavior comes into play

11 / 28

Rule Bases

◮ Contains the rules (usually
ready to run, i.e., compiled)

◮ Contains the WMs
◮ Initializes WMs (initial facts)
◮ Usually contains parts of the

inference engine
◮ Usually highly configurable

12 / 28

The Inference Engine

◮ Matches facts in the WM against rules (= productions)
◮ Is able to scale to a large number of rules and facts
◮ Matching determines the applicable relevant knowledge in

the given situation
◮ Matching of many rules against many facts computationally

expensive (use special algorithms like Rete, ReteOO, etc.)
◮ Matching often yields > 1 applicable rule (put in Agenda)

(these rule instances are said to be in conflict)

◮ Use conflict resolution to pick one for firing
◮ Firing: executing the RHS of an applicable rule instance

13 / 28

What is a Rule Instance?

◮ Rule instance consists of
◮ a reference to a rule and
◮ list of references to objects in WM satisfying the pos conds

(positive means no not at the beginning)

◮ Each reference is a witness that corresponding cond is true
(I.e., there is an object in the WM which satisfies the condition)

◮ Clearly, no reference for the negative conditions (why?)

14 / 28

An Architectural Overview of the Inference Engine

15 / 28

The Recognize-Act-Cycle

16 / 28

Conflict Resolution (CR)

◮ It is required if multiple rule instances are on the agenda
◮ Do not count on the rules firing in any particular order

(In general, we represent in a declarative way!)
◮ Sometimes. declarative way violated for efficency
◮ Standard custom conflict resolution strategies are often

◮ Salience (=rule priority given by the knowledge engineer)
◮ LIFO

◮ Custom CR strategies possible and may be based on:
◮ Specificity:

Rules with more specific conditions in the LHS are preferred
◮ Rule instances with newer information are preferred
◮ Rule instances with rules recently fired are preferred
◮ Or simply choose randomly

17 / 28

An Introductory Example

Assume that we have Items which are strings and
Customers who have a cart (array of items)

Customer customer = new Customer("Fred Flinstone");
customer.addItem(new Item("brie"));
customer.addItem(new Item("cheddar"));
customer.addItem(new Item("feta"));
workingMemory.insert(customer);

rule "Msg to customers who haven’t bought any brie"
when
$c : Customer($cart : cart ->
(!$cart.includes(new Item("brie"))))

then
$c.sendMessage("Brie is your best friend");

end

18 / 28

A More Complicated Example: The Age Problem

An old man (O) asks a mathematician (M) to guess the ages of
his three sons. Listen to their conversation:

O : The product of their ages is 36.

M : I need more information.

O : Over there you can see a building. The sum of their ages
equals the number of the windows in that building.

M : I need more information.

O : The eldest son has blue eyes.

M : I got it.

What are the ages of the three sons of the old man? And how
many windows does the building have? Solve the problem with
a rule-based approach!

19 / 28

Analysis of the Age Problem

◮ This problem was the first one of the Drools contest
(a similar one occurs in How to Solve It: Modern Heuristics by
Michalewicz and Fogel)

◮ We discuss the solution of Elmo Nazareno
(http://ningning.org/blog2/?p=120)

◮ First grasp and formalize info given by O (next slides)

20 / 28

Analysis of the Age Problem (cont’d)

◮ a1, a2, a3: the age of the youngest, middle, eldest son
◮ The product of their ages is 36: a1 · a2 · a3 = 36
◮ How many such products are possible?

a1 a2 a3

1 1 36
1 2 18
1 3 12
1 4 9
1 6 6
2 2 9
2 3 6
3 3 4

◮ We do not know the ages; can be every possibility

21 / 28

Analysis of the Age Problem (cont’d)

◮ (M) knows the number of windows, but we do not!

a1 a2 a3 sum
1 1 36 38
1 2 18 21
1 3 12 16
1 4 9 14
1 6 6 13
2 2 9 13
2 3 6 11
3 3 4 10

◮ The solution must be one of the indicated blue lines since
otherwise (M) would have the solution already

◮ The eldest son has blue eyes; therefore a1 ≤ a2 < a3

◮ How can we use this info to come up with facts and rules?

22 / 28

Analysis of the Age Problem (cont’d)

◮ (M) knows the number of windows, but we do not!

a1 a2 a3 sum
1 1 36 38
1 2 18 21
1 3 12 16
1 4 9 14
1 6 6 13
2 2 9 13
2 3 6 11
3 3 4 10

◮ The solution must be one of the indicated blue lines since
otherwise (M) would have the solution already

◮ The eldest son has blue eyes; therefore a1 ≤ a2 < a3

◮ How can we use this info to come up with facts and rules?

23 / 28

A Solution of the Age Problem: The Facts

◮ Facts are instances of objects with an attribute age

◮ Generate the facts Son with age i

for (int i = 1; i <=36; i++)
if ((36 % i) == 0)

workingMemory.insert(new Son(i));

24 / 28

A Solution of the Age Problem: The Rule (1)

Basic idea: Search for the two different ordered sequences with
identical sums and choose the good sequence

◮ Find two different ordered sequences of three ages
◮ The product of each sequence must equal 36
◮ The sums of the two sequences must be equal
◮ The eldest must not have a twin

25 / 28

A Solution of the Age Problem: The Rule (2)

rule "determine ages"
when

Son($a3: age)
Son($a2: age < $a3)
Son($a1: age <= $a2)

Son($w3: age)
Son($w2: age <= $w3)
Son($w1: age <= $w2)

eval($a1!=$w1 && $a2!=$w2 && $a3!=$w3)
eval(($a1 * $a2 * $a3) == 36)
eval(($w1 * $w2 * $w3) == 36)
eval(($a1 + $a2 + $a3) == ($w1 + $w2 + $w3))

then
System.out.println("eldest: " + $a3 +

" middle: " + $a2 + " youngest: " + $a1);

end

26 / 28

Solution of the Age Problem

◮ Try to figure out a solution and . . .
◮ answer the two questions mentioned before
◮ You may want to use Drools; the next slide gives a rough

impression of the integration into Eclipse and some
corresponding tools.

◮ Infos can be found using the link
http://labs.jboss.com/drools/

◮ Next lecture: a report of a KBS in geology
(to detect/classify mass movements like land slides)

27 / 28

Screenshot Drools in Eclipse with Rete Viewer

28 / 28

