Combining Logic Programming with Description Logics and Machine Learning for the Semantic Web

Francesca A. Lisi lisi@di.uniba.it

Floriana Esposito esposito@di.uniba.it

Dipartimento di Informatica Università degli Studi di Bari Via Orabona, 4 - 70126 Bari - Italy

Motivation

Machine Learning can partially automate this task

Learning Semantic Web rules

\approx

Learning Datalog rules on top of OWL ontologies

 \approx

Learning Datalog rules by having OWL ontologies as BK

Combining LP with Description Logics and Machine Learning

Dr. Francesca A. Lisi

Motivation
Background
Combining LP and DLs with DL+log
Inducing SHIQ+log[¬] Rules with ILP
Related work
Conclusions and future work

LP and Description Logics

FOL

DLs

DLs vs HCL

Can they be combined? Yes, but integration can be easily undecidable if unrestricted

HCL

Datalog

Dr. Francesca A. Lisi

LP and Description Logics (2)

- CARIN (Levy & Rousset, 1998) Any DL+HCL
 - Unsafe
 - Decidable for some simple DL (e.g., ALCNR)
- ∺ AL-log (Donini et al., 1998)
 - ALC+Datalog
 - △ Safe
 - Decidable
- - Any DL+ Datalog^{¬∨}
 - ☑ Weakly-safe
 - Decidable for some v.e. DL (e.g., SHIQ)

LP and Machine Learning

Inductive Logic Programming

- **#** Use of prior knowledge
- Here Water State S
- Hearning Notions
 - generalization as search through a partially ordered space of hypotheses

LP and Machine Learning (2)

Learning in Carin-ALN (Rouveirol & Ventos, 2000)
Learning in AL-log (Lisi, 2008)

#Motivation **H**Background **#**Combining LP and DLs with DL+log **Syntax** Semantics Reasoning Inducing SHIQ+log[¬] Rules with ILP **Related work #**Conclusions and future work

Combining LP & DLs with DL+log: syntax

DL + log KB = DL KB extended with $Datalog^{-\vee}$ rules

 $p_1(\mathbf{X}_1) \lor \ldots \lor p_n(\mathbf{X}_n) \leftarrow r_1(\mathbf{Y}_1), \ldots, r_m(\mathbf{Y}_m), s_1(\mathbf{Z}_1), \ldots, s_k(\mathbf{Z}_k), \neg u_1(\mathbf{W}_1), \ldots, \neg u_h(\mathbf{W}_h)$

satisfying the following properties

Batalog safeness: every variable occurring in a rule must appear in at least one of the atoms r₁(Y₁), ..., r_m(Y_m), s₁(Z₁),..., s_k(Z_k)

B DL weak safeness: every head variable of a rule must appear in at least one of the atoms $r_1(Y_1)$, ..., $r_m(Y_m)$

Combining LP & DLs with DL+log: semantics

FOL-semantics

○ OWA for both DL and Datalog predicates

*** NM-semantics:** extends stable model semantics of Datalog[~]

○OWA for DL-predicates

○ CWA for Datalog-predicates

In both semantics, entailment can be reduced to satisfiability

H In Datalog^V, FOL-semantics equivalent to NM-semantics

Combining LP & DLs with DL+log: reasoning

CQ answering can be reduced to satisfiability

K NM-satisfiability of DL+log KBs combines

Consistency in Datalog^{¬∨} : A Datalog^{¬∨} program is consistent if it has a stable model

Boolean CQ/UCQ containment problem in DLs: Given a DL-TBox

T, a Boolean CQ Q₁ and a Boolean UCQ Q₂ over the alphabet of concept and role names, Q₁ is contained in Q₂ wrt T, denoted by $T \models Q_1 \subseteq Q_2$, iff, for every model I of T, if Q₁ is satisfied in I then Q₂ is satisfied in I.

Solution The decidability of reasoning in DL+log depends on the decidability of the Boolean CQ/UCQ containment problem in DL

SHIQ+log = most powerful decidable instantiation of DL+log!

#Motivation

#Background

₭ Combining LP and DLs with DL+log

% Inducing SHIQ+log[¬] Rules with ILP

△The problem statement

☐ The hypothesis ordering

☐ The hypothesis coverage of observations

Related work

Conclusions and future work

Inducing SHIQ+log rules with ILP: the problem statement

Learning rules from ontologies and relational data
 △ Rules for defining new relations
 △ Rules for defining new concepts/roles

Scope of induction: discrimination/characterization**HP setting**: learning from interpretations

Language choice: SHIQ+log[¬] (SHIQ+Datalog[¬])
Hypothesis as linked and connected SHIQ+log[¬] rules
NAF literal ¬p(X) transformed into not_p(X)

Inducing SHIQ+log rules with ILP: the problem statement (2)

[A1] RICH UNMARRIED $\sqsubseteq \exists$ WANTS-TO-MARRYT	UNMARRIED(Mary) UNMARRIED(Joe)	
[R1] RICH(X) \leftarrow famous(X), ¬scientist(X) \mathcal{K}	famous(Mary)	
Lhappy	famous(Paul)	
₭{famous/1,RICH/1, WANTS-TO-MARRY/2, LIKES/2}	scientist(Joe)	

$\mathcal{L}^{\mathsf{LONER}}$

 \Re happy(X) \leftarrow famous(X), WANTS-TO-MARRY(Y,X)

#{famous/1,scientist/1,UNMARRIED/1}

 $\texttt{HLONER}(X) \leftarrow \neg famous(X)$

Inducing SHIQ+log rules with ILP: the hypothesis ordering

- **#** SHIQ+log \neg KB \mathcal{K} **#** SHIQ+log \neg rules H₁, H₂ $\in \mathcal{L}$ **#** Skolem substitution σ for H₂ w.r.t. {H₁} $\cup \mathcal{K}$
- H_1 subsumes H_2 w.r.t. ${\cal K}$ iff there exists a ground substitution θ for H_1 such that
- \Re head(H₁) θ =head(H₂) σ
- $\Re \mathcal{K} \cup \text{body}(H_2)\sigma \mid = \text{body}(H_1)\theta$

Generality order boils down to CQ answering!

Inducing SHIQ+log rules with ILP: the hypothesis ordering (2)

 \mathcal{K}

[A1] RICH \Box UNMARRIED $\sqsubseteq \exists$ WANTS-TO-MARRY-.T

[R1] RICH(X) \leftarrow famous(X), ¬scientist(X)

$$\begin{array}{c} & \underset{1}{\overset{\text{happy}}}{\overset{\text{happy}}}{\overset{\text{happy}}{\overset{\text{happy}}}{\overset{\text{happy}}{\overset{\text{happy}}}{\overset{\text{happy}}}{\overset{\text{happy}}}{\overset{\text{happy}}{\overset{\text{happy}}}{\overset{\text{happy}}}{\overset{\text{happy}}{\overset{\text{happy}}}{\overset{\text{happy}}}{\overset{\text{happy}}}{\overset{\text{happy}}}{\overset{\text{happy}}}{\overset{\text{happy}}}{\overset{\text{happy}}}{\overset{\text{happy}}}{\overset{\text{happy}}}{\overset{\text{happy}}}{\overset{\text{happy}}}{\overset{\text{happy}}}{\overset{happy}}}{\overset{happy}}}}}}}}}}}}}}}}}}}}}}}$$

Dr. Francesca A. Lisi

Inducing SHIQ+log rules with ILP: the coverage relations

- **∺** SHIQ+log¬ KB *K*
- H = H = L
- **#** Observation $o_i = (p(a_i), F_i)$ where:
 - ☑ a_i is an individual
 - \square \mathcal{F}_i is a set of ground Datalog facts

H covers o_i under interpretations w.r.t. \mathcal{K} iff $\mathcal{K} \cup \mathcal{F}_i \cup H |= p(\mathbf{a}_i)$

Coverage boils down to CQ answering!

Inducing SHIQ+log rules with ILP: the coverage relations (2)

[A1] RICH UNMARRIED $\sqsubseteq \exists$ WANTS-TO-MARRY ⁻ .T		UNMARRIED(Mary)
		(F _{Mary})
[R1] RICH(X) \leftarrow famous(X), \neg scientist(X) \mathcal{K}		famous(Mary)

 $\begin{aligned} \mathsf{H} = \mathsf{happy}(\mathsf{X}) \leftarrow \mathsf{famous}(\mathsf{X}), \, \mathsf{WANTS}\text{-}\mathsf{TO}\text{-}\mathsf{MARRY}(\mathsf{Y},\mathsf{X}) \\ \mathsf{covers} \, \, \mathsf{o}_{\mathsf{Mary}} = (\mathsf{happy}(\mathsf{Mary}), \mathcal{F}_{\mathsf{Mary}}) \, \, \mathsf{because} \\ \mathcal{K} \cup \, \mathcal{F}_{\mathsf{Mary}} \cup \, \mathsf{H} \, \, |= \, \mathsf{happy}(\mathsf{Mary}). \end{aligned}$

% Motivation
% Background
% Combining LP and DLs with DL+log
% Inducing SHIQ+log[¬] Rules with ILP
% Related work

Conclusions and future work

Related work

	Learning in Carin- ALN [24]	Learning in <i>AL</i> -log [15]	Learning in $SHIQ + \log^{-1}$
prior knowledge	C_{ARIN} - $A LN$ KB	\mathcal{AL} -log KB	$SHIQ+\log$ KB
ontology lang.	A LN	\mathcal{ALC}	SHIQ
rule lang.	Horn clauses	DATALOG clauses	DATALOG clauses
hypothesis lang.	C_{ARIN} - $A LN$ non-recursive rules	constrained DATALOG clauses	$SHIQ+\log$ non-recursive rules
target predicate	Horn literal	DATALOG literal	$SHIQ+\log$ literal
observations	interpretations	interpretations/implications	interpretations
induction	predictive	predictive/descriptive	predictive/descriptive
generality order	extension of [3] to CARIN- \mathcal{ALN}	extension of [3] to AL -log	extension of [3] to $SHIQ+\log^{-1}$
coverage test	CARIN- \mathcal{ALN} query answering	AL-log query answering	$SHIQ+\log^{-1}$ query answering
ref. operators	no	downward	no
implementation	no	partially	no
application	no	yes	no

- W. Buntine. Generalized subsumption and its application to induction and redundancy. Artificial Intelligence, 36(2):149–176, 1988.
- F.A. Lisi. Building Rules on Top of Ontologies for the Semantic Web with Inductive Logic Programming. Theory and Practice of Logic Programming, 8(03):271–300, 2008.
- C. Rouveirol and V. Ventos. Towards Learning in CARIN-ALN. In J. Cussens and A. Frisch, editors, *Inductive Logic Programming*, volume 1866 of *Lecture Notes in* Artificial Intelligence, pages 191–208. Springer, 2000.

% Motivation
% Background
% Combining LP and DLs with DL+log
% Inducing SHIQ+log[¬] Rules with ILP
% Related work
% Conclusions and future work

Conclusions

ILP can help learning Semantic Web rules

DL+log is good for representing Semantic Web rules
 Parametric wrt the DL part
 Decidable for many DLs, notably SHIQ

HIQ+log[¬] is feasible

☐ Decidable coverage and generality relations

✓ Valid for any decidable instantiation of DL+log with Datalog[¬]

Future work

Solution Control C

- **#** To define ILP algorithms starting from the ingredients identified in this paper.
- Second Second
 - See SWAP'08 for an application to ontology evolution

