
A Sound and Complete Algorithm for Simple

Conceptual Logic Programs

Cristina Feier and Stijn Heymans

Institute of Information Systems, Knowledge-Based Systems Group, Vienna University of
Technology

12 December 2008

1

Overview

Open Answer Set Programming - Motivation, Decidable Fragments

(Simple) Conceptual Logic Programs - Definition, Properties

Reasoning with Simple Conceptual Logic Programs
◮ Completion structure
◮ Rules for evolving a completion structure
◮ Termination, Soundness, Completeness

Conclusions

Future work

2

Part I

Simple Conceptual Logic Programs

3

Closed-World Reasoning in Answer Set Programming

fail(X) ← not pass(X)
pass(john) ←

→ ground the program with all constants (john):

fail(john) ← not pass(john)
pass(john) ←

→ answer set: {pass(john)}.

4

Closed-World Reasoning in Answer Set Programming (2)

Answer set: {pass(john)}.

No fail-atom: the fail-predicate is not satisfiable.

In the context of conceptual reasoning this is not feasible: other data
make fail satisfiable, i.e., the program makes sense but one is forced
to introduce all significant constants.

Do not assume all possible constants are present: assume the
presence of anonymous objects – open domains.

5

Open Answer Set Programming

An open answer set of P is a pair (U,M) where

the universe U is a non-empty superset of the constants in P , and

M is an answer set of PU .

Examples:

({john, x}, {pass(john), fail(x)}) is open answer set since
{pass(john), fail(x)} is an answer set of

fail(x) ← not pass(x)
fail(john) ← not pass(john)

pass(john) ←

({john, x1 , x2 , . . .}, {pass(john), fail(x1), fail(x2), . . .}),

({john}, {pass(john)}).

6

Undecidability of Open ASP

→ shown by reduction from undecidable domino problem.

7

Regaining Decidability

Retain openness, but restrict the shape of logic programs in order to
obtain decidability.
Three types of restrictions:

Conceptual Logic Programs

Local Forest Logic Programs (and variations)

Guarded Programs (and variations)

8

Conceptual Logic Programs

Satisfiability checking w.r.t. Conceptual Logic Programs is decidable and
in exptime(reduction of decidability of satisfiability checking to checking
non-emptiness of two-way alternating tree automata (2ATA)).

Only unary and binary predicates allowed: a(X) and f (X ,Y).

No constants.

Four types of rules:
◮ Free rules
◮ Unary rules
◮ Binary rules
◮ Constraints

Conceptual Logic Programs have the tree model property.

9

CoLP Rules

Free Rules:
a(X) ∨ not a(X)← or f (X ,Y) ∨ not f (X ,Y)←
→ allow for the ’free’ introduction of unary and binary literals, provided
other rules do not impose extra constraints.

Unary Rules:
a(X)← f (X ,Y1), not g(X ,Y2), h(X ,Y2),Y1 6= Y2

→ branching or tree structure.
→ positive connection between each node X and a successor Yi .

Binary Rules:
f (X ,Y)← a(X), not b(X), g(X ,Y), c(Y)

Constraints:
← a(X) or ← f (X ,Y)

10

Simple Conceptual Logic Programs: Preliminaries

a CoLP program P : a set of rules

Pq: the rules of P (unary or binary) that have q as a head predicate

upreds(P): the set of unary predicates of P

bpreds(P): the set of binary predicates of P

±p denotes p or not p; ∓p = not p if ±p = p and ∓p = p if
±p = not p

marked predicate dependency graph of P :
◮ nodes: upreds(P) ∪ bpreds(P)
◮ edges: {(p, q) | ∃α(X)← β(X), δ(X , Y), γ(Y) ∈ P ∨ α(X , Y)←

β(X), δ(X , Y), γ(Y) ∈ P s.t. p ∈ α ∧ q ∈ β+ ∪ δ+ ∪ γ+}
◮ marked edges:{(p, q) | ∃r : α(X)← β(X), δ(X , Y), γ(Y) ∈ P ∨ r :

α(X , Y)← β(X), δ(X , Y), γ(Y) ∈ P s.t. p ∈ α ∧ q ∈ γ+}
◮ marked cycle: cycle which contains a marked edge

11

Simple Conceptual Logic Programs

Simple Conceptual Logic Programs differ from Conceptual Logic Programs
by not allowing:

inequalities in unary rules

marked cycles in the marked predicate dependency graph of P :

constraints, although these can be simulated:

← body

can be replaced by the simple CoLP rule:

const(x)← not const(x), body ,

for a new predicate const

12

Properties of Simple Conceptual Logic Programs

Satisfiability checking w.r.t simple CoLPs is exptime-complete.

Simple CoLPs have the tree model property.

13

Part II

An Algorithm for Simple Conceptual Logic Programs

14

Preliminaries-Tree notation

concatenation of a number c ∈ N0 to x , where x is a sequence of
numbers from N0: x · c , or xc

a (finite) tree T : a (finite) set of nodes, where each node is a
sequence of numbers from N0 such that if x · c ∈ T and c ∈ N0, then
x ∈ T ;

the empty word ε is the root of T

succT (x) = {x · c ∈ T | c ∈ N0}: successors of x

AT = {(x , y) | x , y ∈ T ,∃c ∈ N0 : y = x · c}: the set of edges of T

for x , y ∈ T , x ≤ y iff x is a prefix of y

pathT (x , y): a finite path in T with x the smallest element w.r.t. the
order relation < and y the greatest element

T [x]: subtree of T at x ;

15

Completion Structure for a Simple CoLP

A completion structure for a simple CoLP P is a tuple: 〈T , G , ct, st, sg,
nju〉

T is a tree - the potential universe

G = 〈V ,E 〉 is a directed graph with nodes V ⊆ BPT
and edges

E ⊆BPT
×BPT

ct, st, sg, and nju are additional labeling functions

16

Labeling functions

content function: ct : T ∪ AT → preds(P) ∪ not (preds(P))

status function:
st : {(x ,±q) | ±q ∈ ct(x), x ∈ T ∪ AT} → {exp, unexp}

segment function:
sg : {(x , q, r) | x ∈ T , not q ∈ ct(x), r ∈ Pq} → N

negative justification unary function:
nju : {(x , q, r) | x ∈ T , not q ∈ ct(x), r ∈ Pq} → 2T

17

Initial Completion Structure

An initial completion structure for checking the satisfiability of a unary
predicate p w.r.t. a simple CoLP P is a completion structure with
T = {ε}, V = {p(ε)}, E = ∅, and ct(ε) = {p}, st(ε, p) = unexp, and
the other labeling functions are undefined for every input

18

Initial Completion Structure - Example

r1 : restore(X) ← crash(X), y(X ,Y), backSucc(Y)
r2 : backSucc(X) ← not crash(X), y(X ,Y), not backFail(Y)
r3 : backFail(X) ← not backSucc(X)

r4 : yesterday(X ,Y) ∨ not yesterday(X ,Y) ←
r5 : crash(X) ∨ not crash(X) ←

ST (ε)

CT (ε)

ε {restoreunexp}

Figure: Initial completion structure for restore w.r.t. P

19

Expansion rules

Rules which motivate the presence/absence of an atom in an open answer
set. The open answer set is constructed in a top-down manner.

update(l ,±p, z) - common operation used whenever the expansion of l
leads to ±p(z)

if ±p /∈ ct(z), then ct(z) = ct(z) ∪ {±p} and st(z ,±p) = unexp

if ±p = p and ±p(z) /∈ V , then V = V ∪ {±p(x)}

if l ∈ BPT
and ±p = p, then E = E ∪ {(l ,±p(z))}

20

Expand unary positive

Prerequisites:

p ∈ ct(x) and st(x , p) = unexp

Actions:

choose a rule which defines p:
p(x)← β(x),

(

γm(x , ym), δm(ym)
)

1≤m≤k

update(p(x), β, x)

for each m, 1 ≤ m ≤ k:
◮ nondeterministically choose a y ∈ succT (x) or let y = x · s be a new

successor of x
◮ update(p(x), γm, (x , y))
◮ update(p(x), δm, y)

21

Expand unary positive - example

r1 : restore(X) ← crash(X), y(X ,Y), backSucc(Y)

ST (ε)

CT (ε)

ε {restoreunexp}
1 {backSuccunexp}

{yesterday unexp}

ǫ {restoreexp
r1 crashunexp}

Figure: Expansion of a unary positive literal

22

Choose a unary literal

Prerequisites:

there is an x ∈ T for which none of ±a ∈ ct(x) can be expanded and
for all (x , y) ∈ AT , none of ±f ∈ ct(x , y) can be expanded

there is a p ∈ upreds(P) such that p /∈ ct(x) and not p /∈ ct(x)

Actions:

add p to ct(x) with st(x , p) = unexp or add not p to ct(x) with
st(x , not p) = unexp

23

Choose a unary predicate - Example

1 {b} {backSuccunexp}

{yesterday unexp}

crashunexp
ǫ {a} {restoreexp

r1 ?backSucc ?backFail}

Figure: Choose a unary predicate

24

Choose a unary predicate - Example

1 {b} {backSuccunexp}

{yesterday unexp}

notbackSuccunexp}crashunexp
ǫ {a} {restoreexp

r1

Figure: Choose a unary predicate

25

Expand unary negative
Prerequisites (1):

not p ∈ ct(x) and st(x , not p) = unexp

Actions (1):
for every rule which defines p choose a segment m, 0 ≤ m ≤ k:
sg(x , p, r) = m

◮ m = 0: choose a ±a ∈ β, and update(not p(x),∓a, x),
nju(x , p, r) = {x}. (local justification)

◮ m > 0: for every y ∈ succT (x): (†) choose a ±ay ∈ γm ∪ δm,
update(not p(x),∓ay , (x , y))/update(not p(x), ∓ay , y) and
nju(x , p, r) = nju(x , p, r) ∪ {y} (external justification).

st(x , not p) = exp

OR
Prerequisites (2):

st(x , not p) = exp and for some r ∈ Pp, sg(x , p, r) 6= 0, and
nju(x , p, r) = S with |S | < |succT (x)|

Actions (2):

For every r s.t. sg(x , p, r) = m 6= 0 and for every y ∈ succT (x) s.t.
y 6∈ nju(x , p, r): (†)

26

Expanding unary negative - local justification

1 {b} {backSuccunexp}

{yesterday unexp}

crashunexp
ǫ {a} {restoreexp

r1 not backSucc
exp

{(r2 ,0,0)}}

Figure: Expansion of a unary negative predicate symbol

27

Expanding unary negative - external justification

r1 : a(X) ← f (X ,Y), b(Y), g(X ,Z), d(Z)

x{not a, . . . }

{...}
{...}

{...}

x1 {. . . } x2 {. . . } x3 {. . . }

Figure: Expanding unary negative: example 2

28

Expanding unary negative - example 2

r1 : a(X) ← f (X ,Y), b(Y), g(X ,Z), b(Z)

x{not a, . . . }

{...}
{not f ,...}

{not f ,...}

x1 {not b, . . . } x2 {. . . } x3 {. . . }

Figure: Expanding unary negative: OK

29

Expanding unary negative - example 2

r1 : a(X) ← f (X ,Y), b(Y), g(X ,Z), b(Z)

x{not a, . . . }

{not f ,...}
{not f ,...}

{not g ,...}

x1 {. . . } x2 {. . . } x3 {. . . }

Figure: Expanding unary negative: NOT OK

30

Expanding unary negative - example 2

r1 : a(X) ← f (X ,Y), b(Y), g(X ,Z), b(Z)

x{not a, . . . }

{not f ,...}
{not f ,g ,...}

{not g ,f ,...}

x1 {. . . } x2 {d , . . . } x3 {c , . . . }

Figure: Expanding unary negative: NOT OK

31

Expansion rules for binary literals

Expand binary positive

similar to expand unary positive (no need to introduce successors)

Expand binary negative

similar to expand unary negative (the local case)

Choose binary

similar to choose unary

32

Saturation

A node x ∈ T is saturated iff:

for all p ∈ upreds(P), p ∈ ct(x) or not p ∈ ct(x) and none of
±a ∈ ct(x) can be further expanded

for all (x , y) ∈ AT and p ∈ bpreds(P), p ∈ ct(x , y) or
not p ∈ ct(x , y) and none of ±f ∈ ct(x , y) can be further expanded

No expansions can be performed on a node from T until its predecessor is
saturated.

33

Blocking

A node x ∈ T is blocked iff:

there is an ancestor y of x such that ct(x) ⊆ ct(y)

x and y as above form a blocking pair: (x , y) ∈ blocked(T).

A blocked node is not further expanded.

34

Revisiting the restore example - blocking

backFail}crash not backSucc

backSucc not backFail}not crash1 {not restore

{yesterday}

{yesterday}

11 {not backFail}

ǫ {restore

Figure: Blocking nodes: content equivalence

35

Cached nodes

A node x ∈ T is cached iff:

there is a saturated node y ∈ T , y � x , x � y , such that
ct(x) ⊆ ct(y)

x and y as above are called a caching pair: (x , y) ∈ cached(T).

No expansions can be performed on a cached node.

36

Contradictory, complete, clash-free completion structures

Contradictory completion structure:

for some x ∈ T and a ∈ upreds(P), {a, not a} ⊆ ct(x)

or

for some (x , y) ∈ AT and f ∈ bpreds(P), {f , not f } ⊆ ct(x , y)

Complete completion structure: a completion structure to which no rule
can be further applied

Clash-free completion structure:

it is not contradictory

G does not contain positive cycles.

37

Characterization of satisfiability in terms of a completion

structure

A predicate symbol p is satisfiable w.r.t. a Simple Conceptual Logic
Program P iff there is a clash-free complete completion structure for p
w.r.t. P

38

Termination

Let P be a simple CoLP and p ∈ upreds(P). Then, one can construct a
finite complete completion structure by a finite number of applications of
the expansion rules to the initial completion structure for p and P , taking
into account the applicability rules.

Proof Sketch.

finite number of values for ct(x) =⇒ eventually across every branch
will exist x , y , s.t. ct(x) = ct(y) =⇒ blocking situation

finite number of branches

39

Soundness

Let P be a simple CoLP and p ∈ upreds(P). If there exists a clash-free
complete completion structure for p w.r.t. P , then p is satisfiable w.r.t. P .

Proof Sketch.
Construction of an OAS from a clash-free complete completion structure:

construction of an open interpretation (U,M) and of a graph Gext

which extends G :
◮ for every blocking or caching pair (x , y): mirror the connections and

the content of x in y or replace T [y] with T [x]

proof that M is a minimal model of PM
U

◮ M is a model: from the expansion rules
◮ M is minimal - derives from the fact that there are no cycles/infinite

length paths in Gext

40

Completeness

Let P be a simple CoLP and p ∈ upreds(P). If p is satisfiable w.r.t. P ,
then there exists a clash-free complete completion structure for p w.r.t. P .

Proof Sketch. Construction of a clash-free complete completion structure
for p w.r.t. P starting from a tree-shaped OAS (U,M) which satisfies p:

(1) start with an initial completion structure for p w.r.t. P and guide
the nondeterministic application of the expansion rules by (U,M)

(2) take into account the constraints imposed by the saturation,
blocking, caching, and clash rules:

◮ (2.1) blocking pair (x , y): cut the tree at y
◮ (2.2) caching pair (x , y): cut the tree at y

41

Complexity

The algorithm runs in nexptime, a nondeterministic level higher than the
worst-case complexity characterization

Proof Sketch.

Let CS be a complete completion structure.

CS ′ obtained from CS by deleting all nodes y , where there is an x for
which (x , y) is a blocking, or caching pair has at most 2p nodes,
p = |upreds(P)|

CS has at most 2p(k + 1) nodes, k - the maximal branching factor

42

Conclusions

Simple CoLPS - hybrid language: combines features of LP and DL;
one can simulate ALCH

Tableau-like algorithm

Minimality makes blocking harder: restrictions on the language or
special devices to tackle it

Saturation of the nodes is needed in order to ensure consistency

43

Future Work

Variable inequalities in rule bodies

Allowing for constants

Allowing for full cyclicity

44

Questions

...

45

	Overview
	Simple Conceptual Logic Programs
	Open Answer Set Programming: Motivation, Decidable Fragments

	An Algorithm for Simple Conceptual Logic Programs
	Definition of a Completion Structure
	Expanding the completion structure
	Expansion rules
	Applicability rules

	Termination, Soundness, Completeness

