A Sound and Complete Algorithm for Simple
Conceptual Logic Programs

Cristina Feier and Stijn Heymans

Institute of Information Systems, Knowledge-Based Systems Group, Vienna University of
Technology

12 December 2008

Overview

(]

Open Answer Set Programming - Motivation, Decidable Fragments

(]

(Simple) Conceptual Logic Programs - Definition, Properties

Reasoning with Simple Conceptual Logic Programs

» Completion structure
» Rules for evolving a completion structure
» Termination, Soundness, Completeness

Conclusions

(]

Future work

(]

Part |

Simple Conceptual Logic Programs

Closed-World Reasoning in Answer Set Programming

fail(X) <« not pass(X)
pass(john) <«

— ground the program with all constants (john):

fail(john) <« not pass(john)
pass(john) «—

— answer set: {pass(john)}.

Closed-World Reasoning in Answer Set Programming (2)

® Answer set: {pass(john)}.
@ No fail-atom: the fail-predicate is not satisfiable.

@ In the context of conceptual reasoning this is not feasible: other data
make fail satisfiable, i.e., the program makes sense but one is forced
to introduce all significant constants.

@ Do not assume all possible constants are present: assume the
presence of anonymous objects — open domains.

Open Answer Set Programming

An open answer set of P is a pair (U, M) where
@ the universe U is a non-empty superset of the constants in P, and

@ M is an answer set of Py.

Examples:

o ({john,x},{pass(john), fail(x)}) is open answer set since
{pass(john), fail(x)} is an answer set of

fail(x) <« not pass(x)
fail(john) <« not pass(john)
pass(john) «—

o ({john,xy,xz,...},{pass(john), fail(x1), fail(x2), .. .}),
o ({john}, {pass(john)}).

Undecidability of Open ASP

— shown by reduction from undecidable domino problem.

Regaining Decidability

Retain openness, but restrict the shape of logic programs in order to
obtain decidability.
Three types of restrictions:

@ Conceptual Logic Programs

@ Local Forest Logic Programs (and variations)

@ Guarded Programs (and variations)

Conceptual Logic Programs

Satisfiability checking w.r.t. Conceptual Logic Programs is decidable and
in EXPTIME(reduction of decidability of satisfiability checking to checking
non-emptiness of two-way alternating tree automata (2ATA)).

@ Only unary and binary predicates allowed: a(X) and f(X,Y).
@ No constants.
@ Four types of rules:

» Free rules

Unary rules
Binary rules
Constraints

v VvYy

Conceptual Logic Programs have the tree model property.

CoLP Rules

Free Rules:

a(X) Vv not a(X) <« or f(X,Y)Vnot f(X,Y)

— allow for the 'free" introduction of unary and binary literals, provided
other rules do not impose extra constraints.

Unary Rules:

a(X) N f(Xv Y1)7 not g(X7 Y2)7 h(X7 Y2)7 Yl 7£ Y2

— branching or tree structure.

— positive connection between each node X and a successor Y.

Binary Rules:
F(X,Y) — a(X), not b(X),g(X,Y),c(Y)

Constraints:
—a(X)or —f(X,Y)

10

Simple Conceptual Logic Programs: Preliminaries

a CoLP program P: a set of rules

Pg4: the rules of P (unary or binary) that have g as a head predicate

°
°
@ upreds(P): the set of unary predicates of P
@ bpreds(P): the set of binary predicates of P
°

+p denotes p or not p; Fp=not pif tp=pand Fp=pif
+p=not p
® marked predicate dependency graph of P:
> nodes: upreds(P) U bpreds(P)
> edges: {(p.q) | Ja(X) — A(X),8(X, ¥),/(Y) € PV a(X,Y) —
B(X),8(X,Y), 1 (Y)eEPst. peangefrudtuyt}
> marked edges:{(p, q) | 3r : (X) < B(X),0(X,Y),y(Y)ePVr:
a(X, Y) = B(X).8(X.Y),/(Y) e Pst. peange)
» marked cycle: cycle which contains a marked edge

11

Simple Conceptual Logic Programs

Simple Conceptual Logic Programs differ from Conceptual Logic Programs
by not allowing:

@ inequalities in unary rules
@ marked cycles in the marked predicate dependency graph of P:

@ constraints, although these can be simulated:
«— body
can be replaced by the simple CoLP rule:
const(x) < not const(x), body,

for a new predicate const

12

Properties of Simple Conceptual Logic Programs

Satisfiability checking w.r.t simple CoLPs is EXPTIME-complete.

Simple CoLPs have the tree model property.

13

Part Il

An Algorithm for Simple Conceptual Logic Programs

14

Preliminaries- Tree notation

e © 6 ¢ ¢

concatenation of a number ¢ € Np to x, where x is a sequence of
numbers from Ng: x - ¢, or xc

a (finite) tree T: a (finite) set of nodes, where each node is a
sequence of numbers from Ny such that if x-c € T and ¢ € Ny, then
xeT,;

the empty word ¢ is the root of T

succt(x) ={x-c € T |c € Npy}: successors of x

Ar ={(x,y) | x,y € T,3c € Ny : y = x - c}: the set of edges of T
for x,y € T, x < y iff x is a prefix of y

patht(x,y): a finite path in T with x the smallest element w.r.t. the
order relation < and y the greatest element

T|[x]: subtree of T at x;

15

Completion Structure for a Simple CoLP

A completion structure for a simple CoLP P is a tuple: (T, G, CT, ST, SG,J
NJy)

@ T is a tree - the potential universe
® G = (V,E) is a directed graph with nodes V C Bp, and edges

E CBp, xBp,
@ CT, ST, SG, and NJy are additional labeling functions

16

Labeling functions

@ content function: ¢T: T U At — preds(P) U not (preds(P))

@ status function:
ST : {(x,£q) | £¢g € cT(x),x € TU A7} — {exp, unexp}

@ segment function:
sG: {(x,q,r) | x € T,not g € CcT(x),r € pq} —~ N

@ negative justification unary function:
NIy {(x,q,r) | x € T,not q € cT(x),r € Py} — 2T

17

Initial Completion Structure

An initial completion structure for checking the satisfiability of a unary
predicate p w.r.t. a simple CoLP P is a completion structure with

T ={e}, V={p(e)}, E=0, and c1(c) = {p}, sT(e, p) = unexp, and
the other labeling functions are undefined for every input

18

Initial Completion Structure - Example

ri . restore(X) — crash(X),y(X,Y), backSucc(Y)
ro : backSucc(X) <« not crash(X),y(X,Y),not backFail(Y)
rs . backFail(X) <« not backSucc(X)

rq . yesterday(X,Y)V not yesterday(X,Y) «

rs : crash(X) V not crash(X)

T

€ {/restore“”eXP})

Figure: Initial completion structure for restore w.r.t. P

10

Expansion rules

Rules which motivate the presence/absence of an atom in an open answer
set. The open answer set is constructed in a top-down manner.

update(l,+p, z) - common operation used whenever the expansion of /
leads to +p(z)

o if £p ¢ cT1(z), then c1(z) = CcT(2) U {£p} and sT(z,£p) = unexp
o if tp=pand £p(z) ¢ V, then V = V U {£p(x)}
o if | € Bp, and £p = p, then E = EU{(/,£p(z))}

20

Expand unary positive

Prerequisites:
@ p € c1(x) and sT(x, p) = unexp
Actions:
@ choose a rule which defines p:
p(x) «— B(x), (’Ym(xaym)75m(ym))1§m§k
o update(p(x), 3, x)
o foreach m;1 < m< k:

» nondeterministically choose a y € succt(x) or let y = x - s be a new
successor of x

> update(p(x), Ym, (x,¥))
> update(p(x), dm,y)

21

Expand unary positive - example
r; : restore(X) <« crash(X),y(X,Y), backSucc(Y)
e {restore;” ——=crash""*®}

l j(a) {yesterday "}

£ {/restore””ex”})

1 {backSucc""P}

Figure: Expansion of a unary positive literal

29

Choose a unary literal

Prerequisites:

@ thereis an x € T for which none of +a € ¢T(x) can be expanded and
for all (x,y) € Ar, none of +f € CT(x, y) can be expanded

© there is a p € upreds(P) such that p ¢ cT(x) and not p ¢ CT(x)
Actions:

@ add p to cT(x) with ST(x, p) = unexp or add not p to CT(x) with
ST(x, not p) = unexp

23

Choose a unary predicate - Example

e {a} {restore;;¥ ——=crash"">P ?backSucc ?backFail}

{yesterday""P}

1 {b} {backSucc'"=*}

Figure: Choose a unary predicate

24

Choose a unary predicate - Example

¢ {a} {restore” ——=-crash"">P notbackSucc""*"}

{yesterday""P}

1 {b} {backSucc'"=*}

Figure: Choose a unary predicate

25

Expand unary negative
Prerequisites (1):
@ not p € CT(x) and ST(x, not p) = unexp
Actions (1):
@ for every rule which defines p choose a segment m,0 < m < k:
SG(x,p,r) =m
» m=0: choose a +a € 3, and update(not p(x), Fa, x),
NJu(x, p, r) = {x}. (local justification)
> m> 0: for every y € succt(x): () choose a +a, € Y U dpm,
update(not p(x),Fay, (x,y))/update(not p(x), Fa,,y) and
NJu(x, p, r) = NJy(x, p, r) U {y} (external justification).
@ ST(x, not p) = exp
OR
Prerequisites (2):

@ ST(x, not p) = exp and for some r € P,, SG(x,p,r) # 0, and
NJy(x, p,r) = S with |S| < |succT(x)|
Actions (2):
@ For every r s.t. SG(x,p,r) = m # 0 and for every y € succt(x) s.t.
y & Nalxp.r): (1)
26

Expanding unary negative - local justification

exp exp
€ {a} {restorerl —>crash""®P < not backSucc{(mo,o)}}

{yesterday""P}

1 {b} {backSucc" P}

Figure: Expansion of a unary negative predicate symbol

27

Expanding unary negative - external justification

ri: a(X) «— f(X,Y),b(Y),g(X,2),d(2)

x{not a, ...}

< {...} x2{...} 3 (...}

Figure: Expanding unary negative: example 2

28

Expanding unary negative - example 2

r:oa(X) — F(X,Y),b(Y),g(X,Z2),b(2)

x1 {not b, ...} x2{...} x3{...}

Figure: Expanding unary negative: OK

20

Expanding unary negative - example 2

ri:oa(X) — F(X,Y),b(Y),g(X,2),b(2)

x{not a, ...}

x1{...} x2{...} x3{...}

Figure: Expanding unary negative: NOT OK

20

Expanding unary negative - example 2

ri:oa(X) — F(X,Y),b(Y),g(X,2),b(2)

x{not a, ...}

x1{...} x2{d, ...} x3 {c, ..

Figure: Expanding unary negative: NOT OK

A1

-}

Expansion rules for binary literals

Expand binary positive

@ similar to expand unary positive (no need to introduce successors)
Expand binary negative

@ similar to expand unary negative (the local case)
Choose binary

@ similar to choose unary

D

Saturation

A node x € T is saturated iff:

o for all p € upreds(P), p € ¢T(x) or not p € cT(x) and none of
+a € ¢T1(x) can be further expanded

o for all (x,y) € At and p € bpreds(P), p € ¢T(x,y) or
not p € CT(x,y) and none of £f € CT(x,y) can be further expanded

No expansions can be performed on a node from T until its predecessor is
saturated.

23

Blocking

A node x € T is blocked iff:
@ there is an ancestor y of x such that ¢T(x) C cT(y)
x and y as above form a blocking pair: (x,y) € blocked(T).

A blocked node is not further expanded.

¥\

Revisiting the restore example - blocking

€ {restore — = crash < not backSuce=— backFail'}
{ yestlf,erday}

-
1 {not restore—= not crash<—backSucc<— not backFail}

{yesfer ay }
P ;
11 {not backFail}

Figure: Blocking nodes: content equivalence

35

Cached nodes

A node x € T is cached iff:

o there is a saturated node y € T, y £ x, x £ y, such that
cr(x) C c1(y)

x and y as above are called a caching pair: (x,y) € cached(T).

No expansions can be performed on a cached node.

26

Contradictory, complete, clash-free completion structures

Contradictory completion structure:
o for some x € T and a € upreds(P), {a, not a} C cT(x)
or
@ for some (x,y) € At and f € bpreds(P), {f,not f} C cT(x,y)

Complete completion structure: a completion structure to which no rule
can be further applied

Clash-free completion structure:
@ it is not contradictory

@ G does not contain positive cycles.

7

Characterization of satisfiability in terms of a completion
structure

A predicate symbol p is satisfiable w.r.t. a Simple Conceptual Logic
Program P iff there is a clash-free complete completion structure for p
w.rt. P

28

Termination

Let P be a simple CoLP and p € upreds(P). Then, one can construct a
finite complete completion structure by a finite number of applications of
the expansion rules to the initial completion structure for p and P, taking
into account the applicability rules.

Proof Sketch.

@ finite number of values for ¢T(x) = eventually across every branch
will exist x, y, s.t. ¢T(x) = cT(y) = blocking situation

@ finite number of branches

20

Soundness

Let P be a simple CoLP and p € upreds(P). If there exists a clash-free
complete completion structure for p w.r.t. P, then p is satisfiable w.r.t. P.J

Proof Sketch.
Construction of an OAS from a clash-free complete completion structure:

@ construction of an open interpretation (U, M) and of a graph Gex:
which extends G:

» for every blocking or caching pair (x,y): mirror the connections and
the content of x in y or replace T[y] with T[x]

@ proof that M is a minimal model of P{y

» M is a model: from the expansion rules

» M is minimal - derives from the fact that there are no cycles/infinite
length paths in Gex

40

Completeness

Let P be a simple CoLP and p € upreds(P). If p is satisfiable w.r.t. P,
then there exists a clash-free complete completion structure for p w.r.t. P.

Proof Sketch. Construction of a clash-free complete completion structure
for p w.r.t. P starting from a tree-shaped OAS (U, M) which satisfies p:

@ (1) start with an initial completion structure for p w.r.t. P and guide
the nondeterministic application of the expansion rules by (U, M)

@ (2) take into account the constraints imposed by the saturation,
blocking, caching, and clash rules:

> (2.1) blocking pair (x, y): cut the tree at y
> (2.2) caching pair (x,y): cut the tree at y

41

Complexity

The algorithm runs in NEXPTIME, a nondeterministic level higher than the
worst-case complexity characterization

Proof Sketch.
@ Let CS be a complete completion structure.

o (S’ obtained from CS by deleting all nodes y, where there is an x for
which (x,y) is a blocking, or caching pair has at most 2P nodes,
p = |upreds(P)|

@ (S has at most 2P(k + 1) nodes, k - the maximal branching factor

49

Conclusions

@ Simple CoLPS - hybrid language: combines features of LP and DL;
one can simulate ALCH

@ Tableau-like algorithm

@ Minimality makes blocking harder: restrictions on the language or
special devices to tackle it

@ Saturation of the nodes is needed in order to ensure consistency

43

Future Work

@ Variable inequalities in rule bodies
@ Allowing for constants

@ Allowing for full cyclicity

44

Questions

45

	Overview
	Simple Conceptual Logic Programs
	Open Answer Set Programming: Motivation, Decidable Fragments

	An Algorithm for Simple Conceptual Logic Programs
	Definition of a Completion Structure
	Expanding the completion structure
	Expansion rules
	Applicability rules

	Termination, Soundness, Completeness

