
Motivation and Contribution
OntoDLV

Virtual Classes and Relations
Data Integration Features

Conclusion and Ongoing work

Upgrading Databases to Ontologies

Gisella Bennardo, Giovanni Grasso, Nicola Leone,
Francesco Ricca

University of Calabria, Italy

ALPSWS 2008

Francesco Ricca



Motivation and Contribution
OntoDLV

Virtual Classes and Relations
Data Integration Features

Conclusion and Ongoing work

Outline

1 Motivation and Contribution

2 OntoDLV

3 Virtual Classes and Relations

4 Data Integration Features

5 Conclusion and Ongoing work

Francesco Ricca



Motivation and Contribution
OntoDLV

Virtual Classes and Relations
Data Integration Features

Conclusion and Ongoing work

Ontologies and Enterprises

Ontology:
Formal representation of a conceptualization [Gruber]
Roughly, an abstract formal model of a complex domain
Recognized to be a fundamental tool for KRR

The strong need of knowledge-based technologies is
perceived by industries today

Ontologies start to be exploited
Enterprise ontologies

Terms and definitions relevant to business enterprises
Clean conceptual view of the enterprise knowledge
Improve sharing and manipulation
Simplify information retrieval and knowledge discovery

Francesco Ricca



Motivation and Contribution
OntoDLV

Virtual Classes and Relations
Data Integration Features

Conclusion and Ongoing work

Ontologies and Enterprises

Ontology:
Formal representation of a conceptualization [Gruber]
Roughly, an abstract formal model of a complex domain
Recognized to be a fundamental tool for KRR

The strong need of knowledge-based technologies is
perceived by industries today

Ontologies start to be exploited
Enterprise ontologies

Terms and definitions relevant to business enterprises
Clean conceptual view of the enterprise knowledge
Improve sharing and manipulation
Simplify information retrieval and knowledge discovery

Francesco Ricca



Motivation and Contribution
OntoDLV

Virtual Classes and Relations
Data Integration Features

Conclusion and Ongoing work

Motivation

Enterprise ontologies are not widely used, why?
Two major obstacles:

1. Specification of real-world ontologies is an hard task
2. Often relevant information stored in relational DB

Indeed, developing by scratch would be time consuming
and expensive

Knowledge engineers + domain experts
Ontology must incorporate large amount of data from
Enterprise Information Systems

mainly regarding instances
avoid import: exploit fresh data + legacy system support
data from several autonomous systems
→ well known inconsistency problems

[argw-etal-95,lenz-02,bert-etal-05]

Francesco Ricca



Motivation and Contribution
OntoDLV

Virtual Classes and Relations
Data Integration Features

Conclusion and Ongoing work

Motivation

Enterprise ontologies are not widely used, why?
Two major obstacles:

1. Specification of real-world ontologies is an hard task
2. Often relevant information stored in relational DB

Indeed, developing by scratch would be time consuming
and expensive

Knowledge engineers + domain experts
Ontology must incorporate large amount of data from
Enterprise Information Systems

mainly regarding instances
avoid import: exploit fresh data + legacy system support
data from several autonomous systems
→ well known inconsistency problems

[argw-etal-95,lenz-02,bert-etal-05]

Francesco Ricca



Motivation and Contribution
OntoDLV

Virtual Classes and Relations
Data Integration Features

Conclusion and Ongoing work

“Lifting” databases to ontologies (1)

Combine an ontology representation language, with
Large (already existent) databases

High Expressive power + deal with large amount of data
Deal with inconsistency:

Data Integration techniques
Analyze the schema and recognize entities and
relationships

Create an ontology specification
Obtain a clean view of the enterprise knowledge

Exploit database data for specifying concept instances
Data should be kept at the sources
Legacy systems might still work on it
Take only consistent information

Francesco Ricca



Motivation and Contribution
OntoDLV

Virtual Classes and Relations
Data Integration Features

Conclusion and Ongoing work

“Lifting” databases to ontologies (2)

OntoDLP
Ontology representation language
rule based: Disjunctive Logic Programming - ASP

+ Virtual classes and virtual relations
Link data about instances to the ontology
Seamless combination of ontologies and DB [lenz-02]
(GAV approach)
Data are kept to the original sources!

+ Consistent Query Answering (CQA)
[lenz-02,bert-etal-05,chom-marcin-05]

By rewriting queries in DLP
Minimal Change Integrity Maintenance [chom-marcin-05]

Francesco Ricca



Motivation and Contribution
OntoDLV

Virtual Classes and Relations
Data Integration Features

Conclusion and Ongoing work

OntoDLP [ricca-etal-08]

OntoDLP = DLP +
Ontology specification constructs

Classes, (Multiple) Inheritance, Relations, ...
Data-Types (integer, string, date ...)

Consistency control features
Strong typing, user defined axioms

Rules
Support DLP with many linguistic enhancements

> Lists and Sets, Aggregate and Plug-in functions, Complex Terms, Named notation

Modular Programming: Reasoning modules

Francesco Ricca



Motivation and Contribution
OntoDLV

Virtual Classes and Relations
Data Integration Features

Conclusion and Ongoing work

Example: Reasoning on Ontology

Example
class employee(name:string, salary:int).
class project(numeEmp:int, bud:int, numSk:int, maxSal:int).

module (team_building) {
inTeam(E,P) v outTeam(E,P) :- E:employee(), P:project().
:- P:project(numEmp:N), not #countE: inTeam(emp:E)=N.
:- P:project(numSk:S), not #count{Sk: E:employee(sk:Sk), inTeam(E,P)}≥S.
:- P:project(budt:B), not #sum{Sa,E: E:employee(sal:Sa), inTeam(E ,P)}≤B.
:- P:project(maxSal:M),

not #max{Sa: E:employee(sal:Sa), inTeam(E ,P)}≤M.
}
X:person(age:18, father:employee(skill:"Java Programmer")), inTeam(X,_)?

Francesco Ricca



Motivation and Contribution
OntoDLV

Virtual Classes and Relations
Data Integration Features

Conclusion and Ongoing work

OntoDLV Main Features

Advanced Platform for Ontology Management
Specification, Browsing, Querying, Reasoning
Based on OntoDLP

Ontology + Disjunctive Logic Programming - ASP
High computational power
→ Solve complex problems in a fully declarative way

Built on DLV the state-of-the-art DLP System [leone-etal-06]
Application Programming Interface (API)
OWL Interoperability

Able to deal with data-intensive applications
Persistency on DBMS
exploits DLVDB (DLV working on mass memory)

Francesco Ricca



Motivation and Contribution
OntoDLV

Virtual Classes and Relations
Data Integration Features

Conclusion and Ongoing work

Virtual Class and Virtual Relation

Virtual Class and Virtual Relations
Usual schema specification
Instances are specified by means of mapping rules

exploits Sourced Atoms (logical notation)
Exploit SQL Atoms (SQL notation)

Sources are specified directly in OntoDLP
built-in class dbSource
several databases and ...any other kind of sources

Example
class dbSource(uri:string, user:string, psw:string).

db1:dbSource(uri:"http : //mydb.mysite.com:3306", user:"me",psw:"myPsw").

Francesco Ricca



Motivation and Contribution
OntoDLV

Virtual Classes and Relations
Data Integration Features

Conclusion and Ongoing work

Virtual Class and Virtual Relation

Virtual Class and Virtual Relations
Usual schema specification
Instances are specified by means of mapping rules

exploits Sourced Atoms (logical notation)
Exploit SQL Atoms (SQL notation)

Sources are specified directly in OntoDLP
built-in class dbSource
several databases and ...any other kind of sources

Example
class dbSource(uri:string, user:string, psw:string).

db1:dbSource(uri:"http : //mydb.mysite.com:3306", user:"me",psw:"myPsw").

Francesco Ricca



Motivation and Contribution
OntoDLV

Virtual Classes and Relations
Data Integration Features

Conclusion and Ongoing work

Virtual Class Specification

Example
virtual class branch(name : string, city : string, assets : integer )
{

f(BN) : branch(BN, BC, A) :- branch@db1(branch-name : BN,
branch-city : BC, assets :A).

}

Sourced Atoms
Attribute types must match the table schema
Attributes can be filled in by constants or variables

Functional Object Identifiers (impedance mismatch)
Values vs instances
→ exploit function symbols

Each virtual class should use a fresh function symbol
→ distinct oids for distinct classes

Francesco Ricca



Motivation and Contribution
OntoDLV

Virtual Classes and Relations
Data Integration Features

Conclusion and Ongoing work

Virtual Class with multiple sources

Example
virtual class branch(name : string, city : string, assets : integer )
{

f(BN) : branch(BN, BC, A) :- branch@db1(branch-name : BN,
branch-city : BC, assets :A).

f(BN) : branch(BN, BC, A) :- localBranch@db2(bName : BN,
bCity : BC, aS : A, group:_).

}

Multiple sources
Just write several "mapping" rules
Select the information you need

Francesco Ricca



Motivation and Contribution
OntoDLV

Virtual Classes and Relations
Data Integration Features

Conclusion and Ongoing work

SQL Notation

Example
virtual class branch(name : string, city : string, assets : integer )
{

f(BN):branch(BN, BC, A) :- [db1, "SELECT branch-name AS BN,
branch-city AS BC, assets AS A

FROM branch "].

}

Francesco Ricca



Motivation and Contribution
OntoDLV

Virtual Classes and Relations
Data Integration Features

Conclusion and Ongoing work

Virtual Entities in OntoDLV

Off-line Mode
Extract data from DBMS
Store instances in the Persistency Manager
Useful for migrating the database

On-line Mode
Keep information in the original database
Queries are performed directly at the sources
Unfolding (query predicates are substituted with the
corresponding query at the sources)

Evaluation in mass memory
exploit DLVDB

restricted to stratified and non disjunctive programs

Francesco Ricca



Motivation and Contribution
OntoDLV

Virtual Classes and Relations
Data Integration Features

Conclusion and Ongoing work

Data Integration Features

Virtual Classes and Virtual Relations
instances are virtually populated
rules act as a mapping
in presence of multiple source databases

→ typical Data Integration scenario
→ Global As View (GAV) [lenz-02,bert-etal-05]

Inconsistency Problems
Integrity constraint may be violated

1. Repair manually
→ Consistency Checking

2. Single out as much consistent information as possible
→ Consistent Query Answering (CQA)

Francesco Ricca



Motivation and Contribution
OntoDLV

Virtual Classes and Relations
Data Integration Features

Conclusion and Ongoing work

Data Integration Features

Virtual Classes and Virtual Relations
instances are virtually populated
rules act as a mapping
in presence of multiple source databases

→ typical Data Integration scenario
→ Global As View (GAV) [lenz-02,bert-etal-05]

Inconsistency Problems
Integrity constraint may be violated

1. Repair manually
→ Consistency Checking

2. Single out as much consistent information as possible
→ Consistent Query Answering (CQA)

Francesco Ricca



Motivation and Contribution
OntoDLV

Virtual Classes and Relations
Data Integration Features

Conclusion and Ongoing work

Consistent Query Answering
Minimal Change Integrity Maintenance [chom-marc-05]

Complete sources assumption
Common in Data Warehousing
Closed World Assumption

Integrity restoration by tuple deletion
Constraints: Arbitrary denial, inclusion dependencies
Decidable setting: ΠP

2 in the general case [chom-marc-05]
→ implemented by rewriting in DLP

Definition
Given a schema Σ and a set A of integrity constraints, let O and Or be two
ontology instances, Or is a repair [chom-marc-05] of O w.r.t. A, if

Or satisfies all the constrains in A; and

the instances in Or are a maximal subset of the instances in O.

Given a query Q, the consistent answers to Q are those tuples that are true
in every repair.

Francesco Ricca



Motivation and Contribution
OntoDLV

Virtual Classes and Relations
Data Integration Features

Conclusion and Ongoing work

Consistent Query Answering
Minimal Change Integrity Maintenance [chom-marc-05]

Complete sources assumption
Common in Data Warehousing
Closed World Assumption

Integrity restoration by tuple deletion
Constraints: Arbitrary denial, inclusion dependencies
Decidable setting: ΠP

2 in the general case [chom-marc-05]
→ implemented by rewriting in DLP

Definition
Given a schema Σ and a set A of integrity constraints, let O and Or be two
ontology instances, Or is a repair [chom-marc-05] of O w.r.t. A, if

Or satisfies all the constrains in A; and

the instances in Or are a maximal subset of the instances in O.

Given a query Q, the consistent answers to Q are those tuples that are true
in every repair.

Francesco Ricca



Motivation and Contribution
OntoDLV

Virtual Classes and Relations
Data Integration Features

Conclusion and Ongoing work

CQA by Rewriting

Given O, Q, A build program Πcqa and a query Qcqa s.t. Πcqa |=c Qcqa

(Q is consistently true inO w.r.t. A iff Qcqa is true in every answer set of Πcqa)

Run Qcqa on Πcqa in mass memory with DLVDB

Example
Given two relations m(code), and e(code,name) and code(X) :- e(X,_).

:- e(X , Y ), e(X , Z ), Y <> Z . (denial: code is key)
:-m(X ), not code(X ) (inclusion m[code] ⊆ e[code])

become:
e(X , Y )v e(X , Z ) :- e(X , Y ), e(X , Z ), Y <> Z .
er (X , Y ) :- e(X , Y ), not e(X , Y ).

code∗(X ) :- er (X , _).
mr (M) :-m(M), not code∗(M).

Francesco Ricca



Motivation and Contribution
OntoDLV

Virtual Classes and Relations
Data Integration Features

Conclusion and Ongoing work

CQA by Rewriting

Given O, Q, A build program Πcqa and a query Qcqa s.t. Πcqa |=c Qcqa

(Q is consistently true inO w.r.t. A iff Qcqa is true in every answer set of Πcqa)

Run Qcqa on Πcqa in mass memory with DLVDB

Example
Given two relations m(code), and e(code,name) and code(X) :- e(X,_).

:- e(X , Y ), e(X , Z ), Y <> Z . (denial: code is key)
:-m(X ), not code(X ) (inclusion m[code] ⊆ e[code])

become:
e(X , Y )v e(X , Z ) :- e(X , Y ), e(X , Z ), Y <> Z .
er (X , Y ) :- e(X , Y ), not e(X , Y ).

code∗(X ) :- er (X , _).
mr (M) :-m(M), not code∗(M).

Francesco Ricca



Motivation and Contribution
OntoDLV

Virtual Classes and Relations
Data Integration Features

Conclusion and Ongoing work

Conclusion

"Lifting" databases to OntoDLV Ontologies:
Define an ontology, and specify instances by logic rules

Ontological view of the enterprise knowledge
Powerful rule-based reasoning mechanisms

Virtual classes and virtual relations
→ Data is kept at the sources
→ Queries are performed at the source

Consistent Query Answering:
→ Deal with inconsistencies

Ongoing work:
Different input sources: XML, RDF, ...
CQA on user constraints

Francesco Ricca


	Motivation and Contribution
	OntoDLV
	Virtual Classes and Relations
	Data Integration Features
	Conclusion and Ongoing work

