Combining Logic Programming with Description Logics and Machine Learning for the Semantic Web

Francesca A. Lisi lisi@di.uniba.it

Floriana Esposito esposito@di.uniba.it

Dipartimento di Informatica
Università degli Studi di Bari
Via Orabona, 4-70126 Bari - Italy

ALPSWS 08

Motivation

Acquiring and
mantaining rules is a demanding task

Machine Learning can partially automate this task

Learning Semantic Web rules

\approx
 Learning Datalog rules on top of OWL ontologies

Learning Datalog rules by having OWL ontologies as BK

Combining LP with Description Logics and Machine Learning

Overview

\& Motivation
\& Background
\mathscr{H} Combining LP and DLs with DL+log
\& Inducing $\mathrm{SHIQ}+\log$ Rules with ILP
\& Related work
\mathscr{H} Conclusions and future work

LP and Description Logics

LP and Description Logics (2)

LP and Machine Learning

Machine
Learning

Inductive Logic Programming

\mathscr{A} Use of prior knowledge
\mathscr{H} Use of Datalog as KR framework
\mathscr{H} Use of Concept Learning notions
\triangle generalization as search through a partially ordered space of hypotheses

LP and Machine Learning (2)

\& Learning in Carin-ALN (Rouveirol \& Ventos, 2000)
\mathscr{H} Learning in AL-log (Lisi, 2008)

Overview

\& Motivation
\mathscr{H} Background
\mathscr{H} Combining LP and DLs with DL+log
\triangle Syntax
\triangle Semantics
\triangle Reasoning
\& Inducing SHIQ+log Rules with ILP
$\not \&$ Related work
\mathscr{H} Conclusions and future work

Combining LP \& DLs with DL+log: syntax

$D L+\log K B=D L K B$ extended with Datalog ${ }^{\vee}$ rules

$$
\begin{gathered}
\mathrm{p}_{1}\left(\mathbf{X}_{1}\right) \vee \ldots \vee \mathrm{p}_{\mathrm{n}}\left(\mathbf{X}_{\mathrm{n}}\right) \leftarrow \\
\mathrm{r}_{1}\left(\mathbf{Y}_{1}\right), \ldots, \mathrm{r}_{\mathrm{m}}\left(\mathbf{Y}_{m}\right), \mathrm{s}_{1}\left(\mathbf{Z}_{1}\right), \ldots, \mathrm{s}_{k}\left(\mathbf{Z}_{k}\right), \neg \mathrm{u}_{1}\left(\mathbf{W}_{1}\right), \ldots, \neg \mathrm{u}_{\mathrm{h}}\left(\mathbf{W}_{\mathrm{h}}\right)
\end{gathered}
$$

satisfying the following properties
\& Datalog safeness: every variable occurring in a rule must appear in at least one of the atoms $r_{1}\left(Y_{1}\right), \ldots$, $r_{m}\left(Y_{m}\right), s_{1}\left(Z_{1}\right), \ldots, s_{k}\left(Z_{k}\right)$
\& DL weak safeness: every head variable of a rule must appear in at least one of the atoms $r_{1}\left(Y_{1}\right), \ldots, r_{m}\left(Y_{m}\right)$

Combining LP \& DLs with DL+log: semantics

\& FOL-semantics
\triangle OWA for both DL and Datalog predicates
\mathscr{H} NM-semantics: extends stable model semantics of Datalog ${ }^{\vee}$
\triangle OWA for DL-predicates
\triangle CWA for Datalog-predicates
\mathscr{H} In both semantics, entailment can be reduced to satisfiability
\& In Datalog ${ }^{\vee}$, FOL-semantics equivalent to NM-semantics

Combining LP \& DLs with DL+log: reasoning

\mathscr{H} CQ answering can be reduced to satisfiability
\& NM-satisfiability of DL+log KBs combines
\triangle Consistency in Datalog ${ }^{\vee}$: A Datalog ${ }^{\vee}$ program is consistent if it has a stable model
\triangle Boolean CQ/UCQ containment problem in DLs: Given a DL-TBox T, a Boolean $C Q Q_{1}$ and a Boolean $U C Q Q_{2}$ over the alphabet of concept and role names, Q_{1} is contained in Q_{2} wrt T, denoted by $\mathrm{T} \mid=\mathrm{Q}_{1} \subseteq \mathrm{Q}_{2}$, iff, for every model I of T , if Q_{1} is satisfied in I then Q_{2} is satisfied in I.
\mathscr{H} The decidability of reasoning in DL+log depends on the decidability of the Boolean CQ/UCQ containment problem in DL
$\triangle \mathrm{SHIQ}+\mathrm{log}=$ most powerful decidable instantiation of DL+log!

Overview

\& Motivation
H Background
\mathscr{H} Combining LP and DLs with DL+log
\mathscr{H} Inducing $\mathrm{SHIQ}+\log \neg$ Rules with I LP
\triangle The problem statement
\triangle The hypothesis ordering
\triangle The hypothesis coverage of observations
$\not \&$ Related work
\mathscr{H} Conclusions and future work

Inducing SHIQ+log rules with ILP: the problem statement

\& Learning rules from ontologies and relational data
\triangle Rules for defining new relations
\triangle Rules for defining new concepts/roles
\mathscr{H} Scope of induction: discrimination/characterization
\& ILP setting: learning from interpretations
\& Language choice: $\mathrm{SHIQ+log}{ }^{\wedge}$ (SHIQ+Datalog ${ }^{\wedge}$)
\triangle Hypothesis as linked and connected $\mathrm{SHIQ} \mathrm{Q}+\mathrm{log} \neg$ rules
\triangle NAF literal $\neg p(X)$ transformed into not_p(X)

Inducing SHIQ+log rules with ILP: the problem statement (2)

UNMARRIED(Mary)
UNMARRIED(Joe)
[R1] RICH $(X) \leftarrow$ famous (X), ᄀscientist (X)

$\mathcal{L}^{\text {happy }}$

$\mathscr{H}\{f a m o u s / 1, R I C H / 1$, WANTS-TO-MARRY/2, LIKES/2\}
famous(Mary) famous(Paul) famous(Joe)
scientist(Joe)
\&happy $(X) \leftarrow$ famous (X), WANTS-TO-MARRY (Y, X)

$$
\mathcal{L}^{\text {LONER }}
$$

\&\{famous/1,scientist/1,UNMARRIED/1\}
\&LONER $(X) \leftarrow$ famous (X)

Inducing SHIQ+log rules with ILP: the hypothesis ordering

\& SHIQ+log \urcorner KB K
$\mathscr{H} \mathrm{SHIQ}+\mathrm{log} \neg$ rules $\mathrm{H}_{1}, \mathrm{H}_{2} \in \mathcal{L}$
\mathscr{H} Skolem substitution σ for H_{2} w.r.t. $\left\{\mathrm{H}_{1}\right\} \cup \mathcal{K}$
H_{1} subsumes H_{2} w.r.t. \mathcal{K} iff there exists a ground substitution θ for H_{1} such that
\mathscr{H} head $\left(\mathrm{H}_{1}\right) \theta=$ head $\left(\mathrm{H}_{2}\right) \sigma$
$\mathscr{A} \mathcal{K} \cup \operatorname{body}\left(\mathrm{H}_{2}\right) \sigma \mid=\operatorname{body}\left(\mathrm{H}_{1}\right) \theta$

Generality order boils down to CQ answering!

Inducing SHIQ+log rules with ILP: the hypothesis ordering (2)

[R1] RICH $(X) \leftarrow$ famous (X), $\operatorname{\text {scientist}(X)}$ K
$\mathscr{H} \mathrm{H}_{1}{ }^{\text {happy }}=\operatorname{happy}(\mathrm{A}) \leftarrow \operatorname{RICH}(\mathrm{A})$
$\mathscr{\&} \mathrm{H}_{2}^{\text {happy }}=\operatorname{happy}(\mathrm{X}) \leftarrow$ famous (X)
$\mathscr{H} \mathrm{H}_{1}^{\text {happy }} \not 女_{\mathrm{K}} \mathrm{H}_{2}{ }^{\text {happy }}$
$\mathscr{H} \mathrm{H}_{2}^{\text {happy }} \not ¥_{K} \mathrm{H}_{1}{ }^{\text {happy }}$

Inducing SHIQ+log rules with ILP: the coverage relations

\& SHIQ+log ${ }^{\text {KB K }}$
\& SHIQ+log \urcorner rule $\mathrm{H} \in \mathcal{L}$
\mathscr{H} Observation $\mathrm{o}_{\mathrm{i}}=\left(\mathrm{p}\left(\mathbf{a}_{\mathrm{i}}\right), \mathcal{F}_{\mathrm{i}}\right)$ where:
$\triangle \mathbf{a}_{\mathbf{i}}$ is an individual
$\triangle F_{i}$ is a set of ground Datalog facts
H covers o_{i} under interpretations w.r.t. \mathcal{K} iff $\mathcal{K} \cup \mathscr{F}_{\mathrm{i}} \cup H \mid=p\left(\mathbf{a}_{\mathbf{i}}\right)$

Coverage boils down to CQ answering!

Inducing SHIQ+log rules with ILP: the coverage relations (2)

UNMARRIED(Mary)
$F_{\text {Mary }}$
famous(Mary)

$\mathrm{H}=\operatorname{happy}(\mathrm{X}) \leftarrow$ famous (X), WANTS-TO-MARRY (Y, X) covers $\mathrm{O}_{\text {Mary }}=$ (happy $($ Mary $), F_{\text {Mary }}$) because $\mathcal{K} \cup \mathcal{F}_{\text {Mary }} \cup \mathrm{H} \mid=$ happy(Mary).

Overview

\& Motivation
\& Background
\mathscr{H} Combining LP and DLs with DL+log
\& Inducing SHIQ+log` Rules with ILP
\& Related work
\mathscr{H} Conclusions and future work

Related work

	\mid Learning in Carin- CN [24]	\|Learning in $A \mathcal{L}-\log$ [15]	Learning in SHIQ ${ }^{\text {S }} \log$
prior knowledge ontology lang. rule lang. hypothesis lang. target predicate	$\begin{aligned} & C A R I N-A \angle N \text { KB } \\ & A \angle N \\ & \text { Horn clauses } \\ & \text { CaRIN- } A \angle N \text { non-recursive rules } \\ & \text { Horn literal } \end{aligned}$	$\begin{aligned} & A \angle-\log \text { KB } \\ & A \angle C \\ & \text { DATALOG clauses } \\ & \text { COnstrained DATALOG clauses } \\ & \text { DATALOG literal } \end{aligned}$	$\begin{aligned} & S H I Q+\log \neg \mathrm{KB} \\ & S H I Q \\ & \text { DATALOG clauses } \\ & S H I Q+\log \text { non-recursive rules } \\ & S H I Q / D A T A L O G \text { literal } \end{aligned}$
observations induction	$\begin{aligned} & \text { inter pretations } \\ & \text { predictive } \end{aligned}$	interpretations/implications predictive/descriptive	$\begin{aligned} & \text { interpretations } \\ & \text { predictive/descriptive } \end{aligned}$
generality order coverage test ref. operators	$\begin{aligned} & \text { extension of [3] to CaRIN- } A \subset \mathcal{N} \\ & \mathrm{CARLN}-A \angle N \text { query answering } \\ & \text { no } \end{aligned}$	extension of [3] to $A \subset-\log$ $A \mathcal{C}$-log query answering downward	$\begin{aligned} & \text { extension of [3] to } S \mathcal{H} Q+\log \neg \\ & S \mathcal{S H} Q+\log { }^{\text { }} \text { query answering } \\ & \text { no } \end{aligned}$
implementation application	\|no	$\left\lvert\, \begin{aligned} & \text { partially } \\ & \text { yes }\end{aligned}\right.$	\|no

1. W. Buntine. Generalized subsumption and its application to induction and redundancy. Artificial Intelligence, 36(2):149-176, 1988.
2. F.A. Lisi. Building Rules on Top of Ontologies for the Semantic Web with Inductive Logic Programming. Theory and Practice of Logic Programming, 8(03):271-300, 2008.
3. C. Rouveirol and V. Ventos. Towards Learning in CARIN- $\mathcal{A C N}$. In J. Cussens and A. Frisch, editors, Inductive Logic Programming, volume 1866 of Lecture Notes in Artificial Intelligence, pages 191-208. Springer, 2000.

Overview

\mathscr{H} Motivation
\& Background
\mathscr{H} Combining LP and DLs with DL+log
\& Inducing SHIQ+log` Rules with ILP
\& Related work
\mathscr{H} Conclusions and future work

Conclusions

\& ILP can help learning Semantic Web rules
\mathscr{A} DL+log is good for representing Semantic Web rules
\triangle Parametric wrt the DL part
\triangle Decidable for many DLs, notably SHIQ
\mathscr{H} ILP in $\mathrm{SHIQ+log}{ }^{-}$is feasible
\triangle Decidable coverage and generality relations
\triangle Valid for any decidable instantiation of DL+log with Datalog ${ }^{\text { }}$

Future work

\mathscr{H} To study the impact of having Datalog ${ }^{\vee}$ both in the language of hypotheses and in the language for the BK
\triangle Nonmonotonic features to deal with incomplete knowledge
\mathscr{H} To define ILP algorithms starting from the ingredients identified in this paper.
\mathscr{H} To apply these algorithms to use cases for Semantic Web rules
\triangle See SWAP'08 for an application to ontology evolution

