
Answer Set Programming
and

Other Computing Paradigms

Sixth International Workshop
August 25th 2013, Istanbul, Turkey

Michael Fink
Yuliya Lierler (Eds.)

Preface

Since its introduction in the late 1980s, answer set programming (ASP) has been widely
applied to various knowledge-intensive tasks and combinatorial search problems. ASP
was found to be closely related to SAT, which has led to a method of computing answer
sets using SAT solvers and techniques adapted from SAT. While this has been the most
studied relationship which is currently extended towards satisfiability modulo theories
(SMT), the relationship of ASP to other computing paradigms, such as constraint sat-
isfaction, quantified boolean formulas (QBF), first-order logic (FOL), or FO(ID) logic
is also the subject of active research. New methods of computing answer sets are being
developed based on the relation between ASP and other paradigms, such as the use of
pseudo-Boolean solvers, QBF solvers, FOL theorem provers, and CLP systems.

Furthermore, the practical applications of ASP also foster work on multi-paradigm
problem-solving, and in particular language and solver integration. The most prominent
examples in this area currently are the integration of ASP with description logics (in
the realm of the Semantic Web), constraint satisfaction, and general means of external
computation.

This volume contains the papers presented at the sixth workshop on Answer Set
Programming and Other Computing Paradigms (ASPOCP 2013) held on August 25th,
2013 in Istanbul, co-located with the 29th International Conference on Logic Program-
ming (ICLP 2013). It thus continues a series of previous events co-located with ICLP,
aiming at facilitating the discussion about crossing the boundaries of current ASP tech-
niques in theory, solving, and applications, in combination with or inspired by other
computing paradigms.

Twelve papers have been accepted for presentation and constitute the technical con-
tributions to this proceedings. They cover a wide range of research topics including
theoretical aspects such as generalizing foundational principles of answer set semantics
to related or more expressive settings; methods and techniques to compute semantics,
respectively to build systems potentially exploiting exiting ASP solvers; as well as prac-
tical aspects such as applications of the answer set programming and related computing
paradigms in various domains. Each submission was reviewed by three program com-
mittee members in a blind review process.

We would like to take this opportunity to thank all authors, PC members, reviewers,
speakers, and participants for making this workshop happen. We very much appreciated
the support of the ICLP General Co-Chairs Esra Erdem and Joohyung Lee, and the
ICLP Workshop Chair Hans Tompits. Moreover, we acknowledge the EasyChair system
which we used for organizing the submission and review processes.

August 2013 Michael Fink
Yuliya Lierler

(Organizers ASPOCP 2013)

IV

Organisation

Executive Committee

Workshop Chairs: Michael Fink
(Vienna University of Technology, Austria)

Yuliya Lierler
(University of Nebraska at Omaha, USA)

Programme Committee

Marcello Balduccini Kodak Research Labs, USA
Pedro Cabalar Coruña University, Spain
Sandeep Chintabathina University of Arkansas at Pine Bluff, USA
Selim T. Erdogan Independent Researcher, Turkey
Wolfgang Faber University of Calabria, Italy
Cristina Feier University of Oxford, UK
Gregory Gelfond Arizona State University, USA
Martin Gebser University of Potsdam, Germany
Giovambattista Ianni University of Calabria, Italy
Daniela Inclezan Miami University in Ohio, USA
Joohyung Lee Arizona State University, USA
Joao Leite New University of Lisbon, Portugal
Vladimir Lifschitz University of Texas at Austin, USA
Marco Maratea University of Genoa, Italy
Alessandro Mosca Free University of Bolzano, Italy
Emilia Oikarinen Aalto University, Finland
David Pearce Universidad Politécnica de Madrid, Spain
Axel Polleres Vienna University of Economics and Business, Austria
Guillermo R. Simari Universidad Nacional del Sur, Argentina
Evgenia Ternovska Simon Fraser University, Canada
Hans Tompits Vienna University of Technology, Austria
Tran Cao Son New Mexico State University, USA
Miroslaw Truszczynski University of Kentucky, USA
Joost Vennekens Catholic University of Leuven, Belgium
Marina De Vos University of Bath, UK
Stefan Woltran Vienna University of Technology, Austria
Fangkai Yang University of Texas at Austin, USA
Jia-Huai You University of Alberta, Canada

VI

Additional Reviewers

Bernhard Bliem Vienna University of Technology, Austria
Günther Charwat Vienna University of Technology, Austria
Michael Gelfond Texas Tech University, USA
Holger Jost University of Potsdam, Germany
Shahab Tasharrofi Simon Fraser University, Canada
Concepción Vidal Coruña University, Spain

VII

Table of Contents

I Papers

Properties of Answer Set Programming with Convex Generalized Atoms 3
M. Alviano (University of Calabria) and W. Faber (University of Calabria)

Hybrid Automated Reasoning Tools: from Black-box to Clear-box Integration . . 17
M. Balduccini (Drexel University) and Y. Lierler (University of Nebraska
at Omaha)

Aspartame: Solving Constraint Satisfaction Problems with Answer Set
Programming . 33

M. Banbara (University of Kobe), M. Gebser (University of Potsdam),
K. Inoue (National Institute of Informatics Tokyo), T. Schaub (University
of Potsdam), T. Soh (University of Kobe), N. Tamura (University of Kobe),
and M. Weise (University of Potsdam)

A Functional View of Strong Negation in Answer Set Programming 49
M. Bartholomew (Arizona State University) and J. Lee (Arizona State
University)

An Algebra of Causal Chains . 65
P. Cabalar (University of Coruña) and J. Fandiño (University of Coruña)

Query Answering in Object Oriented Knowledge Bases in Logic
Programming: Description and Challenge for ASP . 81

V.K. Chaudhri (SRI International, Menlo Park), S. Heymans (SRI
International, Menlo Park), M. Wessel (SRI International, Menlo Park),
and T.C. Son (New Mexico State University)

The DIAMOND System for Argumentation: Preliminary Report 97
S. Ellmauthaler (Leipzig University) and H. Straß (Leipzig University)

A System for Interactive Query Answering with Answer Set Programming 109
M. Gebser (University of Potsdam), P. Obermeier (University of Potsdam),
and T. Schaub (University of Potsdam)

Generating Shortest Synchronizing Sequences using Answer Set Programming . 117
C. Güniçen (Sabancı University), E. Erdem (Sabancı University), and
H. Yenigün (Sabancı University)

On the Semantics of Gringo . 129
A. Harrison (University of Texas at Austin), V. Lifschitz (University of
Texas at Austin), and F. Yang (University of Texas at Austin)

IX

Abstract Modular Systems and Solvers . 143
Y. Lierler (University of Nebraska at Omaha) and M. Truszczynski
(University of Kentucky)

Negation in the Head of CP-logic Rules . 159
J. Vennekens (University of Leuven)

Author Index . 175

X

Part I

Papers

Properties of Answer Set Programming with Convex
Generalized Atoms

Mario Alviano and Wolfgang Faber

Department of Mathematics and Computer Science
University of Calabria

87036 Rende (CS), Italy
{alviano,faber}@mat.unical.it

Abstract. In recent years, Answer Set Programming (ASP), logic programming
under the stable model or answer set semantics, has seen several extensions by
generalizing the notion of an atom in these programs: be it aggregate atoms,
HEX atoms, generalized quantifiers, or abstract constraints, the idea is to have
more complicated satisfaction patterns in the lattice of Herbrand interpretations
than traditional, simple atoms. In this paper we refer to any of these constructs
as generalized atoms. Several semantics with differing characteristics have been
proposed for these extensions, rendering the big picture somewhat blurry. In this
paper, we analyze the class of programs that have convex generalized atoms (orig-
inally proposed by Liu and Truszczyński in [10]) in rule bodies and show that for
this class many of the proposed semantics coincide. This is an interesting result,
since recently it has been shown that this class is the precise complexity boundary
for the FLP semantics. We investigate whether similar results also hold for other
semantics, and discuss the implications of our findings.

1 Introduction

Various extensions of the basic Answer Set Programming language have been proposed
by allowing more general atoms in rule bodies, for example aggregate atoms, HEX
atoms, dl-atoms, generalized quantifiers, or abstract constraints. A number of semantics
have been proposed for such programs, most notably the FLP semantics [7] and a num-
ber of coinciding semantics that we will collectively refer to as PSP semantics (from
Pelov, Son, and Pontelli) [13, 17]. All of these semantics coincide with traditional ASP
semantics when no generalized atoms are present. Moreover, they coincide on programs
that have atomic rule heads and contain only monotonic generalized atoms. In [9] it is
furthermore hinted that the semantics also coincide on programs that have atomic rule
heads and contain only convex generalized atoms. However, no formal proof is avail-
able for this claim, and the informal explanation given in [9] is not as general as it could
be, as we will show.

In this paper, we undertake a deeper investigation on the similarities and differences
between the FLP and PSP semantics. In order to do this, we consider a simplified, yet
expressive propositional language: sets of rules with atomic heads and bodies that are
formed of a single “structure,” which are functions mapping interpretations to Boolean
values1. Clearly, structures encompass atoms, literals, and conjunctions thereof, but can

1 Note that (apart from the name) there is no connection to structures in first-order logic.

represent any propositional formula, generalized atom, or conjunctions of generalized
atoms. Each structure has an associated domain, which is the set of propositional atoms
on which the structure’s truth valuation depends. We can then classify the structures by
their semantic properties, in particular, we will focus on the class of convex structures,
which have single contiguous areas of truth in the lattice of interpretations. Convex
structures include atoms and literals, and they are closed under conjunction (but not
under negation or disjunction).

We first formally prove the claim that the FLP and PSP semantics coincide on pro-
grams with convex structures, as originally reported in [9]. We will then move on to
the main focus of this paper, trying to understand whether there is any larger class for
which the semantics coincide. It is known that for programs with general structures all
PSP answer sets are FLP answer sets, but not all FLP answer sets are PSP answer sets.
The precise boundary for exhibiting the semantic difference is instead unknown.

We will approach this question using complexity arguments. Recently, we could
show that convex structures form the precise boundary for a complexity jump in the
polynomial hierarchy on cautious reasoning (but most other decision problems as well)
for the FLP semantics. Cautious reasoning isΠP

2 -complete for the FLP semantics when
allowing any non-convex structure and its variants (renaming atoms) in the input pro-
gram, but it is coNP -complete for convex structures. When considering the PSP se-
mantics, cautious reasoning is also ΠP

2 -complete when allowing any kind of structures
in the input. This follows from a result in [13], and we provide an alternative proof
in this paper. Analyzing this proof, it becomes clear that there is a different source of
complexity for PSP than for FLP.

We then show that this different source of complexity also yields a different shape
of the boundary for the complexity jump in PSP. Indeed, we first show that for a simple
non-convex structure, cautious reasoning is still in coNP for the PSP semantics, while
the problem is ΠP

2 -hard in the presence of this structure for the FLP semantics. It turns
out that the same argument works for many non-convex structures, in particular, for all
structures with a domain size bounded by a constant. The domain size therefore serves
as a parameter that simplifies the complexity of the problem for the PSP semantics
(unless the polynomial hierarchy collapses to its first level). This also means that the
complexity boundary for PSP has a non-uniform shape, in the sense that an infinite
number of different non-convex structures must be available for obtainingΠP

2 -hardness
for cautious reasoning. This is in contrast to the FLP semantics, where the presence of
a single non-convex structure is sufficient.

2 Syntax and Semantics

In this section we first introduce the syntax used in the paper. This is mainly based on the
notion of structures, i.e., functions mapping interpretations into Boolean truth values.
Then, we introduce few semantic notions and in particular we characterize structures
in terms of monotonicity. Finally, we define the two semantics analyzed in this paper,
namely FLP and PSP.

4 M. Alviano and W. Faber

2.1 Syntax

Let U be a fixed, countable set of propositional atoms. An interpretation I is a subset of
U . A structure S on U is a mapping of interpretations into Boolean truth values. Each
structure S has an associated, finite domain DS ⊂ U , indicating those atoms that are
relevant to the structure.

Example 1. A structure S1 modeling a conjunction a1, . . . , an (n ≥ 0) of propositional
atoms is such that DS1

= {a1, . . . , an} and, for every interpretation I , S1 maps I to
true if and only if DS1

⊆ I .
A structure S2 modeling a conjunction a1, . . . , am, not am+1, . . . , not an (n ≥

m ≥ 0) of literals, where a1, . . . , an are propositional atoms and not denotes negation
as failure, is such that DS2 = {a1, . . . , an} and, for every interpretation I , S2 maps I
to true if and only if {a1, . . . , am} ⊆ I and {am+1, . . . , an} ∩ I = ∅.

A structure S3 modeling an aggregate COUNT ({a1, . . . , an}) 6= k (n ≥ k ≥ 0),
where a1, . . . , an are propositional atoms, is such that DS3

= {a1, . . . , an} and, for
every interpretation I , S3 maps I to true if and only if |DS3

∩ I| 6= k.

A general rule r is of the following form:

H(r)← B(r) (1)

where H(r) is a propositional atom in U referred as the head of r, and B(r) is a struc-
ture on U called the body of r. A general program P is a set of general rules.

Example 2. Let S4 map to true any interpretation I such that I ∩ {a, b} 6= {b}, and
let S5 map to true any interpretation I such that I ∩ {a, b} 6= {a}. Hence, program
P1 = {a← S4; b← S5} is equivalent to the following program with aggregates:

a← SUM ({a = 1, b = −1}) ≥ 0

b← SUM ({a = −1, b = 1}) ≥ 0

Note that no particular assumption is made on the syntax of rule bodies; in the case
of normal propositional logic programs these structures are conjunctions of literals. We
assume that structures are closed under propositional variants, that is, if S is a structure,
for any bijection σ : U → U , also Sσ is a structure, and the associated domain is
DSσ = {σ(a) | a ∈ DS}.
Example 3. Consider S4 and S5 from Example 2, and a bijection σ1 such that σ1(a) =
b. Hence, S5 = S4σ1, that is, S5 is a variant of S4.

Given a set of structures S, by datalogS we refer to the class of programs that
may contain only the following rule bodies: structures corresponding to conjunctions
of atoms, any structure S ∈ S, or any of its variants Sσ.

Example 4. For every n ≥ m ≥ 0, let Sm,n denote the structure S2 from Example 1.
The class of normal datalog programs is datalog{S

m,n|n≥m≥0}.

Note that this syntax does not explicitly allow for negated structures. One can, how-
ever, choose the complementary structure for simulating negation. This would be akin
to the “negation as complement” interpretation of negated aggregates that is prevalent
in the literature.

Properties of Answer Set Programming with Convex Generalized Atoms 5

2.2 Semantics

Let I ⊆ U be an interpretation. I is a model for a structure S, denoted I |= S, if S
maps I to true. Otherwise, if S maps I to false, I is not a model of S, denoted I 6|= S.
We require that atoms outside the domain of S are irrelevant for modelhood, that is, for
any interpretation I and X ⊆ U \ DS it holds that I |= S if and only if I ∪ X |= S.
Moreover, for any bijection σ : U → U , let Iσ = {σ(a) | a ∈ I}, and we require that
Iσ |= Sσ if and only if I |= S. I is a model of a rule r of the form (1), denoted I |= r,
if H(r) ∈ I whenever I |= B(r). I is a model of a program P , denoted I |= P , if
I |= r for every rule r ∈ P .

Example 5. Consider program P1 from Example 2. It can be observed that ∅ 6|= P1

and {a, b} 6|= P1 (both rules have true bodies but false heads), while {a} |= P1 and
{b} |= P1.

Structures can be characterized in terms of monotonicity as follows.

Definition 1 (Monotone Structures). A structure S is monotonic if for all pairs X,Y
of interpretations such that X ⊂ Y , X |= S implies Y |= S.

Definition 2 (Antimonotone Structures). A structure S is antimonotonic if for all
pairs Y, Z of interpretations such that Y ⊂ Z, Z |= S implies Y |= S.

Definition 3 (Convex Structures). A structure S is convex if for all triples X,Y, Z of
interpretations such that X ⊂ Y ⊂ Z, X |= S and Z |= S implies Y |= S.

Note that monotonic and antimonotonic structures are convex. Moreover, note that con-
vex structures are closed under conjunction (but not under disjunction or negation).

Example 6. Structure Sm,n from Example 4 is convex in general; it is monotonic if
m = n, and antimonotonic if m = 0. Structure S3 from Example 1, instead, is non-
convex if n > k > 0; it is monotonic if k = 0, and antimonotonic if n = k.

We first describe a reduct-based semantics, usually referred to as FLP, which has
been described and analyzed in [6, 7].

Definition 4 (FLP Reduct). The FLP reduct P I of a program P with respect to I is
defined as the set {r ∈ P | I |= B(r)}.

Definition 5 (FLP Answer Sets). I is an FLP answer set of P if I |= P I and for each
J ⊂ I it holds that J 6|= P I .

Example 7. Consider program P1 from Example 2 and the interpretation {a}. The
reduct P {a}1 is {a ← S4}. Since {a} is a minimal model of the reduct, {a} is an
FLP answer set of P1. Similarly, it can be observed that {b} is another FLP answer set.
Actually, these are the only FLP answer sets of the program.

6 M. Alviano and W. Faber

We will next describe a different semantics, using the definition of [17], called “fix-
point answer set” in that paper. Theorem 3 in [17] shows that it is actually equivalent
to the two-valued fix-point of ultimate approximations of generalized atoms in [13]2,
and therefore with stable models for ultimate approximations of aggregates as defined
in [14]. We will refer to it as PSP to abbreviate Pelov/Son/Pontelli, the names most
frequently associated with this semantics.

Definition 6 (Conditional Satisfaction). A structure S on U is conditionally satisfied
by a pair of interpretations (I,M), denoted (I,M) |= S, if J |= S for each J such that
I ⊆ J ⊆M .

Definition 7 (PSP Answer Sets). An interpretation M is a PSP answer set if M is the
least fixpoint of the following operator:

KP
M (I) = {H(r) | r ∈ P ∧ (I,M) |= B(r)}. (2)

Example 8. Consider program P1 from Example 2 and the interpretation {a}. The least
fixpoint of KP1

{a} is {a}. In fact, ∅ |= S4 and {a} |= S4, hence (∅, {a}) |= S4, while
{a} 6|= S5 and thus (∅, {a}) 6|= S5 and ({a}, {a}) 6|= S5. Therefore, {a} is a PSP
answer set. Also {b} is a PSP answer set.

On programs considered in this paper, PSP answer sets also coincide with “answer
sets” defined in [18] (by virtue of Proposition 10 in [18]) and “well-justified FLP answer
sets” of [15] (by virtue of Theorem 5 in [15]). The latter is particularly interesting, as it
is defined by first forming the FLP reduct. Indeed, as shown in [15], the operator KP

M

can be equivalently defined as follows:

KP
M (I) = {H(r) | r ∈ PM ∧ (I,M) |= B(r)}. (3)

There are several other semantic definitions on programs that have some restrictions
on the admissible structures, which also coincide with the PSP semantics on programs
as defined in this paper with the respective structure restriction. Examples are [12] for
monotonic structures (that are also allowed to occur in rule heads in that paper), or
[16] that allows for structures corresponding to cardinality and weight constraints and
largely coincide with the PSP semantics (see [13] for a discussion on structures on
which the semantics coincides).

In this paper we are mainly interested in cautious reasoning, defined next.

Definition 8 (Cautious Reasoning). A propositional atom a is a cautious consequence
of a program P under FLP (resp. PSP) semantics, denoted P |=FLP

c a (resp. P |=PSP
c

a), if a belongs to all FLP (resp. PSP) answer set of P .

Example 9. Consider program P1 from Example 2. We have P1 6|=FLP
c a and P1 6|=FLP

c

b, and similar for PSP semantics. If we add a← b and b← a to the program, then there
is only one FLP answer set, namely {a, b}, and no PSP answer sets. In this case a and
b are cautious consequences of the program (under both semantics).

2 There is an even closer relationship, as the operator KP
M (I) of [17] coincides with

φaggr,1
P (I,M) defined in [13], as shown in the appendix of [17]

Properties of Answer Set Programming with Convex Generalized Atoms 7

3 Exploring the Relationship between the FLP and PSP Semantics

In this section, we examine in detail how the FLP and PSP semantics relate. We shall
proceed in three steps. First, we formally prove that FLP and PSP semantics coincide
on programs with convex structures in Section 3.1. Next, we turn towards complexity
as a tool to understand whether there can be any larger class of coinciding programs.
We start in Section 3.2 with a result that shows that programs without restrictions ex-
hibit the same complexity under both FLP and PSP semantics. However, it is known
that the semantics do not coincide for programs without restrictions, and we examine
the complexity proofs to highlight the different complexity sources. These findings are
then applied in Section 3.3 in order to identify programs with bounded non-convex
structures, on which the complexities for FLP and PSP semantics differ. Under usual
complexity assumptions, this also implies that programs with convex aggregates is the
largest class of programs on which FLP and PSP coincide.

3.1 Unison: Convex Structures

In this section we show that for programs with convex aggregates the FLP and PSP
semantics coincide. In [9] it is stated that many semantics (and in particular, FLP and
PSP) “agree on [...] programs with convex aggregates” because “they can be regarded
as special programs with monotone constraints.” However, the comment on regarding
convex aggregates as monotone constraints relies on a transformation described in [10]
that transforms convex structures into conjunctions of positive and negated monotone
constraints. Since our language does not explicitly allow negation, and in particular
since convex structures are not closed under negation, we next prove in a more direct
manner that the FLP and PSP semantics coincide on convex structures.

One direction of the proof relies on the well-known more general fact that each PSP
answer set is also an FLP answer set. This has been stated as Theorem 2 in [17] and
Proposition 8.1 in [14].

Theorem 1. Let P be program whose body structures are convex, and let M be an
interpretation. M is an FLP answer set of P if and only if M is an PSP answer set of
P .

Proof. The left implication follows from Theorem 2 in [17]. For the right implication,
let M be an FLP answer set of P . Let K0 := ∅, Ki+1 := KP

M (Ki) for i ≥ 0, and let
K be the fixpoint of this sequence. Since M is a minimal model of PM by definition
of FLP answer set, we can prove the claim by showing (i) K |= PM and (ii) K ⊆M .

(i) Consider a rule r ∈ PM such that K |= B(r). We have to show H(r) ∈ K.
Since r ∈ PM , M |= B(r) holds. Thus, (K,M) |= B(r) and therefore H(r) ∈ K.

(ii) We prove Ki ⊆ M for each i ≥ 0. We use induction on i. The base case is
trivially true as K0 = ∅ ⊆ M . Suppose Ki ⊆ M for some i ≥ 0 in order to prove
Ki+1 ⊆ M . By definition of KP

M , for each a ∈ Ki+1 there is r ∈ PM such that
H(r) = a and (Ki,M) |= B(r). Thus, M |= B(r), which implies a ∈M . ut

Therefore, programs with convex structures form a class of programs for which the
FLP and PSP semantics coincide. In the following, we will show that it is likely also
the largest class for which this holds.

8 M. Alviano and W. Faber

3.2 Consonance: Complexity of Unrestricted Structures

In this section we will examine the computational impact of allowing non-convex struc-
tures. We will limit ourselves to structures for which the truth value with respect to an
interpretation can be determined in polynomial time. Moreover, we will focus on cau-
tious reasoning, but similar considerations apply also to related problems such as brave
reasoning, answer set existence, or answer set checking.

It is known that cautious reasoning over programs with arbitrary structures under
the FLP semantics is ΠP

2 -complete in general, as shown in [7]. Pelov has shown ΣP
2 -

completeness for deciding the existence of PSP answer sets in [13], from which ΠP
2 -

completeness for cautious reasoning under the PSP semantics can be derived. We for-
mally state this result now and provide a different proof than Pelov’s that will more
directly lead to the subsequent considerations.

Theorem 2. Cautious reasoning under PSP semantics is ΠP
2 -complete.

Proof. Membership follows by Corollary 1 of [17]. For the hardness, we provide a
reduction from 2-QBF∀. Let Ψ = ∀x1 · · · ∀xm∃y1 · · · ∃yn E, where E is in 3CNF.
Formula Ψ is equivalent to ¬Ψ ′, where Ψ ′ = ∃x1 · · · ∃xm∀y1 · · · ∀yn E′, and E′ is
a 3DNF equivalent to ¬E and obtained by applying De Morgan’s laws. To prove the
claim we construct a program PΨ such that PΨ |=PSP

c w (w a fresh atom) if and only if
Ψ is valid, i.e., iff Ψ ′ is invalid.

Let E′ = (l1,1 ∧ l1,2 ∧ l1,3)∨ · · · ∨ (lk,1 ∧ lk,2 ∧ lk,3), for some k ≥ 1. Program PΨ
is the following:

xTi ← not xFi xFi ← not xTi i ∈ {1, . . . ,m} (4)
yTi ← not yFi yFi ← not yTi i ∈ {1, . . . , n} (5)
yTi ← sat yFi ← sat i ∈ {1, . . . , n} (6)
sat ← µ(E′) (7)
w ← not sat (8)

where µ is defined recursively as follows:

– µ(E′) := (µ(l1,1) ∧ µ(l1,2) ∧ µ(l1,3)) ∨ · · · ∨ (µ(lk,1) ∧ µ(lk,2) ∧ µ(lk,3));
– µ(xi) := xTi and µ(¬ xi) := xFi for all i = 1, . . . ,m;
– µ(yi) := yTi and µ(¬ yi) := yFi for all i = 1, . . . , n.

Note that structure µ(E′) can also be encoded by means of a sum aggregate as shown
in [1].

Rules (4)–(5) force each PSP answer set of PΨ to contain at least one of xTi , xFi
(i ∈ {1, . . . ,m}), and one of yTj , yFj (j ∈ {1, . . . ,m}), respectively, encoding an as-
signment of the propositional variables in Ψ ′. Rules (6) are used to simulate universality
of the y variables, as described later. Having an assignment, rule (7) derives sat if the
assignment satisfies some disjunct of E′ (and hence also E′ itself). Finally, rule (8)
derives w if sat is false.

We first show that Ψ not valid implies PΨ 6|=PSP
c w. If Ψ is not valid, Ψ ′ is valid.

Hence, there is an assignment ν for x1, . . . , xm such that no extension to y1, . . . , yn sat-
isfiesE, i.e., all these extensions satisfyE′. Let us consider the following interpretation

Properties of Answer Set Programming with Convex Generalized Atoms 9

(which is also a model of PΨ):

M = {xTi | ν(xi) = 1, i = 1, . . . ,m} ∪ {xFi | ν(xi) = 0, i = 1, . . . ,m}
∪ {yTi , yFi | i = 1, . . . , n} ∪ {sat}

We claim that M is a PSP answer set of PΨ . In fact, KPΨ
M (∅) ⊇ {xTi | ν(xi) = 1, i =

1, . . . ,m} ∪ {xFi | ν(xi) = 0, i = 1, . . . ,m} because of rules (4) in PMΨ . Since any
assignment for the ys satisfies at least a disjunct of E′, from rule (7) we derive sat ∈
KPΨ
M (KPΨ

M (∅)). Hence, rules (6) force all y atoms to belong to KPΨ
M (KPΨ

M (KPΨ
M (∅))),

which is thus the least fixpoint of KPΨ
M and coincides with M .

Now we show that PΨ 6|=PSP
c w implies that Ψ is not valid. To this end, let M be

a PSP answer set of PΨ such that w /∈ M . Hence, by rule (8) we have that M |= sat .
From sat ∈ M and rules (6), we have yTi , y

F
i ∈ M for all i = 1, . . . , n. And M

contains either xTi or xFi for i = 1, . . . ,m because of rules (4). Suppose by contra-
diction that Ψ is valid. Thus, for all assignments of x1, . . . , xm, there is an assignment
for y1, . . . , yn such that E is true, i.e., E′ is false. We can show that the least fixpoint
of KPΨ

M is KPΨ
M (∅) = {xTi | ν(xi) = 1, i = 1, . . . ,m} ∪ {xFi | ν(xi) = 0, i =

1, . . . ,m}. In fact, sat cannot be derived because KPΨ
M (∅) 6|= µ(E′). We thus have a

contradiction with the assumption that M is a PSP answer set of PΨ . ut

It is also known that the complexity drops to coNP if structures in body rules are
constrained to be convex. This appears to be “folklore” knowledge and can be argued to
follow from results in [10]. An easy way to see membership in coNP is that all convex
structures can be decomposed into a conjunction of a monotonic and an antimonotonic
structure, for which membership in coNP has been shown in [7].

It is instructive to note a crucial difference between the ΠP
2 -hardness proofs in [7]

(and a similar one in [8]) and the proofs for Theorem 2 and the ΣP
2 result for PSP in

[13].
The fundamental tool in the FLP hardness proofs is the availability of structures

S1, S2 that allow for encoding “need to have either atom xT or xF , or both of them,
but the latter only upon forcing the truth of both atoms.” S1, S2 have domains DS1

=
DS2

= {xT , xF } and the following satisfaction patterns:

∅ |= S1 {xT } |= S1 {xF } 6|= S1 {xT , xF } |= S1

∅ |= S2 {xT } 6|= S2 {xF } |= S2 {xT , xF } |= S2

The reductions then use these structures in a similar way than disjunction is used in
the classic ΣP

2 -hardness proofs in [3]. In particular, the same structures are used for all
instances to be reduced.

On the other hand, in the PSP hardness proofs, one dedicated structure is used
for each instance of the problem reduced from (2QBF in Theorem 2). Indeed, a con-
struction using structures S1, S2 as described earlier is not feasible for PSP, because
(∅, {xT , xF }) 6|= S1 and (∅, {xT , xF }) 6|= S2. This is because there is one satisfaction
“hole” between ∅ and {xT , xF } for both S1 and S2. In the next section, we will exploit
this difference.

10 M. Alviano and W. Faber

3.3 Dissonance: Complexity of Non-convex Structures with Bounded Domains

In this section, we look more carefully at programs with non-convex structures and
identify computational differences between the FLP and PSP semantics. In [2] it has
been shown that any non-convex structure (plus all of its variants) can be used in order
to implement S1 and S2. This result makes it clear that the presence of any non-convex
structure that is closed under variants causes a complexity increase for the FLP seman-
tics (unless the polynomial hierarchy collapses). From the above considerations, it is
immediately clear that the same construction is not feasible for PSP. It turns out that
also no alternative way exists to obtain a similar result, and that the difference in the
ΠP

2 -hardness proofs for FLP and PSP is intrinsic.
We start by considering a simple non-convex structure Å with DÅ = {x, y} and

I |= Å if and only if |I ∩ DÅ| 6= 1. Therefore, Å behaves like a cardinality constraint
COUNT ({x, y}) 6= 1.

Proposition 1. Deciding whether an interpretationM is a PSP answer set of a datalog{Å}

program P is feasible in polynomial time, in particular DTIME(m2), where m is the
number of rules in P .

Proof. For any interpretation, testing whether (I,M) |= Åσ (for a variant Åσ of Å) can
be done by examining |I ∩DÅσ| = i and |M ∩DÅσ| = j and returning false if either
one of i, j is 1, or if i = 0 and j = 2. Alternatively, in a less syntax dependent way, one
can test whether M |= Åσ and (I ∪ J) |= Åσ for each J ⊆ (M ∩DÅσ) \ (I ∩DÅσ).
Since there are at most 4 different J for each I , either method is feasible in constant
time.

For determining whether M is a PSP answer set of P , we can check whether it is
the least fixpoint of KP

M . Computing the least fixpoint takes at most m applications of
KP
M (where m is the number of rules in P). Each application of KP

M involves in turn at
most m tests for (I,M) |= Åσ. ut

Given Proposition 1 it follows that cautious reasoning is still in coNP for datalog{Å}

programs under the PSP semantics.

Proposition 2. Given a datalog{Å} program P and an atom a, deciding P |=PSP
c a is

in coNP .

Proof. The complement has an immediate nondeterministic polynomial time algorithm:
guess an interpretation M and verify in polynomial time that a 6∈ M and that M is a
PSP answer set of P (by virtue of Proposition 1). ut

It follows that for datalog{Å} cautious reasoning (and also answer set existence and
brave reasoning) is more complex for the FLP semantics than for the PSP semantics
(unless the polynomial hierarchy collapses to its first level).

Examining this result and its proof carefully, we can see that it depends on the
fact that each DÅσ contains 2 elements and therefore at most 4 satisfaction tests are
needed to determine (I,M) |= Åσ. Indeed, we can apply similar reasoning whenever
the domains of involved structures are smaller than a given bound.

Properties of Answer Set Programming with Convex Generalized Atoms 11

Theorem 3. Let P be a program. If k is an upper bound for the domain size of any
structure occurring in P , then checking whether a given interpretation M is a PSP an-
swer set of P is decidable in DTIME(2km2p(n)), where m is the number of rules in
P and p(n) is the polynomial function (in terms of the input size n) bounding determin-
ing satisfaction of any aggregate in P .

Proof. We show that the least fixpoint of KP
M can be computed in time O(2km2p(n)).

In the worst case, each application of the operator derives at most one new atom, and
thus the fixpoint is reached after at mostm applications of the operator. Each application
requires at most the evaluation of all rules of P , and thus at most m2 rule evaluations
are sufficient. To evaluate a rule, the truth of the body has to be checked w.r.t. at most
2k interpretations (similar to Proposition 1, in which k = 2), each requiring p(n) time.
We thus obtain the bound O(2km2p(n)). ut

This means that actually most languages with non-convex structures exhibit a com-
plexity gap between the FLP and PSP semantics. There is a uniformity issue here, which
we informally noted earlier when examining the ΠP

2 -hardness proof for cautious rea-
soning under PSP. We can now formalize this, as it follows from Theorem 3 that we
need an infinite number of inherently different non-convex structures in order to obtain
ΠP

2 hardness.

Corollary 1. Let S be any finite set of structures, possibly including non-convex struc-
tures. Cautious reasoning over datalogS is in coNP under the PSP semantics.

This means that there is also a clear difference in uniformity between the complexity
boundary of the FLP and the PSP semantics, respectively. It also means that it is im-
possible to simulate the FLP semantics in a compact way using the PSP semantics on
the class of programs with bounded domain structures, unless the polynomial hierarchy
collapses to its first level. The general picture of our complexity results is shown in Fig-
ure 1. We can see that the complexity transition from coNP to ΠP

2 is different for the
FLP and PSP semantics, respectively. The solid line between convex and non-convex
structures denotes a crisp transition for FLP, while the dashed line between bounded
non-convex and unbounded non-convex structures is a rougher transition.

4 Discussion

Looking at Figure 1, the transition from coNP to ΠP
2 appears somewhat irregular for

PSP, as the availability of single non-convex structures does not cause the transition, but
only their union. However, in practice the availability of an infinite number of different
structures is not unusual: indeed, if aggregates are considered, the presence of one ag-
gregate function and suitable comparison relations usually gives rise to such an infinite
repertoire of structures.

Example 10. Consider the availability of COUNT over any set of atoms and the com-
parison relation 6=. The structures generated by aggregates of the form COUNT (S) 6= i
do not have a bound on the domains of non-convex aggregates. Indeed, for any structure
COUNT ({a1, . . . , ak}) 6= 1, which is non-convex and for which the domain size is k,

12 M. Alviano and W. Faber

coNP coNP
Convex

ΠP
2 coNP

Bounded domain

ΠP
2 ΠP

2

FLP semantics PSP semantics

Fig. 1. Complexity of cautious reasoning

one can formulate also COUNT ({a1, . . . , ak+1}) 6= 1, which is also non-convex and
has a larger domain.

However, as noted earlier, for expressing ΠP
2 -hard problems, one needs a non-

uniform approach for PSP, in the sense that a dedicated aggregate has to be formulated
for each problem instance, whereas for FLP one can re-use the same aggregates for all
problem instances.

In practical terms, our results imply that for programs containing only convex struc-
tures, techniques as those presented in [1] for FLP can be used for computing answer
sets also for PSP, and techniques presented for PSP can be used for FLP in turn. It also
means that this is the largest class for which this can be done with currently available
methods in an efficient way. There are several examples for convex structures that are
easy to identify syntactically: count aggregates with equality guards, sum aggregates
with positive summands and equality guards, dl-atoms that do not involve ∩− and rely
on a tractable Description Logic [4]. However many others are in general not convex,
for example sum aggregates that involve both positive and negative summands, times
aggregates that involve the factor 0, average aggregates, dl-atoms with∩−, and so on. It
is still possible to find special cases of such structures that are convex, but that requires
deeper analyses.

The results also immediately imply impossibility and possibility results for rewritabil-
ity: unless the polynomial hierarchy collapses to its first level, it is not possible in the
FLP semantics to rewrite a program with non-convex structures into one containing only
convex structures (for example, a program not containing any generalized atoms), un-
less disjunction or similar constructs are allowed in rule heads. On the other hand, such
rewritings are possible for the PSP semantics if the non-convex structures are guaran-
teed to have bounded domains. This seems to be most important for dl-programs, where
such rewritings are sought after.

The semantics considered in this paper encompass several approaches suggested for
programs that couple answer set programming with description logics. The approaches
presented in [5] and [11] directly employ the FLP semantics, while the approach of [15]

Properties of Answer Set Programming with Convex Generalized Atoms 13

is shown to be equivalent to the PSP semantics. There are other proposals, such as [4],
which appears to be different from both FLP and PSP already on convex structure. In
future work we plan to relate also these other semantics with FLP and PSP and attempt
to identify the largest coinciding classes of programs.

References

1. Alviano, M., Calimeri, F., Faber, W., Leone, N., Perri, S.: Unfounded Sets and Well-Founded
Semantics of Answer Set Programs with Aggregates. Journal of Artificial Intelligence Re-
search 42, 487–527 (2011)

2. Alviano, M., Faber, W.: The complexity boundary of answer set programming with gener-
alized atoms under the flp semantics. In: Cabalar, P., Tran, S.C. (eds.) Logic Programming
and Nonmonotonic Reasoning — 12th International Conference (LPNMR 2013). Springer
Verlag (Sep 2013), accepted for publication

3. Eiter, T., Gottlob, G.: On the Computational Cost of Disjunctive Logic Programming: Propo-
sitional Case. Annals of Mathematics and Artificial Intelligence 15(3/4), 289–323 (1995)

4. Eiter, T., Ianni, G., Lukasiewicz, T., Schindlauer, R., Tompits, H.: Combining answer set
programming with description logics for the semantic web. Artif. Intell. 172(12–13), 1495–
1539 (2008)

5. Eiter, T., Ianni, G., Schindlauer, R., Tompits, H.: A Uniform Integration of Higher-Order
Reasoning and External Evaluations in Answer Set Programming. In: International Joint
Conference on Artificial Intelligence (IJCAI) 2005. pp. 90–96. Edinburgh, UK (Aug 2005)

6. Faber, W., Leone, N., Pfeifer, G.: Recursive aggregates in disjunctive logic programs: Se-
mantics and complexity. In: Alferes, J.J., Leite, J. (eds.) Proceedings of the 9th European
Conference on Artificial Intelligence (JELIA 2004). Lecture Notes in AI (LNAI), vol. 3229,
pp. 200–212. Springer Verlag (Sep 2004)

7. Faber, W., Leone, N., Pfeifer, G.: Semantics and complexity of recursive aggregates in an-
swer set programming. Artificial Intelligence 175(1), 278–298 (2011), special Issue: John
McCarthy’s Legacy

8. Ferraris, P.: Answer Sets for Propositional Theories. In: Baral, C., Greco, G., Leone, N.,
Terracina, G. (eds.) Logic Programming and Nonmonotonic Reasoning — 8th International
Conference, LPNMR’05, Diamante, Italy, September 2005, Proceedings. Lecture Notes in
Computer Science, vol. 3662, pp. 119–131. Springer Verlag (2005)

9. Liu, L., Pontelli, E., Son, T.C., Truszczyński, M.: Logic programs with abstract constraint
atoms: The role of computations. Artificial Intelligence 174(3–4), 295–315 (2010)

10. Liu, L., Truszczyński, M.: Properties and applications of programs with monotone and con-
vex constraints. Journal of Artificial Intelligence Research 27, 299–334 (2006)

11. Lukasiewicz, T.: A novel combination of answer set programming with description logics for
the semantic web. IEEE Transactions on Knowledge and Data Engineering 22(11), 1577–
1592 (2010)

12. Marek, V.W., Niemelä, I., Truszczyński, M.: Logic Programming with Monotone Cardinality
Atom. In: Lifschitz, V., Niemelä, I. (eds.) Proceedings of the 7th International Conference
on Logic Programming and Non-Monotonic Reasoning (LPNMR-7). LNAI, vol. 2923, pp.
154–166. Springer (Jan 2004)

13. Pelov, N.: Semantics of Logic Programs with Aggregates. Ph.D. thesis, Katholieke Univer-
siteit Leuven, Leuven, Belgium (Apr 2004)

14. Pelov, N., Denecker, M., Bruynooghe, M.: Well-founded and Stable Semantics of Logic Pro-
grams with Aggregates. Theory and Practice of Logic Programming 7(3), 301–353 (2007)

14 M. Alviano and W. Faber

15. Shen, Y.D., Wang, K.: FLP semantics without circular justifications for general logic pro-
grams. In: Hoffmann, J., Selman, B. (eds.) Proceedings of the 26th AAAI Conference on
Artificial Intelligence (AAAI-12) (Jul 2012)

16. Simons, P., Niemelä, I., Soininen, T.: Extending and Implementing the Stable Model Seman-
tics. Artificial Intelligence 138, 181–234 (Jun 2002)

17. Son, T.C., Pontelli, E.: A Constructive Semantic Characterization of Aggregates in ASP.
Theory and Practice of Logic Programming 7, 355–375 (May 2007)

18. Son, T.C., Pontelli, E., Tu, P.H.: Answer Sets for Logic Programs with Arbitrary Abstract
Constraint Atoms. Journal of Artificial Intelligence Research 29, 353–389 (2007)

Properties of Answer Set Programming with Convex Generalized Atoms 15

16

Hybrid Automated Reasoning Tools: from Black-box to
Clear-box Integration

Marcello Balduccini1 and Yulia Lierler2

1 College of Information Science and Technology
Drexel University

marcello.balduccini@gmail.com
2 Computer Science Department
University of Nebraska at Omaha
ylierler@unomaha.edu

Abstract Recently, researchers in answer set programming and constraint pro-
gramming spent significant efforts in the development of hybrid languages and
solving algorithms combining the strengths of these traditionally separate fields.
These efforts resulted in a new research area: constraint answer set program-
ming (CASP). CASP languages and systems proved to be largely successful at
providing efficient solutions to problems involving hybrid reasoning tasks, such
as scheduling problems with elements of planning. Yet, the development of CASP
systems is difficult, requiring non-trivial expertise in multiple areas. This suggests
a need for a study identifying general development principles of hybrid systems.
Once these principles and their implications are well understood, the develop-
ment of hybrid languages and systems may become a well-established and well-
understood routine process. As a step in this direction, in this paper we conduct a
case study aimed at evaluating various integration schemas of CASP methods.

1 Introduction

Knowledge representation and automated reasoning are areas of Artificial Intelligence
dedicated to understanding and automating various aspects of reasoning. Such tradi-
tionally separate fields of AI as answer set programming (ASP) [4], propositional sat-
isfiability (SAT) [13], constraint (logic) programming (CSP/CLP) [22,14] are all repre-
sentatives of directions of research in automated reasoning. The algorithmic techniques
developed in subfields of automated reasoning are often suitable for distinct reasoning
tasks. For example, answer set programming proved to be an effective tool for formal-
izing elaborate planning tasks whereas CSP is efficient in solving difficult scheduling
problems. Nevertheless, if the task is to solve complex scheduling problems requiring
elements of planning then neither ASP nor CSP alone is sufficient. In recent years,
researchers attempted to address this problem by developing hybrid approaches that
combine algorithms and systems from different AI subfields. Research in satisfiability
modulo theories (SMT) [21] is a well-known example of this trend.

More recent examples include constraint answer set programming (CASP) [16],
which integrates answer set programming with constraint (logic) programming. Con-
straint answer set programming allows to combine the best of two different automated

reasoning worlds: (1) modeling capabilities of ASP together with advances of its SAT-
like technology in solving and (2) constraint processing techniques for effective rea-
soning over non-boolean constructs. This new area has already demonstrated promis-
ing activity, including the development of the CASP solvers ACSOLVER [19], CLING-
CON [11], EZCSP [2], and IDP [25]. Related techniques have also been used in the
domain of hybrid planning for robotics [23]. CASP opens new horizons for declarative
programming applications. Yet the developments in this field pose a number of ques-
tions, which also apply to the automated reasoning community as a whole.

The broad attention received by the SMT and CASP paradigms, which aim to inte-
grate and build synergies between diverse constraint technologies, and the success they
enjoyed suggest a necessity of a principled and general study of methods to develop
such hybrid solvers. [16] provides a study of the relationship between various CASP
solvers highlighting the importance of creating unifying approaches to describe such
systems. For instance, the CASP systems ACSOLVER, CLINGCON, and EZCSP came
to being within two consecutive years. These systems rely on different ASP and CSP
technologies, so it is difficult to clearly articulate their similarities and differences. In
addition, the CASP solvers adopt different communication schemas among their het-
erogeneous solving components. The system EZCSP adopts a “black-box” architecture,
whereas ACSOLVER and CLINGCON advocate tighter integration. The crucial message
transpiring from these developments in the CASP community is the ever growing need
for standardized techniques to integrate computational methods spanning multiple re-
search areas. Currently such an integration requires nontrivial expertise in multiple ar-
eas, for instance, in SAT, ASP and CSP. We argue for undertaking an effort to mitigate
difficulties of designing hybrid reasoning systems by identifying general principles for
their development and studying the implications of various design choices.

As a step in this direction, in this paper we conduct a case study aiming to explore
a crucial aspect in building hybrid systems – the integration schemas of participating
solving methods. We study various integration schemas and their performance, using
CASP as our test-bed domain. As an exemplary subject for our study we take the CASP
system EZCSP. Originally, EZCSP was developed as an inference engine for CASP that
allowed a lightweight, black-box, integration of ASP and CSP. In order for our analysis
to be conclusive we found it important to study the different integration mechanisms
using the same technology. Within the course of this work we implemented “grey-box”
and “clear-box” approaches for combining ASP and CSP reasoning within EZCSP. We
evaluate these configurations of EZCSP on three domains – Weighted Sequence, Incre-
mental Scheduling, and Reverse Folding – from the Model and Solve track of the Third
Answer Set Programming Competition – 2011 (ASPCOMP) [1]. Hybrid paradigms such
as CASP allow for mixing language constructs and computational mechanisms stem-
ming from different formalisms. Yet, one may design encodings that favor only single
reasoning capabilities of a hybrid system. For this reason, in our study we evaluate dif-
ferent encodings for the proposed benchmarks that we call “pure ASP”, “true CASP”,
and “pure CSP”. As a result we expect to draw a comprehensive picture comparing and
contrasting various integration schemas on several kinds of encodings possible within
hybrid approaches.

18 M. Balduccini and Y. Lierler

We start with a brief review of the CASP formalism. Then we draw a parallel to
SMT solving, aimed at showing that it is possible to transfer to SMT the results obtained
in this work for CASP solving. In Section 3 we review the integration schemas used in
the design of hybrid solvers focusing on the schemas implemented in EZCSP within this
project. Section 4 provides a brief introduction to the application domains considered,
and discusses the variants of the encodings we compared. Experimental results and their
analysis form Section 5.

2 Review: the CASP and SMT problems

The review of logic programs with constraint atoms follows the lines of [15]. A regular
program is a finite set of rules of the form

a0 ← a1, . . . , al, not al+1, . . . , not am, not not am+1, . . . , not not an, (1)

where a0 is ⊥ or an atom, and each ai (1 ≤ i ≤ n) is an atom. This is a special case
of programs with nested expressions [18]. We refer the reader to [18] for details on
the definition of an answer set of a logic program. A choice rule construct {a} [20] of
the LPARSE language can be seen as an abbreviation for a rule a← not not a [9]. We
adopt this abbreviation.

A constraint satisfaction problem (CSP) is defined as a triple 〈X,D,C〉, where X
is a set of variables, D is a domain of values, and C is a set of constraints. Every
constraint is a pair 〈t, R〉, where t is an n-tuple of variables and R is an n-ary relation
on D. An evaluation of the variables is a function from the set of variables to the
domain of values, ν : X → D. An evaluation ν satisfies a constraint 〈(x1, . . . , xn), R〉
if (v(x1), . . . , v(xn)) ∈ R. A solution is an evaluation that satisfies all constraints.

Consider an alphabet consisting of regular and constraint atoms, denoted by A and
C respectively. By C̃, we denote the set of all literals over C. The constraint literals are
identified with constraints via a function γ : C̃ → C so that for any literal l, γ(l) has
a solution if and only if γ(l) does not have one (where l denotes a complement of l).
For a set Y of constraint literals over C, by γ(Y) we denote a set of corresponding
constraints, i.e., {γ(c) | c ∈ Y }. Furthermore, each variable in γ(Y) is associated with
a domain. For a set M of literals, by M+ and MC we denote the set of positive literals
in M and the set of constraint literals over C in M , respectively.

A logic program with constraint atoms is a regular logic program over an extended
alphabet A ∪ C such that, in rules of the form (1), a0 is ⊥ or a0 ∈ A. Given a logic
program with constraint atoms Π , by ΠC we denote Π extended with choice rules {c}
for each constraint atom c occurring in Π . We say that a consistent and complete set M
of literals over atoms of Π is an answer set of Π if

(a1) M+ is an answer set of ΠC and
(a2) MC has a solution.

The CASP problem is the problem of determining, given a logic program with con-
straint atoms Π , whether Π has an answer set.

Hybrid Automated Reasoning Tools: from Black-box to Clear-box Integration 19

For example, let Π be the program

am← X < 12
lightOn← switch, not am
{switch}
⊥ ← not lightOn.

(2)

Intuitively, this program states that (a) light is on only if an action of switch occurs
during the pm hours and (b) light is on (according to the last rule in the program).
Consider a domain of X to be integers from 0 till 24. It is easy to see that a set

{switch, lightOn,¬ am,¬X < 12}

forms the only answer set of program (2).
One may now draw a parallel to satisfiability modulo theories (SMT). To do so

we first formally define the SMT problem. A theory T is a set of closed first-order
formulas. A CNF formula F (a set of clauses) is T -satisfiable if F ∧ T is satisfiable in
the first-order sense. Otherwise, it is called T -unsatisfiable. Let M be a set of literals.
We sometimes may identify M with a conjunction consisting of all its elements. We
say that M is a T -model of F if

(m1) M is a model of F and
(m2) M is T -satisfiable.

The SMT problem for a theory T is the problem of determining, given a formula F ,
whether F has a T -model. It is easy to see that in the CASP problem, ΠC in con-
dition (a1) plays the role of F in (m1) in the SMT problem. At the same time, the
condition (a2) is similar in nature to the condition (m2).

Given this tight conceptual relation between the SMT and CASP formalisms, it is
not surprising that solvers stemming from these different research areas share a lot in
common in their design even though these areas have been developing to a large degree
independently (CASP being a much younger field). We start next section by reviewing
major design principles/methods in crafting SMT solvers. We then discuss how CASP
solvers follow one or another method. This discussion allows us to systematize solvers’
design patterns present both in SMT and CASP so that their relation becomes clearer.
Such transparent view on solvers’ architectures immediately translates findings in one
area into another. Thus although the case study conducted in this research uses CASP
technology only, we expect similar results to hold for SMT, and for the construction of
hybrid automated reasoning methods in general.

3 SMT/CASP Integration Schemas

Satisfiability modulo theories (SMT) integrates different theories “under one roof”. Of-
ten it also integrates different computational procedures for processing such hybrid the-
ories. We are interested in these synergic procedures explored by the SMT community
over the past decade. We follow [21, Section 3.2] for a review of several integration
techniques exploited in SMT.

20 M. Balduccini and Y. Lierler

In every discussed approach, a formula F is treated as a satisfiability formula where
each of its atoms is considered as a propositional symbol, forgetting about the theory
T . Such view naturally invites an idea of lazy integration: the formula F is given to a
SAT solver, if the solver determines that F is unsatisfiable then F is T -unsatisfiable as
well. Otherwise, a propositional model M of F found by the SAT solver is checked
by a specialized T -solver which determines whether M is T -satisfiable. If so, then
it is also a T -model of F , otherwise M is used to build a clause C that precludes
this assignment, i.e., M 6|= C while F ∪ C is T -satisfiable if and only if F is T -
satisfiable. The SAT solver is invoked on an augmented formula F ∪C. Such process is
repeated until the procedure finds a T -model or returns unsatisfiable. Note how in this
approach two automated reasoning systems – a SAT solver and a specialized T -solver –
interleave: a SAT solver generates “candidate models” whereas a T -solver tests whether
these models are in accordance with requirements specified by theory T . We find that
it is convenient to introduce the following terminology for the future discussion: a base
solver and a theory solver, where a base solver is responsible for generating candidate
models and theory solver is responsible for any additional testing required for stating
whether a candidate model is indeed a solution.

It is easy to see how the lazy integration policy translates into the realm of CASP.
Given a program with constraint atoms Π , an answer set solver serves the role of a
base solver by generating answer sets of ΠC (that are “candidate answer sets” for Π)
and then uses a CLP/CSP solver as a theory solver to verify whether condition (a2) is
satisfied on these candidate answer sets. Constraint answer set solver EZCSP embraces
the lazy integration approach in its design.3 To solve the CASP problem, EZCSP offers
a user several options for base and theory solvers. For instance, it allows for the use
of answer set solvers CLASP [10], CMODELS [12], DLV [5] as base solvers and CLP
systems SICSTUS PROLOG [24] and BPROLOG [26] as theory solvers. Such variety in
possible configurations of EZCSP illustrates how lazy integration provides great flexibil-
ity in choosing underlying base and theory solving technology in addressing problems
of interest.

The Davis-Putnam-Logemann-Loveland (DPLL) procedure [6] is a backtracking-
based search algorithm for deciding the satisfiability of a propositional CNF formula.
DPLL-like procedures form the basis for most modern SAT solvers as well as answer
set solvers. If a DPLL-like procedure underlies a base solver in the SMT and CASP
tasks then it opens a door to several refinements of lazy integration. We now describe
these refinements that will also be a focus of the present case study.

In the lazy integration approach a base solver is invoked iteratively. Consider the
SMT task: a CNF formula Fi+1 of the i + 1th iteration to a SAT solver consists of a
CNF formula Fi of the ith iteration and an additional clause (or a set of clauses). Mod-
ern DPLL-like solvers commonly implement such technique as incremental solving.
For instance, incremental SAT-solving allows the user to solve several SAT problems
F1, . . . , Fn one after another (using single invocation of the solver), if Fi+1 results
from Fi by adding clauses. In turn, the solution to Fi+1 may benefit from the knowl-
edge obtained during solving F1, . . . , Fi. Various modern SAT-solvers, including MIN-

3 [2] refers to lazy integration of EZCSP as lightweight integration of ASP and constraint pro-
gramming.

Hybrid Automated Reasoning Tools: from Black-box to Clear-box Integration 21

ISAT [7,8], implement interfaces for incremental SAT solving. Similarly, the answer
set solver CMODELS implements an interface that allows the user to solve several ASP
problems Π1, . . . ,Πn one after another, if Πi+1 results from Πi by adding a set of
rules whose heads are ⊥. It is natural to utilize incremental DPLL-like procedures for
enhancing the lazy integration protocol: we call this refinement lazy+ integration. In
this approach rather than invoking a base solver from scratch an incremental interface
provided by a solver is used to implement the iterative process.

[21] also reviews such integration techniques used in SMT as on-line SAT solver
and theory propagation. In the on-line SAT solver approach, the T -satisfiability of the
(partial) assignment is checked incrementally, while the assignment is being built by
the DPLL-like procedure. This can be done fully eagerly as soon as a change in the par-
tial assignment occurs or at some regular intervals, for instance. Once the inconsistency
is detected, a SAT solver is instructed to backtrack. The theory propagation approach
extends the on-line SAT solver technique by allowing a theory solver not only to ver-
ify that a current partial assignment is T -consistent but also to detect literals in a CNF
formula that must hold given the current partial assignment. The CASP solver CLING-
CON exemplifies the implementation of the theory propagation integration schema in
CASP by unifying answer set solver CLASP as a base solver and constraint processing
system GECODE. ACSOLVER and IDP systems are other CASP solvers that implement
the theory propagation integration schema.
Three Kinds of EZCSP: To conduct our analysis of various integration schemas and
their effect on the performance of the hybrid systems we used the CASP solver EZCSP
as a baseline technology. As mentioned earlier, original EZCSP implements the lazy in-
tegration schema. In the course of this work we developed enhanced interfaces with
answer set solver CMODELS that allowed for the two other integration schemas: lazy+
integration and on-line SAT solver. These implementations rely on API interfaces pro-
vided by CMODELS allowing for varying level of integration between the solvers. The
development of these API interfaces in CMODELS was greatly facilitated by the API
interface provided by MINISAT v. 1.12b supporting non-clausal constraints [8]. In the
following we call

– EZCSP implementing lazy integration with CMODELS as a base solver – a black-
box.

– EZCSP implementing lazy+ integration with CMODELS – a grey-box.
– EZCSP implementing on-line SAT solver integration with CMODELS (fully eagerly)

– a clear-box.

In all these configurations of EZCSP we assume BPROLOG to serve in the role of a theory
solver.

4 Application Domains

In this work we compare and contrast different integration schemas of hybrid solvers
on three application domains that stem from various subareas of computer science.
This section provides a brief overview of these applications. All benchmark domains
are from the Third Answer Set Programming Competition – 2011 (ASPCOMP) [1], in

22 M. Balduccini and Y. Lierler

particular, the Model and Solve track. We chose these domains for our investigation as
they display features that benefit from the synergy of computational methods in ASP
and CSP. Each considered problem contains variables ranging over a large integer do-
main thus making grounding required in pure ASP a bottleneck. On the other hand, the
modeling capabilities of ASP and availability of such sophisticated solving technique
as learning makes ASP attractive for designing solutions to these domains. As a result,
CASP languages and solvers become a natural choice for these benchmarks making
them ideal for our investigation.

Three Kinds of CASP Encodings: It is easy to note that hybrid languages such as
CASP allow for mix-and-match constructs and processing techniques stemming from
different formalisms. Yet, any pure ASP encoding of a problem is also a CASP for-
malization of the same problem. Similarly, it is possible to encode a problem in such a
way that only the CSP solving capabilities of the CASP paradigm are employed. In this
study for two of the benchmarks we considered three kinds of encodings in the CASP
language of EZCSP: pure-ASP encoding; pure-CSP encoding; and true-CASP encoding.
In the third benchmark, the use of three distinct encodings was not possible because
both ASP and CSP features play a major role in the efficiency of the computation.

Analysis of these varying kinds of encodings in CASP gives us a better perspective
on how different integration schemas are effected by the design choices made during
the encoding of a problem. At the same time considering the encoding variety allows
us to verify our intuition that true-CASP is an appropriate modeling and solving choice
for the explored domains.

The weighted-sequence (WSEQ) domain is a handcrafted benchmark problem. Its key
features are inspired by the important industrial problem of finding an optimal join order
by cost-based query optimizers in database systems. [17] provides a complete descrip-
tion of the problem itself as well as the formalization that became “golden standard” in
this work, i.e., the formalization named SEQ++.

In the weighted-sequence problem we are given a set of leaves (nodes) and an in-
teger m – maximum cost. Each leaf is a pair (weight, cardinality) where weight and
cardinality are integers. Every sequence (permutation) of leaves is such that all leaves
but the first are assigned a color that, in turn, associates a leaf with a cost (via a cost
formula). A colored sequence is associated with the cost that is a sum of leaves’ costs.
The task is to find a colored sequence with cost at most m. We refer the reader to [17]
for the details of pure-ASP encoding SEQ++. The same paper also contains the details
on a true-CASP variant of SEQ++ in the language of CLINGCON. We further adapted
that encoding to the language of EZCSP by means of simple syntactic transformations.
Here we provide a review of details of the SEQ++ formalization that we find most rel-
evant to this presentation. The non-domain predicates of the pure-ASP encoding are
leafPos , posColor, posCost. Intuitively, leafPos is responsible for assigning a posi-
tion to a leaf, posColor is responsible for assigning a color to each position, posCost
carries information on costs associated with each leaf. The main difference between
the pure-ASP and true-CASP encodings is in the treatment of the cost values of the
leaves. We first note that cost predicate posCost in the pure-ASP encoding is ”func-
tional”. In other words, when this predicate occurs in an answer set its first argument
uniquely determines its second argument. Often, such functional predicates in ASP en-

Hybrid Automated Reasoning Tools: from Black-box to Clear-box Integration 23

codings can be replaced by constraint atoms in CASP encodings. Indeed, this is the
case in the weighted-sequence problem. Thus in the true-CASP encoding, predicate
posCost is replaced by constraint atoms, making it possible to evaluate cost values
by CSP techniques. This approach is expected to benefit performance especially when
the cost values are large. Predicates leafPos and posColor are also functional. The
pure-CSP encoding is obtained from the true-CASP encoding by replacing leafPos and
posColor predicates by constraint atoms.

The incremental scheduling (IS) domain stems from a problem occurring in commer-
cial printing. In this domain, a schedule is maintained up-to-date with respect to jobs
being added and equipment going offline. A problem description includes a set of de-
vices, each with predefined number of instances (slots for jobs), and a set of jobs to be
produced. The penalty for a job being tardy is computed as td · imp, where td is the
job’s tardiness and imp is a positive integer denoting the job’s importance. The total
penalty of a schedule is the sum of the penalties of the jobs. The task is to find a sched-
ule whose total penalty is no larger than the value specified in a problem instance. We
direct the reader to [3] for a complete description of the domain. The pure-CSP encod-
ing used in our experiments is the official competition encoding submitted to ASPCOMP
by the EZCSP team. In this encoding, constraint atoms are used for (i) assigning start
times to jobs, (ii) selecting which device instance will perform a job, and (iii) calculat-
ing tardiness and penalties. The true-CASP encoding was obtained from the pure-CSP
encoding by introducing a new relation on instance(j, i), stating that job j runs on
device-instance i. This relation and ASP constructs of the EZCSP language replaced the
constraint atoms responsible for the assignment of device instances in the pure-CSP
encoding. The pure-ASP encoding was obtained from the true-CASP encoding by in-
troducing suitable new relations, such as start(j, s) and penalty(j, p), to replace all
the remaining constraint atoms.

In the reverse folding (RF) domain, one manipulates a sequence of n pairwise con-
nected segments located on a 2D plane in order to take the sequence from an initial
configuration to a goal configuration. The sequence is manipulated by pivot moves: ro-
tations of a segment around its starting point by 90 degree in either direction. A pivot
move on a segment causes the segments that follow to rotate around the same center.
Concurrent pivot moves are prohibited. At the end of each move, the segments in the
sequence must not intersect. A problem instance specifies the number of segments, the
goal configuration, and required number of moves, t. The task is to find a sequence of
exactly t pivot moves that produces the goal configuration. The true-CASP encoding
used for our experiments is from the official ASPCOMP 2011 submission package of the
EZCSP team. In this encoding, relation pivot(s, i, d) states that at step s the ith seg-
ment is rotated in direction d. The effects of pivot moves are described by constraint
atoms, which allow carrying out the corresponding calculations with CSP techniques.
The pure-ASP encoding was obtained from the true-CASP encoding by adopting an
ASP-based formalization of the effects of pivot moves. This was accomplished by in-
troducing two new relations, tfoldx (s, i, x) and tfoldy(s, i, y), stating that the new start
of segment i at step s is 〈x, y〉. The definition of the relations is provided by suitable
ASP rules.

24 M. Balduccini and Y. Lierler

0.000

1000.000

2000.000

3000.000

4000.000

5000.000

6000.000

01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Black-box Grey-box Clear-box

Figure 1. Performance on WSEQ domain: true-CASP encoding

180000.000

159541.000

37627.870

180000.000

180000.000

235.470

1.000

10.000

100.000

1000.000

10000.000

100000.000

1000000.000

Total Time (sec)

CASP Black CASP Grey CASP Clear Pure-CSP ASP Clingcon

Figure 2. Performance on WSEQ domain: total times in logarithmic scale

5 Experimental Results

The experimental comparison of the integration schemas was conducted on a com-
puter with an Intel Core i7 processor running at 3GHz. Memory limit for each pro-
cess and timeout considered were 3 GB RAM and 6, 000 seconds respectively. The
version of EZCSP used in the experiments was 1.6.20b49: it incorporated CMOD-
ELS version 3.83 as a base solver and BPROLOG 7.4 3 as a theory solver. An-
swer set solver CMODELS 3.83 was also used for the experiments with the pure-
ASP encodings. In order to provide a frame of reference with respect to the state
of the art in CASP, the tables for WSEQ and IS include performance information
for CLINGCON 2.0.3 on true-CASP encodings adapted to the language of CLING-
CON. The ezcsp executable used in the experiments and the encodings can be
downloaded from http://www.mbalduccini.tk/ezcsp/aspocp2013/ezcsp-binaries.tgz and

Hybrid Automated Reasoning Tools: from Black-box to Clear-box Integration 25

http://www.mbalduccini.tk/ezcsp/aspocp2013/experiments.tgz respectively. In all fig-
ures presented:

– CASP Black, CASP Grey, CASP Clear denote EZCSP implementing respectively
black-box, grey-box and clear-box, and running a true-CASP encoding;

– Pure-CSP denotes EZCSP implementing black-box running a pure-CSP encoding
(note that for pure-CSP encodings there is no difference in performance between
the integration schemas);

– ASP denotes CMODELS running a pure-ASP encoding;
– Clingcon denotes CLINGCON running a true-CASP encoding.

We begin our analysis with WSEQ. The instances used in the experiments are the
30 instances available via ASPCOMP. WSEQ proves to be a domain that truly requires
the interaction of the ASP and CSP solvers. Answer set solver CMODELS on the pure-
ASP encoding runs out of memory on every instance (in the tables, out-of-memory
conditions and timeouts are both rendered as out-of-time results). EZCSP on the pure-
CSP encoding reaches the timeout limit on every instance. The true-CASP encoding
running in black-box also times out on every instance. As shown in Figure 1, the true-
CASP encoding running in grey-box performs slightly better. The true-CASP encoding
running in clear-box instead performs substantially better. Figure 2 reports the total
times across all the instances for all solvers/encodings pairs considered. Notably, CASP
solver CLINGCON on true-CASP encoding is several orders of magnitude faster than any
other configuration. This confirms that for this domain tight integration schemas indeed
have an advantage. Recall that CLINGCON implements a tighter integration schema than
that of EZCSP clear-box that, in addition to the on-line SAT solver schema of clear-box,
also includes theory propagation. Answer set solver CLASP serves the role of base solver
of CLINGCON whereas GECODE is the theory solver.

42433.890

36228.530

33123.220

38274.260

300000.000

1183.060

0.000

5000.000

10000.000

15000.000

20000.000

25000.000

30000.000

35000.000

40000.000

45000.000

50000.000

Total Time (sec)

CASP Black CASP Grey CASP Clear Pure-CSP ASP Clingcon

Figure 3. Performance on IS domain, easy instances: total times (ASP encoding off-chart)

In case of the IS domain we considered two sets of experiments. In the former
we used the 50 official instances from ASPCOMP. We refer to these instances as easy.

26 M. Balduccini and Y. Lierler

0.000

1000.000

2000.000

3000.000

4000.000

5000.000

6000.000

0
1

0
2

0
3

0
4

0
5

0
6

0
7

0
8

0
9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

3
1

3
2

3
3

3
4

3
5

3
6

3
7

3
8

3
9

4
0

4
1

4
2

4
3

4
4

4
5

4
6

4
7

4
8

4
9

5
0

CASP Black CASP Grey CASP Clear Pure-CSP ASP Clingcon

Figure 4. Performance on IS domain, easy instances: overall view

0.000

0.100

0.200

0.300

0.400

0.500

0.600

0.700

0.800

0.900

1.000

0
1
0
2
0
3
0
4
0
5
0
6
0
7
0
8
0
9
1
0
1
1
1
2
1
3
1
4
1
5
1
6
1
7
1
8
1
9
2
0
2
1
2
2
2
3
2
4
2
5
2
6
2
7
2
8
2
9
3
0
3
1
3
2
3
3
3
4
3
5
3
6
3
7
3
8
3
9
4
0
4
1
4
2
4
3
4
4
4
5
4
6
4
7
4
8
4
9
5
0

Black-box Grey-box Clear-box

Figure 5. Performance on IS domain, easy instances: true-CASP encoding (detail of 0-1sec exe-
cution time range)

Figure 4 depicts the overall per-instance performance on the IS-easy domain. It appears
that tight integration schemas have an advantage, allowing the true-CASP encoding to
outperform the pure-CSP encoding. As one might expect, the best performance for the
true-CASP encoding is obtained with the clear-box integration schema, as shown in
Figure 3 and in Figure 5. Figure 3 provides a comparison of the total times. In this case
the early pruning of the search space made possible by the clear-box architecture yields
substantial benefits. As expected, it is also the case that grey-box is faster than black-
box. As for WSEQ, CLINGCON is the fastest, and CMODELS on the pure-ASP encoding
runs out of memory in all the instances.

The next experiment reveals an interesting change in behavior of solver/encodings
pairs as the complexity of the instances of the IS domain grows. In this test, we used a
set of 30 instances obtained by (1) generating randomly 500 fresh instances; (2) running
the true-CASP encoding with the grey-box integration schema on them with a timeout

Hybrid Automated Reasoning Tools: from Black-box to Clear-box Integration 27

Figure 6. Performance on IS domain, hard instances: overall view

Figure 7. Performance on IS domain, hard instances: total times

of 300 seconds; (3) selecting randomly, from those, 15 instances that resulted in time-
out and 15 instances that were solved in 25 seconds or more. The numerical parameters
used in the process were selected with the purpose of identifying challenging instances.
The overall per-instance execution times reported in Figure 7 clearly indicate the level
of difficulty of the selected instances. Remarkably, these more difficult instances are
solved more efficiently by the pure-CSP encoding that relies only on the CSP solver, as
evidenced by Figure 6. In fact, the pure-CSP encoding outperforms every other method
of computation, including CLINGCON on true-CASP encoding. More specifically, solv-
ing the instances with the true-CASP encoding takes between 30% and 50% longer than
with the pure-CSP encoding. (Once again, CMODELS runs out of memory.)

The final experiment focuses on the RF domain. We used the 50 official instances
from ASPCOMP to conduct the analysis. Figure 9 presented shows that this domain is
comparatively easy. Figure 10 illustrates that the black-box and grey-box integration
schemas are several orders of magnitude faster than clear-box. This somewhat surpris-

28 M. Balduccini and Y. Lierler

561.140

474.120

114511.270 282009.400
0.000

100.000

200.000

300.000

400.000

500.000

600.000

700.000

800.000

900.000

1000.000

Total Time (sec)

CASP Black CASP Grey CASP Clear ASP

Figure 8. Performance on RF domain: total times (detail of 0-1000sec execution time range, ASP
and clear-box off-chart)

0.000

1000.000

2000.000

3000.000

4000.000

5000.000

6000.000

0
1

0
2

0
3

0
4

0
5

0
6

0
7

0
8

0
9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

3
1

3
2

3
3

3
4

3
5

3
6

3
7

3
8

3
9

4
0

4
1

4
2

4
3

4
4

4
5

4
6

4
7

4
8

4
9

5
0

CASP Black CASP Grey CASP Clear ASP

Figure 9. Performance on RF domain: overall view

ing result can be explained by the fact that in this domain frequent checks with the
theory solver add more overhead rather than being of help in identifying an earlier
point to backtrack. CMODELS on the pure-ASP encoding runs out of memory in all but
3 instances. The total execution times are presented in Figure 8.

6 Conclusions

The case study conducted in this work clearly illustrates the influence that integration
methods have on the behavior of hybrid systems. Each integration schema may be of
use and importance for some domain. Thus systematic means ought to be found for
facilitating building hybrid systems supporting various coupling mechanisms. Building
clear and flexible API interfaces allowing for various types of interactions between
the solvers seems a necessary step towards making the development of hybrid solving

Hybrid Automated Reasoning Tools: from Black-box to Clear-box Integration 29

0.000

5.000

10.000

15.000

20.000

25.000

30.000

35.000

40.000

45.000

50.000

0
1
0
2
0
3
0
4
0
5
0
6
0
7
0
8
0
9
1
0
1
1
1
2
1
3
1
4
1
5
1
6
1
7
1
8
1
9
2
0
2
1
2
2
2
3
2
4
2
5
2
6
2
7
2
8
2
9
3
0
3
1
3
2
3
3
3
4
3
5
3
6
3
7
3
8
3
9
4
0
4
1
4
2
4
3
4
4
4
5
4
6
4
7
4
8
4
9
5
0

Black-box Grey-box Clear-box

Figure 10. Performance on RF domain: true-CASP encoding, detail of 0-0.50sec execution time
range

systems effective. This work provides evidence for the need of an effort to this ultimate
goal.

References

1. Third answer set programming competition (2011), https://www.mat.unical.it/
aspcomp2011/

2. Balduccini, M.: Representing constraint satisfaction problems in answer set programming.
In: Proceedings of ICLP’09 Workshop on Answer Set Programming and Other Computing
Paradigms (ASPOCP’09) (2009)

3. Balduccini, M.: Industrial-Size Scheduling with ASP+CP. In: Delgrande, J.P., Faber, W.
(eds.) 11th International Conference on Logic Programming and Nonmonotonic Reason-
ing (LPNMR11). Lecture Notes in Artificial Intelligence (LNCS), vol. 6645, pp. 284–296.
Springer Verlag, Berlin (2011)

4. Brewka, G., Niemelä, I., Truszczyński, M.: Answer set programming at a glance. Commu-
nications of the ACM 54(12), 92–103 (2011)

5. Citrigno, S., Eiter, T., Faber, W., Gottlob, G., Koch, C., Leone, N., Mateis, C., Pfeifer, G.,
Scarcello, F.: The DLV system: Model generator and application frontends. In: Proceedings
of Workshop on Logic Programming (WLP97) (1997)

6. Davis, M., Logemann, G., Loveland, D.: A machine program for theorem proving. Commu-
nications of the ACM 5(7), 394–397 (1962)

7. Een, N., Biere, A.: Effective preprocessing in sat through variable and clause elimination. In:
SAT (2005)

8. Een, N., Sörensson, N.: An extensible sat-solver. In: SAT (2003)
9. Ferraris, P., Lifschitz, V.: Weight constraints as nested expressions. Theory and Practice of

Logic Programming 5, 45–74 (2005)
10. Gebser, M., Kaufmann, B., Neumann, A., Schaub, T.: Conflict-driven answer set solving. In:

Proceedings of 20th International Joint Conference on Artificial Intelligence (IJCAI’07). pp.
386–392. MIT Press (2007)

11. Gebser, M., Ostrowski, M., Schaub, T.: Constraint answer set solving. In: Proceedings of
25th International Conference on Logic Programming (ICLP). pp. 235–249. Springer (2009)

30 M. Balduccini and Y. Lierler

12. Giunchiglia, E., Lierler, Y., Maratea, M.: Answer set programming based on propositional
satisfiability. Journal of Automated Reasoning 36, 345–377 (2006)

13. Gomes, C.P., Kautz, H., Sabharwal, A., Selman, B.: Satisfiability solvers. In: van Harme-
len, F., Lifschitz, V., Porter, B. (eds.) Handbook of Knowledge Representation, pp. 89–134.
Elsevier (2008)

14. Jaffar, J., Maher, M.: Constraint logic programming: A survey. Journal of Logic Program-
ming 19(20), 503–581 (1994)

15. Lierler, Y.: Constraint answer set programming (2012), http://www.cs.utexas.
edu/users/ai-lab/pub-view.php?PubID=127221

16. Lierler, Y.: On the relation of constraint answer set programming languages and algorithms.
In: Proceedings of the 26th Conference on Artificial Intelligence (AAAI-12). MIT Press
(2012)

17. Lierler, Y., Smith, S., Truszczynski, M., Westlund, A.: Weighted-sequence problem: Asp vs
casp and declarative vs problem oriented solving. In: Fourteenth International Symposium
on Practical Aspects of Declarative Languages (2012), http://www.cs.utexas.edu/
users/ai-lab/pub-view.php?PubID=127085

18. Lifschitz, V., Tang, L.R., Turner, H.: Nested expressions in logic programs. Annals of Math-
ematics and Artificial Intelligence 25, 369–389 (1999)

19. Mellarkod, V.S., Gelfond, M., Zhang, Y.: Integrating answer set programming and constraint
logic programming. Annals of Mathematics and Artificial Intelligence (2008)

20. Niemelä, I., Simons, P.: Extending the Smodels system with cardinality and weight con-
straints. In: Minker, J. (ed.) Logic-Based Artificial Intelligence, pp. 491–521. Kluwer (2000)

21. Nieuwenhuis, R., Oliveras, A., Tinelli, C.: Solving SAT and SAT modulo theories: From
an abstract Davis-Putnam-Logemann-Loveland procedure to DPLL(T). Journal of the ACM
53(6), 937–977 (2006)

22. Rossi, F., van Beck, P., Walsh, T.: Constraint porgramming. In: van Harmelen, F., Lifschitz,
V., Porter, B. (eds.) Handbook of Knowledge Representation, pp. 181–212. Elsevier (2008)

23. Schuller, P., Patoglu, V., Erdem, E.: A Systematic Analysis of Levels of Integration between
Low-Level Reasoning and Task Planning. In: Workshop on Combining Task and Motion
Planning at the IEEE International Conference on Robotics and Automation 2013 (2013)

24. SICStus: Sicstus Prolog Web Site (2008), http://www.sics.se/isl/sicstuswww/site/
25. Wittocx, J., Mariën, M., Denecker, M.: The IDP system: a model expansion system for an

extension of classical logic. In: LaSh. pp. 153–165 (2008)
26. Zhou, N.F.: The language features and architecture of B-Prolog. Journal of Theory and Prac-

tice of Logic Programming (TPLP) 12(1–2), 189–218 (Jan 2012)

Hybrid Automated Reasoning Tools: from Black-box to Clear-box Integration 31

32

Aspartame: Solving Constraint Satisfaction Problems
with Answer Set Programming

M. Banbara1, M. Gebser2, K. Inoue3, T. Schaub?2, T. Soh1, N. Tamura1, and M. Weise2

1 University of Kobe
2 University of Potsdam

3 National Institute of Informatics Tokyo

Abstract. Encoding finite linear CSPs as Boolean formulas and solving them by
using modern SAT solvers has proven to be highly effective, as exemplified by
the award-winning sugar system. We here develop an alternative approach based
on ASP. This allows us to use first-order encodings providing us with a high de-
gree of flexibility for easy experimentation with different implementations. The
resulting system aspartame re-uses parts of sugar for parsing and normalizing
CSPs. The obtained set of facts is then combined with an ASP encoding that can
be grounded and solved by off-the-shelf ASP systems. We establish the competi-
tiveness of our approach by empirically contrasting aspartame and sugar.

1 Introduction

Encoding finite linear Constraint Satisfaction Problems (CSPs; [1, 2]) as propositional
formulas and solving them by using modern solvers for Satisfiability Testing (SAT; [3])
has proven to be a highly effective approach, as demonstrated by the award-winning
sugar4 system. The CSP solver sugar reads a CSP instance and transforms it into a
propositional formula in Conjunctive Normal Form (CNF). The translation relies on
the order encoding [4, 5], and the resulting CNF formula can be solved by an off-the-
shelf SAT solver.

In what follows, we elaborate upon an alternative approach based on Answer Set
Programming (ASP; [6]) and present the resulting CSP solver aspartame5. The major
difference between sugar and aspartame rests upon the implementation of the transla-
tion of CSPs into Boolean constraint problems. While sugar implements a translation
into CNF in the imperative programming language JAVA, aspartame starts with a trans-
lation into a set of facts.6 In turn, these facts are combined with a general-purpose ASP
encoding for CSP solving (also based on the order encoding), which is subsequently in-
stantiated by an off-the-shelf ASP grounder. The resulting propositional logic program
is then solved by an off-the-shelf ASP solver.

? Affiliated with the School of Computing Science at Simon Fraser University, Burnaby, Canada,
and the Institute for Integrated and Intelligent Systems at Griffith University, Brisbane, Aus-
tralia.

4 http://bach.istc.kobe-u.ac.jp/sugar
5 http://www.cs.uni-potsdam.de/wv/aspartame
6 In practice, aspartame re-uses sugar’s front-end for parsing and normalizing CSPs.

The high-level approach of ASP has obvious advantages. First, instantiation is done
by general-purpose ASP grounders rather than dedicated implementations. Second, the
elaboration tolerance of ASP allows for easy maintenance and modifications of encod-
ings. And finally, it is easy to experiment with novel or heterogeneous encodings. How-
ever, the intruding question is whether the high-level approach of aspartame matches
the performance of the more dedicated sugar system. We empirically address this ques-
tion by contrasting the performance of both CSP solvers, while fixing the back-end
solver to clasp, used as both a SAT and an ASP solver.

From an ASP perspective, we gain insights into advanced modeling techniques for
solving CSPs. The ASP encoding implementing CSP solving with aspartame has the
following features:

– usage of function terms to abbreviate structural subsums
– avoidance of (artificial) intermediate Integer variables (to break sum expressions)
– order encoding applied to structural subsum variables (as well as input variables)
– encoding-wise filtering of relevant threshold values (no blind usage of domains)
– customizable “pigeon-hole constraint” encoding for alldifferent constraints
– “smart” encoding of table constraints, tracing admissible tuples along arguments

In the sequel, we assume some familiarity with ASP, its semantics as well as its
basic language constructs. A comprehensive treatment of ASP can be found in [6], one
oriented towards ASP solving is given in [7]. Our encodings are given in the language
of gringo 3 [8]. Although we provide essential definitions of CSPs in the next section,
we refer the reader to the literature [1, 2] for a broader perspective.

2 Background

A Constraint Satisfaction Problem (CSP) is given by a pair (V, C) consisting of a set V
of variables and a set C of constraint clauses. Every variable x ∈ V has an associated
finite domain D(x) such that either D(x) = {>,⊥} or ∅ ⊂ D(x) ⊆ Z; x is a Boolean
variable if D(x) = {>,⊥}, and an Integer variable otherwise. We denote the set of
Boolean variables in V by B(V) and the set of Integer variables in V by I(V). A con-
straint clause C ∈ C is a set of literals over Boolean variables in B(V) as well as linear
inequalities or global constraints on Integer variables in I(V). Any literal in C is of
the form e or e, where e is either a Boolean variable in B(V), a linear inequality, or a
global constraint. A linear inequality is an expression

∑
1≤i≤n aixi ≤ m in which m

as well as all ai for 1 ≤ i ≤ n are Integer constants and x1, . . . , xn are Integer vari-
ables in I(V). A global constraint (cf. [9]) is an arbitrary relation over Integer variables
in I(V); we here restrict ourselves to table and alldifferent constraints over subsets
{x1, . . . , xn} of the Integer variables in I(V), where a table constraint specifies tuples
(d1, . . . , dn) ∈ D(x1) × · · · ×D(xn) of admitted value combinations and alldifferent
applies if x1, . . . , xn are assigned to distinct values in their respective domains.7

7 Linear inequalities relying on further comparison operators, such as <, >, ≥, =, and 6=, can
be converted into the considered format via appropriate replacements [5]. Moreover, note that
we here limit the consideration of global constraints to the ones that are directly, i.e., without
normalization by sugar, supported in our prototypical ASP encodings shipped with aspartame.

34 M. Banbara et al.

Given a CSP (V, C), a variable assignment v is a (total) mapping v : V →⋃
x∈V D(x) such that v(x) ∈ D(x) for every x ∈ V . A Boolean variable x ∈ B(V)

is satisfied w.r.t. v if v(x) = >. Likewise, a linear inequality
∑

1≤i≤n aixi ≤ m is
satisfied w.r.t. v if

∑
1≤i≤n aiv(xi) ≤ m. Table constraints e ⊆ D(x1)× · · · ×D(xn)

and alldifferent constraints over subsets {x1, . . . , xn} of I(V) are satisfied w.r.t. v if
(v(x1), . . . , v(xn)) ∈ e or v(xi) 6= v(xj) for all 1 ≤ i < j ≤ n, respectively. Any
Boolean variable, linear inequality, or global constraint that is not satisfied w.r.t. v is
unsatisfied w.r.t. v. A constraint clause C ∈ C is satisfied w.r.t. v if there is some literal
e ∈ C (or e ∈ C) such that e is satisfied (or unsatisfied) w.r.t. v. The assignment v is a
solution for (V, C) if every C ∈ C is satisfied w.r.t. v.

Example 1. Consider a CSP (V, C) with Boolean and Integer variables B(V) = {b} and
I(V) = {x, y, z}, where D(x) = D(y) = D(z) = {1, 2, 3}, and constraint clauses
C = {C1, C2, C3} as follows:

C1 = {alldifferent(x, y, z)} (1)
C2 = {b, 4x− 3y + z ≤ 0} (2)

C3 =
{
b, (x, y) ∈ {(1, 3), (2, 2), (3, 1)}

}
(3)

The alldifferent constraint in C1 requires values assigned to x, y, and z to be mutually
distinct. Respective assignments v satisfying the linear inequality 4x − 3y + z ≤ 0 in
C2 include v(x) = 2, v(y) = 3, and v(z) = 1 or v(x) = 1, v(y) = 3, and v(z) = 2,
while the table constraint in C3 is satisfied w.r.t. assignments v containing v(x) = 1,
v(y) = 3, and v(z) = 2 or v(x) = 3, v(y) = 1, and v(z) = 2. In view of the Boolean
variable b, whose value allows for “switching” between the linear inequality in C2 and
the table constraint in C3, we obtain the following solutions v1, . . . , v4 for (V, C):

b x y z

v1 ⊥ 2 3 1
v2 ⊥ 1 3 2
v3 > 1 3 2
v4 > 3 1 2

3 Approach

The aspartame tool extends the SAT-based solver sugar by an output component to
represent a CSP in terms of ASP facts. The generated facts can then, as usual, be com-
bined with a first-order encoding processable with off-the-shelf ASP systems. In what
follows, we describe the format of facts generated by aspartame, and we present a ded-
icated ASP encoding utilizing function terms to capture substructures in CSP instances.

3.1 Fact Format

Facts express the variables and constraints of a CSP instance in the syntax of ASP
grounders like gringo [8]. Their format is easiest explained on the CSP from Example 1,
whose fact representation is shown in Listing 1. While facts of the predicate var/2

Aspartame: Solving Constraint Satisfaction Problems with ASP 35

1 var(bool,b). var(int,x;y;z,range(1,3)).

3 constraint(1,global(alldifferent,arg(x,arg(y,arg(z,nil))))).
4 constraint(2,b).
5 constraint(2,op(le,op(add,op(add,op(mul,4,x),op(mul,-3,y)),op(mul,1,z)),0)).
6 constraint(3,op(neg,b)).
7 constraint(3,rel(r,arg(x,arg(y,nil)))).

9 rel(r,2,3,supports).
10 tuple(r,1,1,1). tuple(r,1,2,3).
11 tuple(r,2,1,2). tuple(r,2,2,2).
12 tuple(r,3,1,3). tuple(r,3,2,1).

Listing 1. Facts representing the CSP from Example 1.

provide labels of Boolean variables like b, the predicate var/3 includes a third argument
for declaring the domains of Integer variables like x, y, and z. Domain declarations
rely on function terms range(l,u), standing for continuous Integer intervals [l, u].
While one term, range(1,3), suffices for the common domain {1, 2, 3} of x, y,
and z, in general, several intervals can be specified (via separate facts) to form non-
continuous domains. Note that the interval format for Integer domains offers a compact
fact representation of (continuous) domains; e.g., the single term range(1,10000)
captures a domain with 10000 elements. Furthermore, the usage of meaningful function
terms avoids any need for artificial labels to refer to domains or parts thereof.

The literals of constraint clauses are also represented by means of function terms.
In fact, the second argument of constraint/2 in Line 3 of Listing 1 stands for
alldifferent(x, y, z) from the constraint clause C1 in (1), which is identified via the
first argument of constraint/2. Since every fact of the predicate constraint/2
is supposed to describe a single literal only, constraint clause identifiers establish the
connection between individual literals of a clause. This can be observed on the facts in
Line 4–7, specifying literals belonging to the binary constraint clauses C2 and C3 in (2)
and (3). Here, the terms b and op(neg,b) refer to the literals b and b over Boolean
variable b, where op(neg,e) is the general notation of e for all (supported) constraint
expressions e. The more complex term of the form op(le,Σ,m) in Line 5 stands
for a linear inequality Σ ≤ m. In particular, the inequality 4x − 3y + z ≤ 0 from C2

is represented by nested op(add,Σ,ax) terms whose last argument ax and deep-
est Σ part are of the form op(mul,a,x); such nesting corresponds to the precedence
(((4∗x)+(−3∗y))+(1∗z)) ≤ 0. The representation by function terms captures linear
inequalities of arbitrary arity and, as with Integer intervals, associates (sub)sums with
canonical labels. Currently, the order of arguments ax is by variable labels x, while
more “clever” orders may be established in the future.

The function terms expressing table and alldifferent constraints both include
an argument list of the form arg(x1,arg(. . .,arg(xn,nil). . .)), in which
x1, . . . , xn refer to Integer variables. In Line 3 of Listing 1, an alldifferent con-
straint over arguments x is declared via global(alldifferent,x); at present,
alldifferent is a fixed keyword in facts generated by aspartame, but support for
other kinds of global constraints can be added in the future. Beyond an argument list x,
function terms of the form rel(r,x) also include an identifier r referring to a collec-
tion of table constraint tuples. For instance, the corresponding argument r in Line 7 ad-

36 M. Banbara et al.

dresses the tuples specified by the facts in Line 9–12. Here, rel(r,2,3,supports)
declares that r is of arity 2 and includes 3 tuples, provided as white list entries via facts
of the form tuple(r,t,i,d). The latter include tuple and argument identifiers t and i
along with a value d. Accordingly, the facts in Line 10, 11, and 12 specify the pairs
(1, 3), (2, 2), and (3, 1) of values, which are the combinations admitted by the table
constraint from C3 in (3). The application of the table constraint to variables x and y is
expressed by the argument list in Line 7, so that tuple declarations can be re-used for
other variables subject to a similar table constraint.

3.2 First-Order Encoding

In addition to an output component extending sugar for generating ASP facts, aspar-
tame comes along with alternative first-order ASP encodings of solutions for CSP in-
stances. In the following, we sketch a dedicated encoding that, for one, relies on func-
tion terms to capture recurrences of similar structures and, for another, lifts the order
encoding approach to structural subsum entities.

Static Extraction of Relevant Values To begin with, Listing 2 shows (relevant) in-
stances of domain predicates, evaluated upon grounding, for the CSP from Example 1.
While derived facts in Line 1 merely provide a projection of the predicate var/3 omit-
ting associated domains, the instances of look/2 in Line 2 express that all values in the
common domain {1, 2, 3} of x, y, and z shall be considered. In fact, domain predicates
extract variable values that can be relevant for the satisfiability of a CSP instance, while
discarding the rest. The respective static analysis consists of three stages: (i) isolation
of threshold values relevant to linear inequalities; (ii) addition of missing values for
variables occurring in alldifferent constraints; (iii) addition of white/black list values
for table constraints.

In the first stage, we consider the domains of Integer variables x in terms of cor-
responding (non-overlapping) intervals I(x) = {[l1, u1], . . . , [lk, uk]}. These are ex-
tended to multiplications by Integer constants a according to the following scheme:

I(ax) =

{
{[a ∗ l1, a ∗ u1], . . . , [a ∗ lk, a ∗ uk]} if 0 ≤ a
{[a ∗ uk, a ∗ lk], . . . , [a ∗ u1, a ∗ l1]} if a < 0

For 4x− 3y+ z ≤ 0 from C2 in (2), we get I(4x) = {[4, 12]}, I(−3y) = {[−9,−3]},
and I(1z) = {[1, 3]}. Such intervals are used to retrieve bounds for (sub)sums:

−→
l (ax) = min {l | [l, u] ∈ I(ax)}
−→u (ax) = max {u | [l, u] ∈ I(ax)}

−→
l (a1x1 + a2x2) =

−→
l (a1x1) +

−→
l (a2x2)

−→u (a1x1 + a2x2) =
−→u (a1x1) +−→u (a2x2)

Given
−→
l (4x) = 4, −→u (4x) = 12,

−→
l (−3y) = −9, −→u (−3y) = −3,

−→
l (1z) = 1, and

−→u (1z) = 3, we derive
−→
l (4x− 3y) = −5, −→u (4x− 3y) = 9,

−→
l (4x− 3y + z) = −4,

and −→u (4x− 3y + z) = 12.

Aspartame: Solving Constraint Satisfaction Problems with ASP 37

In view of the comparison with 0 in 4x−3y+z ≤ 0, we can now “push in” relevant
thresholds via:

←−
l (
∑

1≤i≤naixi) = max{m,−→l (∑1≤i≤naixi)} for
∑

1≤i≤naixi ≤ m
←−u (∑1≤i≤naixi) = min{m,−→u (∑1≤i≤naixi)} for

∑
1≤i≤naixi ≤ m

←−
l (
∑

1≤i≤n−1aixi) = max{←−l (∑1≤i≤naixi)−−→u (anxn),
−→
l (
∑

1≤i≤n−1aixi)}
←−u (∑1≤i≤n−1aixi) = min{←−u (∑1≤i≤naixi)−

−→
l (anxn),

−→u (∑1≤i≤n−1aixi)}

Such threshold analysis leads to
←−
l (4x−3y+z) =←−u (4x−3y+z) = 0,

←−
l (4x−3y) =

−3,←−u (4x− 3y) = −1,
←−
l (4x) = 4, and←−u (4x) = 8, telling us that subsums relevant

for checking whether 4x−3y+z ≤ 0 satisfy−3 ≤ 4x−3y ≤ −1 and 4 ≤ 4x ≤ 8. Note
that maxima (or minima) used to construct

←−
l (
∑

1≤i≤n aixi) (or ←−u (∑1≤i≤n aixi))
serve two purposes. For one, they correct infeasible arithmetical thresholds to domain
values; e.g.,

←−
l (4x−3y)−−→u (−3y) = −3+3 = 0 tells us that 0 would be the greatest

lower bound to consider for 4x (since 4x − 3y + z ≤ 0 were necessarily satisfied
when 4x ≤ 0), while the smallest possible value

−→
l (4x) = 4 exceeds 0. For another,

dominating values like 4x = 12 are discarded, given that 4x− 3y + z ≤ 0 cannot hold
when 4x >←−u (4x− 3y)−−→l (−3y) = −1 + 9 = 8.

Letting ub(0) = {0}, the upper bounds for
∑

1≤i≤n aixi that deserve further con-
sideration are then obtained as follows:

ub(
∑

1≤i≤naixi) = {max{j + an∗k,
←−
l (
∑

1≤i≤naixi)} | j ∈ ub(
∑

1≤i≤n−1aixi),

k ∈ Z, [l, u] ∈ I(anxn), l ≤ an∗k ≤ min{u,←−u (∑1≤i≤naixi)− j}}

Starting from the above thresholds, ub(4x) = {4, 8}, ub(4x − 3y) = {−3,−2,−1},
and ub(4x − 3y + z) = {0} indicate upper bounds for subsums that are of interest in
evaluating 4x− 3y + z ≤ 0. Upper bounds in ub(

∑
1≤i≤naixi) can in turn be related

to “maximal” pairs of addends:

S(
∑

1≤i≤naixi) = {(j,max{an∗k | [l, u] ∈ I(anxn), l ≤ an∗k ≤ min{u, ub − j},
k ∈ Z}) | j ∈ ub(

∑
1≤i≤n−1aixi), ub ∈ ub(

∑
1≤i≤naixi),

−→
l (anxn) ≤ ub − j}

In our example, we get S(4x) = {(0, 4), (0, 8)}, S(4x − 3y) =
{(4,−9), (4,−6), (8,−9)}, and S(4x− 3y + z) = {(−3, 3), (−2, 2), (−1, 1)}.

Finally, we associate each pair (j, an∗k) ∈ S(
∑

1≤i≤naixi) of addends with the
upper bound s(j, an∗k) = min{ub ∈ ub(

∑
1≤i≤naixi) | j + an∗k ≤ ub}, thus

obtaining s(0, 4) = 4, s(0, 8) = 8, s(4,−9) = −3, s(4,−6) = −2, s(8,−9) = −1,
and s(−3, 3) = s(−2, 2) = s(−1, 1) = 0.

The described analysis of thresholds for subsums is implemented via deterministic
domain predicates in our ASP encoding. Variables’ domain values underlying relevant
addends are provided by the derived facts in Line 10–12 of Listing 2. Note that value 3
for x as well as 1 for y are ignored here, given that 4x = 12 and −3y = −3 do not
admit 4x − 3y + z ≤ 0 to hold. The mapping of relevant addends to their associated

38 M. Banbara et al.

1 var(int,x;y;z).
2 look(x;y;z,1;2;3).

4 order(x;y;z,3,2).
5 order(x;y;z,2,1).

7 order(op(add,op(mul,4,x),op(mul,-3,y)),-1,-2).
8 order(op(add,op(mul,4,x),op(mul,-3,y)),-2,-3).

10 look(op(mul,4,x),1;2,1).
11 look(op(mul,-3,y),2;3,-1).
12 look(op(mul,1,z),1;2;3,1).

14 look(op(add,op(mul,4,x),op(mul,-3,y)),4,-6,-2).
15 look(op(add,op(mul,4,x),op(mul,-3,y)),4,-9,-3).
16 look(op(add,op(mul,4,x),op(mul,-3,y)),8,-9,-1).

18 look(op(add,op(add,op(mul,4,x),op(mul,-3,y)),op(mul,1,z)),-1,1,0).
19 look(op(add,op(add,op(mul,4,x),op(mul,-3,y)),op(mul,1,z)),-2,2,0).
20 look(op(add,op(add,op(mul,4,x),op(mul,-3,y)),op(mul,1,z)),-3,3,0).

22 bound(op(add,op(add,op(mul,4,x),op(mul,-3,y)),op(mul,1,z)),12).

24 difind(arg(x,arg(y,arg(z,nil))),x,1).
25 difind(arg(x,arg(y,arg(z,nil))),y,2).
26 difind(arg(x,arg(y,arg(z,nil))),z,3).
27 difmax(arg(x,arg(y,arg(z,nil))),3,1;2;3).
28 difall(arg(x,arg(y,arg(z,nil)))).

30 relind(r,arg(x,arg(y,nil)),x,1).
31 relind(r,arg(x,arg(y,nil)),y,2).

Listing 2. Domain predicates derived via stratified rules (not shown) from facts in Listing 1.

upper bound can be observed in Line 14–20 for the (sub)sums 4x − 3y and (4x −
3y) + z. The respective facts describe patterns for mapping assigned domain values to
their multiplication results and then to upper bounds for subsums, which are eventually
subject to a (non-trivial) comparison in some linear inequality. (Trivial comparisons
are performed via the total upper bound for an addition result, as given in Line 22.)
Notably, the static threshold analysis is implemented on terms representing the domains
of variables, and outcomes are then mapped back to original variables. Thus, linear
inequalities over different variables with the same domains are analyzed only once. The
final function terms, however, mention the variables whose values are evaluated, where
recurring substructures may share a common term with which all relevant threshold
values are associated.

Although the analysis of the linear inequality 4x − 3y + z ≤ 0 identifies the
values 3 for x and 1 for y as redundant, the presence of alldifferent(x, y, z) leads
to their “release” as relevant candidates for x and y. Accordingly, all values in the
common domain {1, 2, 3} of x, y, and z are put into (decreasing) order, given by
the derived facts in Line 4–5. Beyond that, the order among relevant upper bounds
in ub(4x − 3y) = {−3,−2,−1} is reflected in Line 7–8; this is used to apply the
order encoding to structural subsum variables (in addition to the input variables x,
y, and z). The residual derived facts in Line 24–31 serve convenience by associat-
ing indexes to the arguments of alldifferent(x, y, z) as well as to x and y considered
in (x, y) ∈ {(1, 3), (2, 2), (3, 1)}. Furthermore, the fact in Line 27 indicates the in-
dex 3 of variable z in alldifferent(x, y, z) as the final position at which either of the

Aspartame: Solving Constraint Satisfaction Problems with ASP 39

1 % generate variable assignment

3 { less(V,E) : order(V,E,_) } :- var(int,V).
4 :- order(V,E1,E2), less(V,E2), not less(V,E1).
5 value(V,E) :- look(V,E), not less(V,E), less(V,EE) : order(V,EE,E).

7 { value(V,true) } :- var(bool,V).
8 value(V,false) :- var(bool,V), not value(V,true).

10 % evaluate linear inequalities

12 leq(op(mul,F,V),F*E) :- look(op(mul,F,V),E,1), less(V,EE) : order(V,EE,E).
13 leq(op(mul,F,V),F*E) :- look(op(mul,F,V),E,-1), not less(V,E).
14 leq(op(add,S1,S2),E) :- look(op(add,S1,S2),E1,E2,E), leq(S1,E1;;S2,E2).
15 leq(op(add,S1,S2),E) :- order(op(add,S1,S2),E,EE), leq(op(add,S1,S2),EE).

17 % evaluate alldifferent expressions

19 seen(A,I,E) :- difind(A,V,I), value(V,E).
20 seen(A,I,E) :- difind(A,_,I), seen(A,I-1,E), not difmax(A,I-1,E).

22 redo(A) :- difind(A,V,I), seen(A,I-1,E), value(V,E).
23 redo(A) :- difall(A), difmax(A,I,E), not seen(A,I,E).

25 % evaluate table expressions

27 rela(R,A,T,2) :- relind(R,A,V,1), tuple(R,T,1,E), value(V,E).
28 rela(R,A,T,I+1) :- relind(R,A,V,I), tuple(R,T,I,E), value(V,E), rela(R,A,T,I).

30 rela(R,A,U) :- rela(R,A,_,I+1), rel(R,I,_,U).

32 % check constraint clauses

34 hold(C) :- constraint(C,V), value(V,true).
35 hold(C) :- constraint(C,op(neg,V)), value(V,false).

37 hold(C) :- constraint(C,op(le,S,E)), bound(S,U), leq(S,E) : E < U.
38 hold(C) :- constraint(C,op(neg,op(le,S,E))), bound(S,U), E < U, not leq(S,E).

40 hold(C) :- constraint(C,global(alldifferent,A)), not redo(A).
41 hold(C) :- constraint(C,op(neg,global(alldifferent,A))), redo(A).

43 hold(C) :- constraint(C,rel(R,A)), not rela(R,A,conflicts),
44 rela(R,A,supports) : rel(R,_,_,supports).
45 hold(C) :- constraint(C,op(neg,rel(R,A))), not rela(R,A,supports),
46 rela(R,A,conflicts) : rel(R,_,_,conflicts).

48 constraint(C) :- constraint(C,_).
49 :- constraint(C), not hold(C).

51 % display variable assignment

53 #hide.
54 #show value/2.

Listing 3. First-order encoding of solutions for finite linear CSPs.

values 1, 2, or 3 can possibly be assigned, and the fact in Line 28 expresses that all
three values in D(x) ∪ D(y) ∪ D(z) = {1, 2, 3} must be assigned in order to satisfy
alldifferent(x, y, z).

Non-deterministic Encoding Part With the described domain predicates at hand, the
encoding part in Listing 3 implements the non-deterministic guessing of a variable as-

40 M. Banbara et al.

signment along with the evaluation of constraint clauses. Following the idea of order
encodings in SAT [4, 5], the choice rule in Line 3 permits guessing less(V,E) for all
but the smallest (relevant) value E in the domain of an Integer variable V, thus indicating
that V is assigned to some smaller value than E. The consistency among guessed atoms
is established by the integrity constraint in Line 4, requiring less(V,E1) to hold if
less(V,E2) is true for the (immediate) predecessor value E2 of E1. The actual value
assigned to V, given by the greatest E for which less(V,E) is false, is extracted in
Line 5. For Boolean variables, the value true can be guessed unconditionally via the
choice rule in Line 7, and false is derived otherwise via the rule in Line 8.

The dedicated extension of the order encoding idea to subsums of linear inequal-
ities is implemented by means of the rules in Line 12–15 of Listing 3. To this end,
upper bounds for singular multiplication results indicated as relevant by instances of
look(op(mul,F,V),E,G) are directly derived from less/2. Thereby, the flag
G = F/|F| provides the polarity of the actual coefficient F.8 If F is positive, i.e.,
G = 1, the upper bound F*E is established as soon as less(V,EE) holds for the
immediate successor value EE of E (or if E is the greatest relevant value in the do-
main of V). On the other hand, if G = -1 indicates that F is negative, the upper
bound F*E is derived from not less(V,E), which means that the value assigned
to V is greater than or equal to E. Relevant upper bounds E for subsums rely on
maximal pairs (E1,E2) of addends, identified via static threshold analysis and read-
ily provided by instances of look(op(add,S1,S2),E1,E2,E). In fact, the rule
in Line 14 derives leq(op(add,S1,S2),E), indicating that S1 + S2 ≤ E, from
leq(S1,E1) and leq(S2,E2). Although an established upper bound inherently
implies any greater (relevant) upper bound to hold as well w.r.t. a total variable assign-
ment, ASP (and SAT) solvers are not committed to guessing “input variables” first.
Rather, structural variables like the instances of leq(op(add,S1,S2),E) may be
fixed upon solving, possibly in view of recorded conflict clauses, before a total as-
signment has been determined. In view of this, the additional rule in Line 15 makes
sure that an established upper bound EE propagates to its immediate successor E (if
there is any). For instance, (simplified) ground instances of the rule stemming from
ub(4x− 3y) = {−3,−2,−1} include the following:

leq(op(add,op(mul,4,x),op(mul,-3,y)),-1) :-
leq(op(add,op(mul,4,x),op(mul,-3,y)),-2).

leq(op(add,op(mul,4,x),op(mul,-3,y)),-2) :-
leq(op(add,op(mul,4,x),op(mul,-3,y)),-3).

Unlike with the domains of Integer variables, we rely on a rule, rather than an integrity
constraint, to establish consistency among the bounds for structural subsums. The rea-
son for this is that upper bounds for addends S1 and S2, contributing left and right
justifications, may include divergent gaps, so that consistent value orderings for them
are, in general, not guaranteed to immediately produce all relevant upper bounds for
S1+ S2. Encoding variants resolving this issue and using integrity constraints like the
one in Line 4 are a subject to future investigation.

While linear inequalities can be evaluated by means of boundaries derived more
or less directly from instances of less(V,E), the evaluation of alldifferent and table

8 Coefficients given in facts generated by aspartame are distinct from 0.

Aspartame: Solving Constraint Satisfaction Problems with ASP 41

constraints in Line 19–23 and Line 27–30 of Listing 3 relies on particular instances of
value(V,E). The basic idea of checking whether an alldifferent constraint holds is
to propagate assigned values along the indexes of participating variables. Then, a recur-
rence is detected when the value assigned to a variable with index I has been marked as
already assigned, as determined from seen(A,I-1,E) in Line 22. Moreover, when-
ever difall(A) indicates that all domain values for the variables in argument list A
must be assigned, the rule in Line 23 additionally derives a recurrence from some gap
(a value that has not been assigned to the variable at the last possible index). Our full
encoding further features so-called “pigeon-hole constraints” (cf. [10, 11]) to check that
the smallest or greatest 1, . . . , n− 1 domain values for an alldifferent constraint with n
variables are not populated by more than i variables for 1 ≤ i ≤ n−1. Such conditions
can again be checked based on instances of less(V,E), and both counter-based (cf.
[12]) as well as aggregate-based (cf. [13]) implementations are applicable in view of the
native support of aggregates by ASP solvers like clasp (cf. [14]). In fact, the usage of
rules to express redundant constraints, like the one in Line 23 or those for pigeon-hole
constraints, as well as their ASP formulation provide various degrees of freedom, where
comprehensive evaluation and configuration methods are subjects to future work.

The strategy for evaluating table constraints is closely related to the one for detect-
ing value recurrences in alldifferent constraints. Based on the indexes of variables in a
table constraint, tuples that are (still) admissible are forwarded via the rules in Line 27–
28. The inclusion of a full tuple in an assignment is detected by the rule in Line 30,
checking whether the arity I of a table constraint has been reached for some tuple,
where a value supports or conflicts for U additionally indicates whether the in-
cluded tuple belongs to a white or black list, respectively. Note that this strategy avoids
explicit references to variables whose values are responsible for the exclusion of tuples,
given that lack of inclusion is detected from incomplete tuple traversals.

Finally, the rules in Line 34–49 explore the values assigned to Boolean variables
and the outcomes of evaluating particular kinds of constraints to derive hold(C) if and
only if some positive or negative literal in C is satisfied or unsatisfied, respectively, w.r.t.
the variable assignment represented by instances of value(V,E). Without going into
details, let us still note that our full encoding also features linear inequalities relying on
the comparison operators≥, =, and 6=, for which additional rules are included to derive
hold(C), yet sticking to the principle of upper bound evaluation via leq/2. In fact, the
general possibility of complemented constraint expressions as well as of disjunctions
potentially admits unsatisfied constraint expressions w.r.t. solutions, and our encoding
reflects this by separating the evaluation of particular constraint expressions in Line 12–
30 from further literal and clause evaluation in Line 34–49.

4 The aspartame System

The architecture of the aspartame system is given in Figure 1. As mentioned, aspartame
re-uses sugar’s front-end for parsing and normalizing CSPs. Hence, it accepts the same
input formats, viz. XCSP9 and sugar’s native CSP format10. We then implemented an

9 http://www.cril.univ-artois.fr/CPAI08/XCSP2 1.pdf
10 http://bach.istc.kobe-u.ac.jp/sugar/package/current/docs/syntax.html

42 M. Banbara et al.

CSP
Instance sugar

A
S
P

ASP
Facts

ASP
Encoding

gringo clasp CSP
Solution

- - - - -

Fig. 1. Architecture of aspartame.

output hook for sugar that provides us with the resulting CSP instance in the fact format
described in Section 3.1. These facts are then used for grounding the (full version of
the) dedicated ASP encoding in Listing 3 or an alternative one (discussed below). This
is done by the ASP grounder gringo. In turn, the resulting propositional logic program
is passed to the ASP solver clasp that returns an assignment, representing a solution to
the original CSP instance.

We empirically access the performance of aspartame relative to two ASP encodings,
the dedicated one described in Section 3.2 as well as a more direct encoding inspired
by the original CNF construction of sugar [5], and additionally consider the SAT-based
reference solver sugar (2.0.0). In either case, we use the combined ASP and SAT solver
clasp (2.1.0), and ASP-based approaches further rely on gringo (3.0.5) for grounding
ASP encodings on facts generated by aspartame. We selected 60 representative CSP in-
stances (that are neither too easy nor too hard), consisting of intensional and global con-
straints, from the benchmarks of the 2009 CSP Competition11 for running systematic
experiments on a cluster of Linux machines equipped with dual Xeon E5520 quad-core
2.26 GHz processors and 48 GB RAM. To get some first insights into suitable search
options, we ran clasp with its default (berkmin-like) and the popular “vsids” decision
heuristic; while SAT-based preprocessing (cf. [15]) is performed by default on CNF in-
puts, we optionally enabled it for (ground) ASP instances, leading to four combinations
of clasp settings for ASP-based approaches and two for SAT-based sugar.

Table 1 reports runtime results in seconds, separated into conversion time of as-
partame from CSP instances to ASP facts (first “convert” column) and of sugar from
CSP instances to CNF, gringo times for grounding ASP encodings relative to facts,
and finally columns for the search times of clasp with the aforementioned options.
Each computational phase was restricted to 600 seconds, and timeouts counted in the
last row of Table 1 are taken as 600 seconds in the second last row providing average
runtimes. Looking at these summary rows, we observe that our two ASP encodings
are solved most effectively when vsids decision heuristic and SAT preprocessing are
both enabled; unlike this, neither decision heuristic dominates the other on CNF in-
put. Apparently, clasp on CNFs generated by sugar still has a significant edge on facts
by aspartame combined with either ASP encoding. In particular, we observe drastic
performance discrepancies on some instance families (especially “fischer” and “queen-
sKnights”), where clasp performs stable on CNFs from sugar but runs into trouble on
corresponding ASP instances. Given that aspartame and its ASP encodings are proto-
types, such behavior does not disprove the basic approach, but rather motivates future

11 http://www.cril.univ-artois.fr/CPAI09

Aspartame: Solving Constraint Satisfaction Problems with ASP 43

Table 1. Experiments comparing ASP encoding variants and the SAT-based solver sugar.

ASP Encoding 1 (dedicated) ASP Encoding 2 (SAT-inspired) sugar
Benchmark convert ground default vsids sat-pre vsids/ ground default vsids sat-pre vsids/ convert default vsids

sat-pre sat-pre
1-fullins-5-5 2.02 1.41 13.96 11.28 5.15 3.66 0.91 10.72 12.15 6.72 7.18 1.73 2.40 2.19
3-fullins-5-6 3.55 32.39 17.07 14.90 21.75 6.52 11.26 13.08 16.52 11.53 14.02 5.36 1.91 1.50
4-fullins-4-7 2.20 4.45 28.35 45.59 22.02 28.38 2.29 20.03 39.92 28.60 42.91 2.80 2.19 4.81
abb313GPIA-7 5.02 46.97 0.67 1.85 0.71 2.01 20.33 31.75 2.27 41.61 1.63 7.18 6.05 0.05
abb313GPIA-8 5.14 51.23 411.17 460.56 521.11 TO 21.97 173.06 451.02 433.31 180.33 7.23 131.41 70.57
abb313GPIA-9 5.96 52.79 TO TO TO TO 24.68 243.72 TO 289.54 TO 8.49 0.59 5.73
bibd-8-98-49-4-21 glb 3.68 28.30 TO 20.70 4.47 1.42 28.59 10.52 18.11 5.36 8.41 11.28 1.65 1.49
bibd-10-120-36-3-8 glb 5.20 69.94 46.68 11.62 8.21 1.13 76.65 15.84 4.55 2.47 7.93 13.63 7.28 0.85
bibd-25-25-9-9-3 glb 7.34 84.68 TO 434.23 3.50 1.13 17.53 235.11 177.27 TO 59.41 8.90 28.86 41.12
bibd-31-31-6-6-1 glb 9.74 254.13 159.32 3.34 156.71 14.64 39.84 12.24 0.18 0.17 0.11 17.39 77.95 0.20
C2-3-15 0.88 3.30 0.21 0.13 0.15 0.08 9.74 6.03 4.88 6.63 8.24 1.64 7.37 1.05
C4-1-61 1.44 24.44 4.66 2.86 4.90 2.80 148.33 TO TO TO TO 3.40 3.06 9.87
C4-2-61 2.96 26.04 6.26 1.98 6.16 2.04 152.33 222.52 69.47 227.54 165.80 3.22 7.05 3.21
C5-3-91 2.73 71.55 31.42 10.32 31.87 11.91 TO TO TO TO TO 7.89 261.39 TO
chnl-10-11 0.37 0.18 0.64 1.20 4.36 11.44 0.14 1.35 2.65 12.40 13.75 0.92 19.58 55.26
chnl-10-15 0.70 0.17 9.15 3.08 6.95 10.61 0.19 4.04 20.14 10.82 18.01 0.51 32.07 24.68
chnl-10-20 0.56 0.24 19.14 6.91 6.51 5.22 0.33 41.96 38.34 6.81 11.98 1.11 7.77 6.30
chnl10-15-pb-cnf-cr 0.42 0.42 9.28 3.05 6.93 10.74 0.20 4.00 20.05 10.90 16.43 1.12 31.85 24.87
costasArray-14 0.46 0.82 3.54 2.93 3.65 4.87 0.62 18.63 18.19 24.79 6.52 2.03 0.25 0.07
costasArray-15 0.52 0.94 17.96 60.17 75.50 17.95 0.78 62.10 136.40 4.96 8.83 1.59 18.41 8.16
costasArray-16 0.52 1.20 15.13 30.18 69.69 0.99 1.03 130.75 203.94 245.02 36.31 1.71 32.65 33.25
costasArray-17 0.56 1.50 TO TO TO 232.64 1.28 TO TO TO TO 2.08 148.55 553.54
fischer-1-2-fair 1.44 304.21 11.21 92.81 11.42 18.79 28.50 23.81 7.81 TO TO 3.42 0.97 0.02
fischer-2-3-fair 4.18 348.84 0.85 21.11 0.79 6.50 68.42 23.19 3.69 23.71 3.54 7.19 0.13 0.04
fischer-3-8-fair 30.18 515.69 TO 458.58 TO 60.32 376.33 TO TO TO TO 35.16 22.05 37.27
fischer-4-6-fair 35.12 535.93 282.84 242.05 386.37 274.27 384.19 TO TO TO TO 39.15 17.16 8.79
fischer-6-1-fair 4.40 457.55 0.91 12.16 0.90 14.68 150.78 TO 10.29 TO 5.46 13.20 1.79 2.69
magicSquare-6 glb 0.29 2.72 46.20 1.23 4.27 1.49 4.20 9.50 2.42 18.39 1.77 2.26 0.79 0.46
magicSquare-7 glb 0.28 8.04 7.54 78.17 1.15 30.18 15.63 51.08 9.59 51.00 7.41 3.00 4.10 2.20
magicSquare-8 glb 0.42 21.75 TO 318.69 477.11 47.22 53.61 331.09 19.14 124.79 36.60 6.29 5.50 3.72
mps-mzzv42z 4.84 166.01 2.74 1.54 2.61 1.02 395.20 8.56 5.44 8.75 5.20 24.84 5.44 3.28
mps-p2756 1.74 278.02 4.98 11.89 5.04 5.29 TO TO TO TO TO 161.39 1.32 1.20
mps-red-air06 11.59 272.57 139.86 381.61 34.78 25.27 TO TO TO TO TO 27.73 0.63 TO
mps-red-fiber 1.28 92.78 5.07 3.78 5.34 5.39 388.43 33.55 TO 33.43 TO 38.74 2.05 6.76
queensKnights-50-5-add 1.81 16.86 18.62 24.71 44.44 18.79 28.12 558.69 85.48 537.34 44.58 3.25 12.15 0.66
queensKnights-50-5-mul 3.50 17.31 40.78 48.54 38.57 20.64 30.33 221.08 67.39 TO 50.76 3.29 2.10 0.63
queensKnights-80-5-mul 2.47 77.52 181.70 354.74 172.33 383.73 126.32 TO 426.53 TO 414.97 5.81 7.61 2.51
queensKnights-100-5-add 3.49 163.50 TO TO TO TO 243.06 TO TO TO TO 6.92 18.45 4.39
ramsey-16-3 1.07 0.51 1.17 1.16 0.18 0.10 0.39 6.74 0.53 0.78 1.04 2.19 1.99 112.63
ramsey-30-4 2.13 5.91 150.64 180.79 28.56 26.47 2.75 198.83 98.97 82.69 32.39 2.35 8.09 8.67
ramsey-33-4 2.53 7.58 405.05 279.25 93.36 66.78 4.05 TO 193.49 173.67 109.45 3.13 32.02 39.82
ramsey-34-4 2.34 8.46 TO TO 366.41 109.45 4.14 TO TO TO 317.08 2.78 67.41 38.71
ruler-34-9-a4 1.15 13.01 21.70 29.62 19.05 19.16 3.08 35.29 39.71 38.59 39.19 4.30 41.98 41.16
ruler-44-10-a4 1.56 37.60 367.84 233.65 302.54 280.79 8.39 567.20 542.78 TO 483.85 9.91 405.96 446.66
ruler-44-9-a4 1.04 23.41 182.48 124.14 172.79 118.37 6.18 351.14 13.41 102.36 34.25 6.61 TO 352.28
ruler-55-10-a3 1.08 5.89 TO 500.84 TO TO 3.19 TO TO TO TO 1.73 43.23 70.22
super-jobShop-e0ddr1-8 1.21 6.42 555.34 19.21 14.32 3.67 3.66 6.10 0.11 6.92 1.05 1.16 1.21 0.49
super-jobShop-e0ddr2-1 1.08 7.59 TO 32.94 8.38 12.14 3.81 16.08 0.84 2.56 3.87 1.51 5.41 0.76
super-jobShop-enddr2-3 1.00 8.60 TO 116.06 76.55 12.93 3.95 13.21 2.59 5.30 6.33 2.15 1.19 0.72
super-os-taillard-7-4 1.02 35.84 TO 493.02 TO 454.02 15.35 36.02 36.35 35.06 32.14 2.08 1.14 0.89
super-os-taillard-7-6 1.01 35.51 115.70 TO 112.53 TO 14.49 169.99 30.25 144.26 25.89 2.14 4.20 0.76
super-os-taillard-7-7 0.84 32.73 155.31 270.49 132.71 311.67 13.53 23.55 17.77 25.74 15.78 1.95 0.80 0.78
super-os-taillard-7-8 0.95 33.23 431.15 279.09 475.51 328.50 14.46 46.95 25.64 40.83 24.06 2.01 1.19 0.96
zeroin-i-1-10 1.97 2.41 20.92 27.16 14.97 16.18 1.74 22.09 28.81 26.62 18.56 2.17 3.48 2.57
zeroin-i-3-10 1.76 1.92 7.24 33.14 11.43 16.93 1.52 13.45 29.43 19.72 31.67 2.22 4.57 4.11
ii-32c4 3.73 21.92 0.24 0.02 0.03 0.03 56.69 0.02 0.01 0.03 0.04 21.67 8.77 0.76
ii-32d3 2.80 11.87 4.58 13.70 0.39 0.26 25.12 3.54 0.31 0.54 1.35 12.33 71.17 0.20
p2756 2.06 269.82 3.87 12.55 3.99 6.13 TO TO TO TO TO 162.72 4.26 2.41
ooo-burch-dill-3-accl-ucl 2.46 14.06 13.80 18.60 6.13 5.95 5.82 30.05 24.18 12.73 4.61 2.77 1.28 1.00
ooo-tag14 6.93 191.71 145.03 144.09 158.56 158.99 44.99 109.54 310.78 20.82 25.11 10.67 6.54 6.07
Average Time 3.51 80.21 188.67 149.80 129.06 103.87 91.49 209.46 184.50 218.43 169.76 12.56 37.47 54.27
Timeouts 0 0 12 5 6 5 4 14 13 17 13 0 1 2

44 M. Banbara et al.

investigations of the reasons for performance discrepancies. For one, we conjecture that
normalizations of global constraints that are not yet supported by aspartame are primar-
ily responsible for large instance sizes and long search times on some instance families.
For another, we suppose that both of our ASP encodings are still quite naive compared
to years of expertise manifested in sugar’s CNF construction. However, the observation
that our dedicated ASP encoding has on edge the SAT-inspired one and yields signifi-
cant performance improvements on some instance families (“C2-3-15”–“C5-3-91” and
“mps”) clearly encourages further investigations into ASP encodings of CSP instances.

5 Related Work

Unlike approaches to constraint answer set solving, e.g., [10, 16–18], which aim at in-
tegrating CSP and ASP solving (engines), the focus of aspartame lies on pure CSP
solving. In fact, aspartame’s approach can be regarded as a first-order alternative to
SAT-based systems like sugar [5], where the performance of the underlying SAT solver
is crucial. However, it is now becoming recognized that the SAT encoding to be used
also plays an important role [19]. There have been several proposals of encoding con-
straints to SAT: direct encoding [20, 21], support encoding [22, 23], log encoding [24,
25], log support encoding [26], regular encoding [27], order encoding [4, 5], and com-
pact order encoding [28].

The order encoding, where Boolean variables represent whether x ≤ i holds for
variables x and values i, showed good performance for a wide range of CSPs [4, 11, 27,
29–34]. Especially, the SAT-based constraint solver sugar became a winner in global
constraint categories at the 2008 and 2009 CSP solver competitions [35]. Moreover, the
SAT-based CSP solver BEE [36] and the CLP system B-Prolog [37] utilize the order
encoding. In fact, the order encoding provides a compact translation of arithmetic con-
straints, while also maintaining bounds consistency by unit propagation. Interestingly,
it has been shown that the order encoding is the only existing SAT encoding that can
reduce tractable CSP to tractable SAT [38].

6 Conclusion

We presented an alternative approach to solving finite linear CSPs based on ASP. The
resulting system aspartame relies on high-level ASP encodings and delegates both the
grounding and solving tasks to general-purpose ASP systems. We have contrasted as-
partame with its SAT-based ancestor sugar, which delegates only the solving task to
off-the-shelf SAT solvers, while using dedicated algorithms for constraint preprocess-
ing. Although aspartame does not fully match the performance of sugar from a global
perspective, the picture is fragmented and leaves room for further improvements. This is
to say that different performances are observed on distinct classes of CSPs, comprising
different types of constraints. Thus, it is an interesting topic of future research to devise
more appropriate ASP encodings for such settings. Despite all this, aspartame demon-
strates that ASP’s general-purpose technology allows to compete with state-of-the-art
constraint solving techniques, not to mention that aspartame’s intelligence is driven by
an ASP encoding of less than 100 code lines (for non-deterministic predicates subject

Aspartame: Solving Constraint Satisfaction Problems with ASP 45

to search). In fact, the high-level approach of ASP facilitates extensions and variations
of first-order encodings for dealing with particular types of constraints. In the future,
we thus aim at more exhaustive investigations of encoding variants, e.g., regarding alld-
ifferent constraints, as well as support for additional kinds of global constraints.

Acknowledgments This work was partially funded by the Japan Society for the Promo-
tion of Science (JSPS) under grant KAKENHI 24300007 as well as the German Science
Foundation (DFG) under grant SCHA 550/8-3 and SCHA 550/9-1. We are grateful to
the anonymous reviewers for many helpful comments.

References

1. Dechter, R.: Constraint Processing. Morgan Kaufmann Publishers (2003)
2. Rossi, F., van Beek, P., Walsh, T., eds.: Handbook of Constraint Programming. Elsevier

Science (2006)
3. Biere, A., Heule, M., van Maaren, H., Walsh, T., eds.: Handbook of Satisfiability. IOS Press

(2009)
4. Crawford, J., Baker, A.: Experimental results on the application of satisfiability algorithms

to scheduling problems. In Hayes-Roth, B., and Korf, R., eds.: Proceedings of the Twelfth
National Conference on Artificial Intelligence (AAAI’94), AAAI Press (1994) 1092–1097

5. Tamura, N., Taga, A., Kitagawa, S., Banbara, M.: Compiling finite linear CSP into SAT.
Constraints 14(2) (2009) 254–272

6. Baral, C.: Knowledge Representation, Reasoning and Declarative Problem Solving. Cam-
bridge University Press (2003)

7. Gebser, M., Kaminski, R., Kaufmann, B., Schaub, T.: Answer Set Solving in Practice. Mor-
gan and Claypool Publishers (2012)

8. Gebser, M., Kaminski, R., Kaufmann, B., Ostrowski, M., Schaub, T., Thiele, S.: A user’s
guide to gringo, clasp, clingo, and iclingo.12

9. Beldiceanu, N., Simonis, H.: A constraint seeker: Finding and ranking global constraints
from examples. In Lee, J., ed.: Proceedings of the Seventeenth International Conference on
Principles and Practice of Constraint Programming (CP’11), Springer-Verlag (2011) 12–26

10. Drescher, C., Walsh, T.: A translational approach to constraint answer set solving. Theory
and Practice of Logic Programming 10(4-6) (2010) 465–480

11. Metodi, A., Codish, M., Stuckey, P.: Boolean equi-propagation for concise and efficient SAT
encodings of combinatorial problems. Journal of Artificial Intelligence Research 46 (2013)
303–341

12. Sinz, C.: Towards an optimal CNF encoding of Boolean cardinality constraints. In van Beek,
P., ed.: Proceedings of the Eleventh International Conference on Principles and Practice of
Constraint Programming (CP’05), Springer-Verlag (2005) 827–831

13. Simons, P., Niemelä, I., Soininen, T.: Extending and implementing the stable model seman-
tics. Artificial Intelligence 138(1-2) (2002) 181–234

14. Gebser, M., Kaminski, R., Kaufmann, B., Schaub, T.: On the implementation of weight
constraint rules in conflict-driven ASP solvers. [39] 250–264

15. Eén, N., Biere, A.: Effective preprocessing in SAT through variable and clause elimination.
In Bacchus, F., Walsh, T., eds.: Proceedings of the Eighth International Conference on Theory
and Applications of Satisfiability Testing (SAT’05), Springer-Verlag (2005) 61–75

12 http://potassco.sourceforge.net

46 M. Banbara et al.

16. Gebser, M., Ostrowski, M., Schaub, T.: Constraint answer set solving. [39] 235–249
17. Balduccini, M.: Representing constraint satisfaction problems in answer set programming.

In Faber, W., Lee, J., eds.: Proceedings of the Second Workshop on Answer Set Programming
and Other Computing Paradigms (ASPOCP’09), (2009) 16–30

18. Ostrowski, M., Schaub, T.: ASP modulo CSP: The clingcon system. Theory and Practice of
Logic Programming 12(4-5) (2012) 485–503

19. Prestwich, S.: CNF encodings. [3] 75–97
20. de Kleer, J.: A comparison of ATMS and CSP techniques. In Sridharan, N., ed.: Proceedings

of the Eleventh International Joint Conference on Artificial Intelligence (IJCAI’89), Morgan
Kaufmann Publishers (1989) 290–296

21. Walsh, T.: SAT v CSP. In Dechter, R., ed.: Proceedings of the Sixth International Conference
on Principles and Practice of Constraint Programming (CP’00), Springer-Verlag (2000) 441–
456

22. Kasif, S.: On the parallel complexity of discrete relaxation in constraint satisfaction net-
works. Artificial Intelligence 45(3) (1990) 275–286

23. Gent, I.: Arc consistency in SAT. In van Harmelen, F., ed.: Proceedings of the Fifteenth
European Conference on Artificial Intelligence (ECAI’02), IOS Press (2002) 121–125

24. Iwama, K., Miyazaki, S.: SAT-variable complexity of hard combinatorial problems. In
Pehrson, B., Simon, I., eds.: Proceedings of the Thirteenth IFIP World Computer Congress
(WCC’94), North-Holland (1994) 253–258

25. Van Gelder, A.: Another look at graph coloring via propositional satisfiability. Discrete
Applied Mathematics 156(2) (2008) 230–243

26. Gavanelli, M.: The log-support encoding of CSP into SAT. In Bessiere, C., ed.: Proceedings
of the Thirteenth International Conference on Principles and Practice of Constraint Program-
ming (CP’07), Springer-Verlag (2007) 815–822

27. Ansótegui, C., Manyà, F.: Mapping problems with finite-domain variables into problems
with Boolean variables. In Hoos, H., Mitchell, D., eds.: Proceedings of the Seventh Interna-
tional Conference on Theory and Applications of Satisfiability Testing (SAT’04), Springer-
Verlag (2004) 1–15

28. Tanjo, T., Tamura, N., Banbara, M.: Azucar: A SAT-based CSP solver using compact order
encoding (tool presentation). In Cimatti, A., Sebastiani, R., eds.: Proceedings of the Fifteenth
International Conference on Theory and Applications of Satisfiability Testing (SAT’12),
Springer-Verlag (2012) 456–462

29. Bailleux, O., Boufkhad, Y.: Efficient CNF encoding of Boolean cardinality constraints. In
Rossi, F., ed.: Proceedings of the Ninth International Conference on Principles and Practice
of Constraint Programming (CP’03), Springer-Verlag (2003) 108–122

30. Gent, I., Nightingale, P.: A new encoding of AllDifferent into SAT. In Frisch, A., Miguel,
I., eds.: Proceedings of the Third International Workshop on Modelling and Reformulating
Constraint Satisfaction Problems (ModRef’04), (2004) 95–110

31. Inoue, K., Soh, T., Ueda, S., Sasaura, Y., Banbara, M., Tamura, N.: A competitive and
cooperative approach to propositional satisfiability. Discrete Applied Mathematics 154(16)
(2006) 2291–2306

32. Soh, T., Inoue, K., Tamura, N., Banbara, M., Nabeshima, H.: A SAT-based method for solv-
ing the two-dimensional strip packing problem. Fundamenta Informaticae 102(3-4) (2010)
467–487

33. Ohrimenko, O., Stuckey, P., Codish, M.: Propagation via lazy clause generation. Constraints
14(3) (2009) 357–391

34. Banbara, M., Matsunaka, H., Tamura, N., Inoue, K.: Generating combinatorial test cases by
efficient SAT encodings suitable for CDCL SAT solvers. In Fermüller, C., Voronkov, A.,
eds.: Proceedings of the Seventeenth International Conference on Logic for Programming,
Artificial Intelligence, and Reasoning (LPAR’10), Springer-Verlag (2010) 112–126

Aspartame: Solving Constraint Satisfaction Problems with ASP 47

35. Lecoutre, C., Roussel, O., van Dongen, M.: Promoting robust black-box solvers through
competitions. Constraints 15(3) (2010) 317–326

36. Metodi, A., Codish, M.: Compiling finite domain constraints to SAT with BEE. Theory and
Practice of Logic Programming 12(4-5) (2012) 465–483

37. Zhou, N.: The SAT compiler in B-prolog. The Association for Logic Programming Newslet-
ter, March 2013 (2013)13

38. Petke, J., Jeavons, P.: The order encoding: From tractable CSP to tractable SAT. In Sakallah,
K., Simon, L., eds.: Proceedings of the Fourteenth International Conference on Theory and
Applications of Satisfiability Testing (SAT’11), Springer-Verlag (2011) 371–372

39. Hill, P., Warren, D., eds.: Proceedings of the Twenty-fifth International Conference on Logic
Programming (ICLP’09), Springer-Verlag (2009)

13 http://www.cs.nmsu.edu/ALP/2013/03/the-sat-compiler-in-b-prolog

48 M. Banbara et al.

A Functional View of Strong Negation
in Answer Set Programming

Michael Bartholomew and Joohyung Lee

School of Computing, Informatics, and Decision Systems Engineering
Arizona State University, Tempe, USA

Abstract. The distinction between strong negation and default negation has been
useful in answer set programming. We present an alternative account of strong nega-
tion, which lets us view strong negation in terms of the functional stable model
semantics by Bartholomew and Lee. More specifically, we show that, under com-
plete interpretations, minimizing both positive and negative literals in the traditional
answer set semantics is essentially the same as ensuring the uniqueness of Boolean
function values under the functional stable model semantics. The same account lets
us view Lifschitz’s two-valued logic programs as a special case of the functional sta-
ble model semantics. In addition, we show how non-Boolean intensional functions
can be eliminated in favor of Boolean intensional functions, and furthermore can be
represented using strong negation, which provides a way to compute the functional
stable model semantics using existing ASP solvers. We also note that similar results
hold with the functional stable model semantics by Cabalar.

1 Introduction
The distinction between default negation and strong negation has been useful in answer
set programming. In particular, it yields an elegant solution to the frame problem. The fact
that block b stays at the same location l by inertia can be described by the rule

On(b, l, t+1) ← On(b, l, t), not ∼On(b, l, t+1) (1)

along with the rule that describes the uniqueness of location values [Lifschitz, 2002],

∼On(b, l1, t) ← On(b, l, t), l 6= l1 . (2)

Here ‘∼’ is the symbol for strong negation that represents explicit falsity while ‘not’ is
the symbol for default negation (negation as failure). Rule (1) asserts that without explicit
evidence to the contrary, block b remains at location l. If we are given explicit conflicting
information about the location of b at time t+1 then this conclusion will be defeated by
rule (2), which asserts the uniqueness of location values.

An alternative representation of inertia, which uses choice rules instead of strong nega-
tion, was recently presented by Bartholomew and Lee [2012]. Instead of rule (1), they use
the choice rule

{On(b, l, t+1)} ← On(b, l, t) , (3)

which states that “if b is at l at time t, then decide arbitrarily whether to assert that b is at
l at time t+1.” Instead of rule (2), they write weaker rules for describing the functional

property of On:

← {On(b, l, t) : Location(l)}0 (existence of location) (4)
← 2{On(b, l, t) : Location(l)} (uniqueness of location), (5)

which can be also combined into one rule: ← not 1{On(b, l, t) : Location(l)}1 . In
the absence of additional information about the location of block b at time t+1, asserting
On(b, l, t+1) is the only option, in view of the existence of location constraint (4). But if
we are given conflicting information about the location of b at time t+1 then not asserting
On(b, l, t+1) is the only option, in view of the uniqueness of location constraint (5).

Rules (3), (4), and (5) together can be more succinctly represented in the language
of [Bartholomew and Lee, 2012] by means of intensional functions. That is, the three
rules can be replaced by one rule

{Loc(b, t+1) = l} ← Loc(b, t) = l , (6)

where Loc is an intensional function constant (the rule reads, “if block b is at location l at
time t, by default, the block is at l at time t+1”). In fact, Corollary 2 of [Bartholomew and
Lee, 2012] tells us how to eliminate intensional functions in favor of intensional predicates,
justifying the equivalence between (6) and the set of rules (3), (4), and (5). The translation
allows us to compute the language of [Bartholomew and Lee, 2012] using existing ASP
solvers, such as SMODELS and GRINGO. However, DLV cannot be used because it does not
accept choice rules. On the other hand, all these solvers accept rules (1) and (2), which
contain strong negation.

The two representations of inertia involving intensional predicate On do not result in
the same answer sets. In the first representation, which uses strong negation, each answer
set contains only one atom of the form On(b, l, t) for each block b and each time t; for
all other locations l′, negative literals ∼On(b, l′, t) belong to the answer set. On the other
hand, such negative literals do not occur in the answer sets of a program that follows
the second representation, which yields fewer ground atoms. This difference can be well
explained by the difference between the symmetric and the asymmetric views of predicates
that Lifschitz described in his message to Texas Action Group, titled “Choice Rules and
the Belief-Based View of ASP”: 1

The way I see it, in ASP programs we use predicates of two kinds, let’s call them
“symmetric” and “asymmetric.” The fact that an object a does not have a prop-
erty p is reflected by the presence of ∼p(a) in the answer set if p is “symmetric,”
and by the absence of p(a) if p is “asymmetric.” In the second case, the strong
negation of p is not used in the program at all.

According to these terminologies, predicate On is symmetric in the first representation,
and asymmetric in the second representation.

This paper presents several technical results that help us understand the relationship
between these two views. In this regard, it helps us to understand strong negation as a way
of expressing intensional Boolean functions.

1 http://www.cs.utexas.edu/users/vl/tag/choice discussion

50 M. Bartholomew and J. Lee

– Our first result provides an alternative account of strong negation in terms of Boolean
intensional functions. For instance, (1) can be identified with

On(b, l, t+1)=TRUE ← On(b, l, t)=TRUE ∧ ¬(On(b, l, t+1)= FALSE) ,

and (2) can be identified with

On(b, l1, t)= FALSE ← On(b, l, t)=TRUE ∧ l 6= l1 .

Under complete interpretations, we show that minimizing both positive and negative
literals in the traditional answer set semantics is essentially the same as ensuring the
uniqueness of Boolean function values under the functional stable model semantics.
In this sense, strong negation can be viewed as a mere disguise of Boolean functions.2

– We show how non-Boolean intensional functions can be eliminated in favor of Boolean
functions. Combined with the result in the first bullet, this tells us a new way of turn-
ing the language of [Bartholomew and Lee, 2012] into traditional answer set programs
with strong negation, so that system DLV, as well as SMODELS and GRINGO, can be
used for computing the language of [Bartholomew and Lee, 2012]. As an example, it
tells us how to turn (6) into the set of rules (1) and (2).

– Lifschitz [2012] recently proposed “two-valued logic programs,” which modifies the
traditional stable model semantics to represent complete information without distin-
guishing between strong negation and default negation. Using our result that views
strong negation in terms of Boolean functions, we show that two-valued logic pro-
grams are in fact a special case of the functional stable model semantics in which
every function is Boolean.

While the main results are stated for the language of [Bartholomew and Lee, 2012],
similar results hold with the language of [Cabalar, 2011] based on the relationship between
the two languages studied in [Bartholomew and Lee, 2013]. Furthermore, we note that the
complete interpretation assumption in the first bullet can be dropped if we instead refer to
the language of [Cabalar, 2011], at the price of introducing partial interpretations.

The paper is organized as follows. In Section 2 we review the two versions of the sta-
ble model semantics, one that allows strong negation, but is limited to express intensional
predicates only, and the other that allows both intensional predicates and intensional func-
tions. As a special case of the latter we also present multi-valued propositional formulas
under the stable model semantics. Section 3 shows how strong negation can be viewed in
terms of Boolean functions. Section 4 shows how non-Boolean functions can be eliminated
in favor of Boolean functions. Section 5 shows how Lifschitz’s two-valued logic programs
can be viewed as a special case of the functional stable model semantics. Section 6 shows
how strong negation can be represented in the language of [Cabalar, 2011].

2 Preliminaries
2.1 Review: First-Order Stable Model Semantics and Strong Negation
This review follows [Ferraris et al., 2011]. A signature is defined as in first-order logic,
consisting of function constants and predicate constants. Function constants of arity 0

2 It is also well-known that strong negation can be also viewed in terms of auxiliary predicate
constants [Gelfond and Lifschitz, 1991].

A Functional View of Strong Negation in Answer Set Programming 51

are also called object constants. We assume the following set of primitive propositional
connectives and quantifiers:⊥ (falsity), ∧, ∨, →, ∀, ∃. The syntax of a formula is defined
as in first-order logic. We understand ¬F as an abbreviation of F → ⊥.

The stable models of a sentence F relative to a list of predicates p = (p1, . . . , pn)
are defined via the stable model operator with the intensional predicates p, denoted by
SM[F ;p]. Let u be a list of distinct predicate variables u1, . . . , un of the same length as p.
By u = p we denote the conjunction of the formulas ∀x(ui(x) ↔ pi(x)), where x is a
list of distinct object variables of the same length as the arity of pi, for all i = 1, . . . , n. By
u ≤ p we denote the conjunction of the formulas ∀x(ui(x)→ pi(x)) for all i = 1, . . . , n,
and u < p stands for (u ≤ p) ∧ ¬(u = p). For any first-order sentence F , expression
SM[F ;p] stands for the second-order sentence

F ∧ ¬∃u((u < p) ∧ F ∗(u)),

where F ∗(u) is defined recursively:

– pi(t)
∗ = ui(t) for any list t of terms;

– F ∗ = F for any atomic formula F (including ⊥ and equality) that does not contain
members of p;

– (F ∧G)∗ = F ∗ ∧G∗; (F ∨G)∗ = F ∗ ∨G∗;
– (F → G)∗ = (F ∗ → G∗) ∧ (F → G);
– (∀xF)∗ = ∀xF ∗; (∃xF)∗ = ∃xF ∗.

A model of a sentence F (in the sense of first-order logic) is called p-stable if it
satisfies SM[F ;p].

The traditional stable models of a logic programΠ are identical to the Herbrand stable
models of the FOL-representation of Π (i.e., the conjunction of the universal closures of
implications corresponding to the rules).

Ferraris et al. [2011] incorporate strong negation into the stable model semantics by
distinguishing between intensional predicates of two kinds, positive and negative. Each
negative intensional predicate has the form ∼p, where p is a positive intensional predicate
and ‘∼’ is a symbol for strong negation. In this sense, syntactically ∼ is not a logical
connective, as it can appear only as a part of a predicate constant. An interpretation of the
underlying signature is coherent if it satisfies the formula ¬∃x(p(x)∧ ∼p(x)), where x
is a list of distinct object variables, for each negative predicate ∼p. We consider coherent
interpretations only.

Example 1 The following is a representation of the Blocks World in the syntax of logic
programs:

⊥ ← On(b1, b, t),On(b2, b, t) (b1 6= b2)
On(b, l, t+ 1) ← Move(b, l, t)

⊥ ← Move(b, l, t),On(b1, b, t)
⊥ ← Move(b, b1, t),Move(b1, l, t)

On(b, l, 0) ← not ∼On(b, l, 0)
∼On(b, l, 0) ← not On(b, l, 0)
Move(b, l, t) ← not ∼Move(b, l, t)
∼Move(b, l, t) ← not Move(b, l, t)
On(b, l, t+ 1) ← On(b, l, t), not ∼On(b, l, t+ 1)
∼On(b, l, t) ← On(b, l1, t) (l 6= l1) .

(7)

52 M. Bartholomew and J. Lee

Here On and Move are intensional predicate constants, b, b1, b2 are variables ranging
over the blocks, l, l1 are variables ranging over the locations (blocks and the table), and t
is a variable ranging over the timepoints. The first rule asserts that at most one block can
be on another block. The next three rules describe the effect and preconditions of action
Move. The next four rules describe that fluent On is initially exogenous, and action Move
is exogenous at each time. The next rule describes inertia, and the last rule asserts that a
block can be at most at one location.

2.2 Review: The Functional Stable Model Semantics

The functional stable model semantics is defined by modifying the semantics in the previ-
ous section to allow “intensional” functions [Bartholomew and Lee, 2012]. For predicate
symbols (constants or variables) u and c, we define u ≤ c as ∀x(u(x)→ c(x)). We define
u = c as ∀x(u(x)↔ c(x)) if u and c are predicate symbols, and ∀x(u(x) = c(x)) if they
are function symbols.

Let c be a list of distinct predicate and function constants and let ĉ be a list of distinct
predicate and function variables corresponding to c. We call members of c intensional
constants. By cpred we mean the list of the predicate constants in c, and by ĉpred the list of
the corresponding predicate variables in ĉ. We define ĉ < c as (ĉpred ≤ cpred)∧¬(ĉ = c)
and SM[F ; c] as

F ∧ ¬∃ĉ(ĉ < c ∧ F ∗(ĉ)),
where F ∗(ĉ) is defined the same as the one in Section 2.1 except for the base case:

– When F is an atomic formula, F ∗ is F ′∧F , where F ′ is obtained from F by replacing
all intensional (function and predicate) constants in it with the corresponding (function
and predicate) variables.

If c contains predicate constants only, this definition of a stable model reduces to the
one in [Ferraris et al., 2011], also reviewed in Section 2.1.

According to [Bartholomew and Lee, 2012], a choice formula {F} is an abbreviation
of the formula F ∨ ¬F , which is also strongly equivalent to ¬¬F → F . A formula
{t = t′}, where t contains an intensional function constant and t′ does not, represents
that t takes the value t′ by default, as the following example demonstrates.

Example 2 Let F1 be {f = 1}, which stands for (f = 1) ∨ ¬(f = 1), and I1 be an
interpretation such that I1(f) = 1. Let’s assume that we consider only interpretations
that map numbers to themselves. I1 is an f -stable model of F1: F ∗1 (f̂) is equivalent to
((f̂=1)∧(f=1))∨¬(f=1),3 which is further equivalent to (f̂=1) under the assumption
I1. It is not possible to satisfy this formula by assigning f̂ a different value from I1(f).
On the other hand, I2 such that I2(f) = 2 is not f -stable since F ∗1 (f̂) is equivalent to >
under I2, so that it is possible to satisfy this formula by assigning f̂ a different value from
I2(f). If we let F2 be {f = 1} ∧ (f = 2), then I2 is a f -stable of F2, but I1 is not: F ∗2 (f̂)
is equivalent to f̂=2 under I2, so that f̂ has to map to 2 as well. This example illustrates
the nonmonotonicity of the semantics.

3 It holds that (¬F)∗ is equivalent to ¬F .

A Functional View of Strong Negation in Answer Set Programming 53

Example 3 The Blocks World can be described in this language as follows. For readabil-
ity, we write in a logic program like syntax:

⊥ ← Loc(b1, t)=b ∧ Loc(b2, t)=b ∧ (b1 6= b2)
Loc(b, t+1)= l ← Move(b, l, t)

⊥ ← Move(b, l, t) ∧ Loc(b1, t)=b
⊥ ← Move(b, b1, t) ∧Move(b1, l, t)

{Loc(b, 0)= l}
{Move(b, l, t)}

{Loc(b, t+1)= l} ← Loc(b, t)= l .

Here Loc is a function constant. The last rule is a default formula that describes the com-
monsense law of inertia. The stable models of this program are the models of SM[F ; Loc,Move],
where F is the FOL-representation of the program.

2.3 Review: Stable Models of Multi-Valued Propositional Formulas
The following is a review of the stable model semantics of multi-valued propositional
formulas from [Bartholomew and Lee, 2012], which can be viewed as a special case of the
functional stable model semantics in the previous section.

The syntax of multi-valued propositional formulas is given in [Ferraris et al., 2011]. A
multi-valued propositional signature is a set σ of symbols called constants, along with a
nonempty finite set Dom(c) of symbols, disjoint from σ, assigned to each constant c. We
call Dom(c) the domain of c. A Boolean constant is one whose domain is the set {TRUE, FALSE}.
An atom of a signature σ is an expression of the form c=v (“the value of c is v”) where
c ∈ σ and v ∈ Dom(c). A (multi-valued propositional) formula of σ is a propositional
combination of atoms.

A (multi-valued propositional) interpretation of σ is a function that maps every element
of σ to an element of its domain. An interpretation I satisfies an atom c=v (symbolically,
I |= c=v) if I(c) = v. The satisfaction relation is extended from atoms to arbitrary for-
mulas according to the usual truth tables for the propositional connectives. I is a model of
a formula if it satisfies the formula.

The reduct F I of a multi-valued propositional formula F relative to a multi-valued
propositional interpretation I is the formula obtained from F by replacing each maximal
subformula that is not satisfied by I with ⊥. Interpretation I is a stable model of F if I is
the only interpretation satisfying F I .

Example 4 Similar to Example 2, consider the signature σ = {f} such that Dom(c) =
{1, 2, 3}. Let I1 be an interpretation such that I1(c) = 1, and I2 be such that I2(c) = 2.
Recall that {f=1} is shorthand for (f=1)∨¬(f=1). The reduct of this formula relative
to I1 is (f =1) ∨ ⊥, and I1 is the only model of the reduct. On the other hand, the reduct
of {f = 1} relative to I2 is (⊥ ∨ ¬⊥) and I2 is not its unique model. Also, the reduct of
{f = 1} ∧ (f = 2) relative to I1 is (⊥ ∨ ¬⊥) ∧ ⊥ and I1 is not a model. The reduct of
{f = 1} ∧ (f = 2) relative to I2 is (⊥ ∨ ¬⊥) ∧ (f = 2), and I2 is the only model of the
reduct.

3 Relating Strong Negation to Boolean Functions
3.1 Representing Strong Negation in Multi-Valued Propositional Formulas
Given a traditional propositional logic programΠ of a signature σ [Gelfond and Lifschitz,
1991], we identify σ with the multi-valued propositional signature whose constants are the

54 M. Bartholomew and J. Lee

same symbols from σ and every constant is Boolean. By Πmv we mean the multi-valued
propositional formula that is obtained from Π by replacing negative literals of the form
∼p with p = FALSE and positive literals of the form p with p = TRUE.

We say that a set X of literals from σ is complete if, for each atom a ∈ σ, either
a or ∼a is in X . We identify a complete set of literals from σ with the corresponding
multi-valued propositional interpretation.

Theorem 1 A complete set of literals is an answer set of Π in the sense of [Gelfond and
Lifschitz, 1991] iff it is a stable model of Πmv in the sense of [Bartholomew and Lee,
2012].

The theorem tells us that checking the minimality of positive and negative literals under
the traditional stable model semantics is essentially the same as checking the uniqueness
of corresponding function values under the stable model semantics from [Bartholomew
and Lee, 2012].

Example 5 Consider the program that describes a simple transition system consisting of
two states depending on whether fluent p is true or false, and an action that makes p true
(subscripts 0 and 1 represent time stamps).

p0 ← not ∼p0 p1 ← a
∼p0 ← not p0

p1 ← p0, not ∼p1
a ← not ∼a ∼p1 ← ∼p0, not p1 .
∼a ← not a

(8)

The program has four answer sets, each of which corresponds to one of the four edges of
the transition system. For instance, {∼p0, a, p1} is an answer set. This program can be
encoded in the input languages of GRINGO and DLV. In the input language of DLV, which
allows disjunctions in the head of a rule, the four rules in the first column can be succinctly
replaced by

p0∨ ∼p0 a∨ ∼a .
According to Theorem 1, the stable models of this program are the same as the stable

models of the following multi-valued propositional formula (written in a logic program
style syntax; ‘¬’ represents default negation):

p0=TRUE ← ¬(p0= FALSE)
p0= FALSE ← ¬(p0=TRUE)

a=TRUE ← ¬(a= FALSE)
a= FALSE ← ¬(a=TRUE)

p1=TRUE ← a=TRUE

p1=TRUE ← p0=TRUE ∧ ¬(p1 = FALSE)
p1= FALSE ← p0= FALSE ∧ ¬(p1 = TRUE) .

3.2 Relation among Strong Negation, Default Negation, Choice Rules and Boolean
Functions

In certain cases, strong negation can be replaced by default negation, and furthermore
the expression can be rewritten in terms of choice rules, which often yields a succinct
representation.

The following theorem, which extends the Theorem on Double Negation from [Ferraris
et al., 2009] to allow intensional functions, presents a condition under which equivalent
transformations in classical logic preserve stable models.

A Functional View of Strong Negation in Answer Set Programming 55

Theorem 2 Let F be a sentence, let c be a list of predicate and function constants, and
let I be a (coherent) interpretation. Let F ′ be the sentence obtained from F by replacing
a subformula ¬H with ¬H ′ such that I |= ∀̃(H ↔ H ′). Then

I |= SM[F ; c] iff I |= SM[F ′; c] .

We say that an interpretation is complete on a predicate p if it satisfies ∀x(p(x)∨ ∼p(x)).
It is clear that, for any complete interpretation I , we have I |= ∼p(t) iff I |= ¬p(t). This
fact allows us to use Theorem 2 to replace strong negation occurring in H with default
negation.

Example 5 continued Each answer set of the first program in Example 5 is complete.
In view of Theorem 2, the first two rules can be rewritten as p0 ← not not p0 and
∼p0 ← not not ∼p0, which can be further abbreviated as choice rules {p0} and {∼p0}.
Consequently, the whole program can be rewritten using choice rules as

{p0}
{∼p0}

{a}
{∼a}

p1 ← a

{p1} ← p0
{∼p1} ← ∼p0 .

Similarly, since I |= (p0 = FALSE) iff I |= ¬(p0 = TRUE), in view of Theorem 2, the
first rule of the second program in Example 5 can be rewritten as p0=TRUE ← ¬¬(p0=TRUE)
and further as {p0= TRUE}. This transformation allows us to rewrite the whole program
as

{p0=B}
{a=B}

p1=TRUE ← a=TRUE

{p1=B} ← p0=B ,

where B ranges over {TRUE, FALSE}. This program represents the transition system more
succinctly than program (8).

3.3 Representing Strong Negation by Boolean Functions in the First-Order Case

Theorem 1 can be extended to the first-order case as follows.
Let f be a function constant. A first-order formula is called f -plain if each atomic

formula

– does not contain f , or
– is of the form f(t) = u where t is a tuple of terms not containing f , and u is a term

not containing f .

For example, f=1 is f -plain, but each of p(f), g(f) = 1, and 1=f is not f -plain.
For a list c of predicate and function constants, we say that a first-order formula F

is c-plain if F is f -plain for each function constant f in c. Roughly speaking, c-plain
formulas do not allow the functions in c to be nested in another predicate or function, and
at most one function in c is allowed in each atomic formula. For example, f = g is not
(f, g)-plain, and neither is f(g) = 1→ g = 1.

Let F be a formula whose signature contains both positive and negative predicate
constants p and ∼p. Formula F (p,∼p)

b is obtained from F as follows:

56 M. Bartholomew and J. Lee

– in the signature of F , replace p and ∼p with a new intensional function constant b of
arity n, where n is the arity of p (or∼p), and add two non-intensional object constants
TRUE and FALSE;

– replace every occurrence of ∼p(t), where t is a list of terms, with b(t) = FALSE, and
then replace every occurrence of p(t) with b(t) = TRUE.

By BCb (“Boolean Constraint on b”) we denote the conjunction of the following for-
mulas, which asserts that b is a Boolean function:

TRUE 6= FALSE , (9)

¬¬∀x(b(x) = TRUE ∨ b(x) = FALSE) ,

where x is a list of distinct object variables.

Theorem 3 Let c be a set of predicate and function constants, and let F be a c-plain
formula. Formulas

∀x((p(x)↔ b(x)=TRUE) ∧ (∼p(x)↔ b(x)= FALSE)), (10)

and BCb entail
SM[F ; p,∼p, c]↔ SM[F

(p,∼p)
b ; b, c] .

If we drop the requirement that F be c-plain, the statement does not hold as in the
following example demonstrates.

Example 6 Take c as (f, g) and let F be p(f)∧ ∼ p(g). F (p,∼p)
b is b(f) = TRUE ∧

b(g) = FALSE. Consider the interpretation I whose universe is {1, 2} such that I con-
tains p(1),∼p(2) and with the mappings bI(1) = TRUE, bI(2) = FALSE, f I = 1, gI = 2.
I certainly satisfies BCb and (10). I also satisfies SM[F ; p,∼p, f, g] but does not satisfy
SM[F

(p,∼p)
b ; b, f, g]: we can let I be b̂I(1) = FALSE, b̂I(2) = TRUE, f̂ I = 2, ĝI = 1 to

satisfy both (̂b, f̂ , ĝ) < (b, f, g) and (F
(p,∼p)
b)∗(̂b, f̂ , ĝ), which is

b(f) = TRUE ∧ b̂(f̂) = TRUE ∧ b(g) = FALSE ∧ b̂(ĝ) = FALSE.

Note that any interpretation that satisfies both (10) and BCb is complete on p. Theo-
rem 3 tells us that, for any interpretation I that is complete on p, minimizing the extents
of both p and ∼p has the same effect as ensuring that the corresponding Boolean function
b have a unique value.

The following corollary shows that there is a 1–1 correspondence between the stable
models of F and the stable models of F (p,∼p)

b . For any interpretation I of the signature of
F that is complete on p, by I(p,∼p)b we denote the interpretation of the signature of F (p,∼p)

b

obtained from I by replacing the relation pI with function bI such that

bI(ξ1, . . . , ξn) = TRUEI if pI(ξ1, . . . , ξn) = TRUE;
bI(ξ1, . . . , ξn) = FALSEI if (∼p)I(ξ1, . . . , ξn) = TRUE .

(Notice that we overloaded the symbols TRUE and FALSE: object constants on one hand,
and truth values on the other hand.) Since I is complete on p and coherent, bI is well-
defined. We also require that I(p,∼p)b satisfy (9). Consequently, I(p,∼p)b satisfies BCb.

A Functional View of Strong Negation in Answer Set Programming 57

Corollary 1 Let c be a set of predicate and function constants, and let F be a c-plain
sentence. (I) An interpretation I of the signature of F that is complete on p is a model of
SM[F ; p,∼p, c] iff I(p,∼p)b is a model of SM[F

(p,∼p)
b ; b, c]. (II) An interpretation J of

the signature of F (p,∼p)
b is a model of SM[F

(p,∼p)
b ∧ BCb; b, c] iff J = I

(p,∼p)
b for some

model I of SM[F ; p,∼p, c].

The other direction, eliminating Boolean intensional functions in favor of symmetric
predicates, is similar as we show in the following.

Let F be a (b, c)-plain formula such that every atomic formula containing b has the
form b(t) = TRUE or b(t) = FALSE, where t is any list of terms (not containing members
from (b, c)). Formula F b

(p,∼p) is obtained from F as follows:

– in the signature of F , replace b with predicate constants p and ∼p, whose arities are
the same as that of b;

– replace every occurrence of b(t) = TRUE, where t is any list of terms, with p(t), and
b(t) = FALSE with ∼p(t).

Theorem 4 Let c be a set of predicate and function constants, let b be a function constant,
and let F be a (b, c)-plain formula such that every atomic formula containing b has the
form b(t) = TRUE or b(t) = FALSE. Formulas (10) and BCb entail

SM[F ; b, c]↔ SM[F b
(p,∼p); p,∼p, c] .

The following corollary shows that there is a 1–1 correspondence between the stable
models of F and the stable models of F b

(p,∼p). For any interpretation I of the signature
of F that satisfies BCb, by I b

(p,∼p) we denote the interpretation of the signature of F b
(p,∼p)

obtained from I by replacing the function bI with predicate pI such that

pI(ξ1, . . . , ξn) = TRUE iff bI(ξ1, . . . , ξn) = TRUEI ;
(∼p)I(ξ1, . . . , ξn) = TRUE iff bI(ξ1, . . . , ξn) = FALSEI .

Corollary 2 Let c be a set of predicate and function constants, let b be a function constant,
and let F be a (b, c)-plain sentence such that every atomic formula containing b has the
form b(t) = TRUE or b(t) = FALSE. (I) An interpretation I of the signature of F is
a model of SM[F ∧ BCb; b, c] iff I b

(p,∼p) is a model of SM[F b
(p,∼p); p,∼p, c]. (II) An

interpretation J of the signature of F b
(p,∼p) is a model of SM[F b

(p,∼p); p,∼p, c] iff J =

I b
(p,∼p) for some model I of SM[F ∧ BCb; b, c].

An example of this corollary is shown in the next section.

4 Representing Non-Boolean Functions Using Strong Negation
In this section, we show how to eliminate non-Boolean intensional functions in favor of
Boolean intensional functions. Combined with the method in the previous section, it gives
us a systematic method of representing non-Boolean intensional functions using strong
negation.

58 M. Bartholomew and J. Lee

4.1 Eliminating non-Boolean Functions in Favor of Boolean Functions

Let F be an f -plain formula. Formula F f
b is obtained from F as follows:

– in the signature of F , replace f with a new boolean intensional function b of arity
n+ 1 where n is the arity of f ;

– replace each subformula f(t) = c with b(t, c) = TRUE.

By UEb, we denote the following formulas that preserve the functional property:

∀xyz(y 6= z ∧ b(x, y) = TRUE → b(x, z) = FALSE),

¬¬∀x∃y(b(x, y) = TRUE),

where x is a n-tuple of variables and all variables in x, y, and z are pairwise distinct.

Theorem 5 For any f -plain formula F ,

∀xy
(
(f(x) = y ↔ b(x, y)=TRUE) ∧ (f(x) 6= y ↔ b(x, y)= FALSE)

)

and ∃xy(x 6= y) entail

SM[F ; f, c] ↔ SM[F f
b ∧ UEb; b, c] .

By Ifb , we denote the interpretation of the signature of F f
b obtained from I by replacing

the mapping f I with the mapping bI such that

bI(ξ1, . . . , ξn, ξn+1) = TRUEI if f I(ξ1, . . . , ξn) = ξn+1

bI(ξ1, . . . , ξn, ξn+1) = FALSEI otherwise.

Corollary 3 Let F be an f -plain sentence. (I) An interpretation I of the signature of F
that satisfies ∃xy(x 6= y) is a model of SM[F ; f, c] iff Ifb is a model of SM[F f

b ∧UEb; b, c].
(II) An interpretation J of the signature of F f

b that satisfies ∃xy(x 6= y) is a model of
SM[F f

b ∧ UEb; b, c] iff J = Ifb for some model I of SM[F ; f, c].

Example 3 continued In the program in Example 3, we eliminate non-Boolean function
Loc in favor of Boolean function On as follows. The last two rules are UEOn.

⊥ ← On(b1, b, t)=TRUE ∧ On(b2, b, t)=TRUE ∧ b1 6= b2
On(b, l, t+ 1)=TRUE ← Move(b, l, t)

⊥ ← Move(b, l, t) ∧ On(b1, b, t)=TRUE

⊥ ← Move(b, b1, t) ∧Move(b1, l, t)
{On(b, l, 0)=TRUE}

{Move(b, l, t)}
{On(b, l, t+ 1)=TRUE} ← On(b, l, t)=TRUE

On(b, l, t)= FALSE ← On(b, l1, t)=TRUE ∧ l 6= l1
⊥ ← not ∃l(On(b, l, t)=TRUE) .

For this program, it is not difficult to check that the last rule is redundant. Indeed, since
the second to the last rule is the only rule that has On(b, l, t)= FALSE in the head, one can
check that any model that does not satisfy ∃l(On(b, l, t) = TRUE) is not stable even if we
drop the last rule.

A Functional View of Strong Negation in Answer Set Programming 59

Corollary 2 tells us that this program can be represented by an answer set program
containing strong negation (with the redundant rule dropped).

⊥ ← On(b1, b, t),On(b2, b, t) (b1 6= b2)
On(b, l, t+ 1) ← Move(b, l, t)

⊥ ← Move(b, l, t),On(b1, b, t)
⊥ ← Move(b, b1, t),Move(b1, l, t)

{On(b, l, 0)}
{Move(b, l, t)}
{On(b, l, t+ 1)} ← On(b, l, t)
∼On(b, l, t) ← On(b, l1, t) (l 6= l1) .

(11)

Let us compare this program with program (7). Similar to the explanation in Example 5
(continued), the 5th and the 7th rules of (7) can be represented using choice rules, which
are the same as the 5th and the 6th rules of (11). The 6th and the 8th rules of (7) represent
the closed world assumption. We can check that adding these rules to (11) extends the
answer sets of (7) in a conservative way with the definition of the negative literals. This
tells us that the answer sets of the two programs are in a 1-1 correspondence.

As the example explains, non-Boolean functions can be represented using strong nega-
tion by composing the two translations, first eliminating non-Boolean functions in favor
of Boolean functions as in Corollary 3 and then eliminating Boolean functions in favor of
predicates as in Corollary 2. In the following we state this composition.

Let F be an f -plain formula where f is an intensional function constant. Formula F f
p

is obtained from F as follows:

– in the signature of F , replace f with two new intensional predicates p and ∼p of arity
n+ 1 where n is the arity of f ;

– replace each subformula f(t) = c with p(t, c).

By UEp, we denote the following formulas that preserve the functional property:

∀xyz(y 6= z ∧ p(x, y)→∼p(x, z)) ,
¬¬∀x∃y p(x, y) ,

where x is an n-tuple of variables and all variables in x, y, z are pairwise distinct.

Theorem 6 For any (f, c)-plain formula F , formulas

∀xy(f(x) = y ↔ p(x, y)), ∀xy(f(x) 6= y ↔∼p(x, y)), ∃xy(x 6= y)

entail
SM[F ; f, c]↔ SM[F f

p ∧ UEp; p,∼p, c] .

By I f
(p,∼p), we denote the interpretation of the signature of F f

(p,∼p) obtained from I by
replacing the function f I with the relation pI that consists of the tuples 〈ξ1, . . . , ξn, f I(ξ1, . . . , ξn)〉
for all ξ1, . . . , ξn from the universe of I . We then also add the set (∼p)I that consists of the
tuples 〈ξ1, . . . , ξn, ξn+1〉 for all ξ1, . . . , ξn, ξn+1 from the universe of I that do not occur
in the set pI .

60 M. Bartholomew and J. Lee

Corollary 4 Let F be an (f, c)-plain sentence. (I) An interpretation I of the signature
of F that satisfies ∃xy(x 6= y) is a model of SM[F ; f, c] iff I f

(p,∼p) is a model of
SM[F f

p ∧ UEp; p,∼p, c]. (II) An interpretation J of the signature of F f
p that satisfies

∃xy(x 6= y) is a model of SM[F f
p ∧ UEp; p,∼p, c] iff J = If(p,∼p) for some model I of

SM[F ; f, c].

Theorem 6 and Corollary 4 are similar to Theorem 8 and Corollary 2 from [Bartholomew
and Lee, 2012]. The main difference is that the latter statements refer to the constraint
called UECp that is weaker than UEp. For instance, the elimination method from [Bartholomew
and Lee, 2012] turns the Blocks World in Example 3 into almost the same program as (11)
except that the last rule is turned into the constraint UECOn:

← On(b, l, t) ∧ On(b, l1, t) ∧ l 6= l1 . (12)

It is clear that the stable models of F f
p ∧UEp are under the symmetric view, and the stable

models of F f
p ∧ UECp are under the asymmetric view. To see how replacing UEOn by

UECOn turns the symmetric view to the asymmetric view, first observe that adding (12) to
program (11) does not affect the stable models of the program. Let’s call this program Π .
It is easy to see that Π is a conservative extension of the program that is obtained from Π
by deleting the rule with ∼On(b, l, t) in the head.

5 Relating to Lifschitz’s Two-Valued Logic Programs
Lifschitz [2012] presented a high level definition of a logic program that does not contain
explicit default negation, but can handle nonmonotonic reasoning in a similar style as
in Reiter’s default logic. In this section we show how his formalism can be viewed as a
special case of multi-valued propositional formulas under the stable model semantics in
which every function is Boolean.

5.1 Review: Two-Valued Logic Programs

Let σ be a signature in propositional logic. A two-valued rule is an expression of the form

L0 ← L1, . . . , Ln : F (13)

where L0, . . . , Ln are propositional literals formed from σ and F is a propositional for-
mula of signature σ.

A two-valued program Π is a set of two-valued rules. An interpretation I is a function
from σ to {TRUE, FALSE}. The reduct of a program Π relative to an interpretation I ,
denoted ΠI , is the set of rules L0 ← L1, . . . , Ln corresponding to the rules (13) of Π
for which I |= F . Interpretation I is a stable model of Π if it is a minimal model of ΠI .

Example 7
a ← : a, ¬a ← : ¬a, b ← a : > (14)

The reduct of this program relative to {a, b} consists of rules a and b ← a. Interpretation
{a, b} is the minimal model of the reduct, so that it is a stable model of the program.

As described in [Lifschitz, 2012], if F in every rule (13) has the form of conjunctions
of literals, then the two-valued logic program can be turned into a traditional answer set

A Functional View of Strong Negation in Answer Set Programming 61

program containing strong negation when we consider complete answer sets only. For
instance, program (14) can be turned into

a ← not ∼a, ∼a ← not a, b ← a .

This program has two answer sets, {a, b} and∼a, and only the complete answer set {a, b}
corresponds to the stable model found in Example 7.

5.2 Translation into SM with Boolean Functions
Given a two-valued logic program Π of a signature σ, we identify σ with the multi-valued
propositional signature whose constants are from σ and the domain of every constant
is Boolean values {TRUE, FALSE}. For any propositional formula G, Tr(G) is obtained
from G by replacing every negative literal ∼A with A= FALSE and every positive literal
A with A= TRUE. By tv2sm(Π) we denote the multi-valued propositional formula which
is defined as the conjunction of

¬¬Tr(F) ∧ Tr(L1) ∧ · · · ∧ Tr(Ln)→ Tr(L0)

for each rule (13) in Π .
For any interpretation I of σ, we obtain the multi-valued interpretation I ′ from I as

follows. For each atom A in σ,

I ′(A) =

{
TRUE if I |= A
FALSE if I |= ¬A

Theorem 7 For any two-valued logic program Π , an interpretation I is a stable model
of Π in the sense of [Lifschitz, 2012] iff I ′ is a stable model of tv2sm(Π) in the sense of
[Bartholomew and Lee, 2012].

Example 7 continued For the programΠ in Example 7, tv2sm(Π) is the following multi-
valued propositional formula:
(
¬¬(a=TRUE)→ a=TRUE

)
∧

(
¬¬(a= FALSE)→ a= FALSE

)
∧

(
a=TRUE → b=TRUE

)
.

According to [Bartholomew and Lee, 2012], this too has only one stable model in which a
and b are both mapped to TRUE, corresponding to the only stable model of Π according
to Lifschitz.

Consider extending the rules (13) to contain variables. It is not difficult to see that
the translation tv2sm(Π) can be straightforwardly extended to non-ground programs. This
accounts for providing the semantics of the first-order extension of two-valued logic pro-
grams.

6 Strong Negation and the Cabalar Semantics
There are other stable model semantics of intensional functions. Theorem 5 from [Bartholomew
and Lee, 2013] states that the semantics by Bartholomew and Lee [2013] coincides with
the semantics by Cabalar [2011] on c-plain formulas. Thus several theorems in this note
stated for the Bartholomew-Lee semantics hold also under the Cabalar semantics.

A further result holds with the Cabalar semantics since it allows functions to be partial.
This provides extensions of Theorem 3 and Corollary 1, which do not require the interpre-
tations to be complete. Below we state this result. Due to lack of space, we refer the reader

62 M. Bartholomew and J. Lee

to [Bartholomew and Lee, 2013] for the definition of CBL, which is the second-order
expression used to define the Cabalar semantics.

Similar to BCb in Section 3.3, by BC′b we denote the conjunction of the following
formulas:

TRUE 6= FALSE, (15)

¬¬∀x(b(x) = TRUE ∨ b(x) = FALSE ∨ b(x) 6= b(x)),

where x is a list of distinct object variables.4

Theorem 8 Let c be a set of predicate constants, and let F be a formula. Formulas

∀x((p(x)↔ b(x)=TRUE)∧(∼p(x)↔ b(x)= FALSE)∧(¬p(x)∧¬∼p(x)↔ b(x) 6= b(x)),

and BC′b entail 5

SM[F ; p,∼p, c]↔ CBL[F (p,∼p)
b ; b, c] .

The following corollary shows that there is a 1–1 correspondence between the stable
models of F and the stable models of F (p,∼p)

b .6 For any interpretation I of the signature
of F , by I(p,∼p)b we denote the interpretation of the signature of F (p,∼p)

b obtained from I
by replacing the relation pI with function bI such that

bI(ξ) = TRUEI if pI(ξ) = TRUE ;
bI(ξ) = FALSEI if (∼p)I(ξ) = TRUE ;
bI(ξ) = u if pI(ξ) = (∼p)I(ξ) = FALSE .

Since I is coherent, bI is well-defined. We also require that I(p,∼p)b satisfy (15). Conse-
quently, I(p,∼p)b satisfies BC′b.

Corollary 5 Let F be a sentence, and let c be a set of predicate constants. (I) An in-
terpretation I of the signature of F is a model of SM[F ; p,∼p, c] iff I(p,∼p)b is a model
of CBL[F (p,∼p)

b ; b, c]. (II) An interpretation J of the signature of F (p,∼p)
b is a model of

CBL[F (p,∼p)
b ∧ BC′b; b, c] iff J = I

(p,∼p)
b for some model I of SM[F ; p,∼p, c].

7 Conclusion
In this note, we showed that, under complete interpretations, symmetric predicates using
strong negation can be alternatively expressed in terms of Boolean intensional functions
in the language of [Bartholomew and Lee, 2012]. They can also be expressed in terms of
Boolean intensional functions in the language of [Cabalar, 2011], but without requiring
the complete interpretation assumption, at the price of relying on the notion of partial
interpretations.

System CPLUS2ASP [Casolary and Lee, 2011; Babb and Lee, 2013] turns action lan-
guage C+ into answer set programs containing asymmetric predicates. The translation in

4 Under partial interpretations, b(t) 6= b(t) is true if b(t) is undefined. See [Cabalar, 2011;
Bartholomew and Lee, 2013] for more details.

5 The entailment is under partial interpretations and satisfaction.
6 Recall the notation defined in Section 3.3.

A Functional View of Strong Negation in Answer Set Programming 63

this paper that eliminates intensional functions in favor of symmetric predicates provides
an alternative method of computing C+ using ASP solvers.

Acknowledgements: We are grateful to Vladimir Lifschitz for bringing attention to this
subject, to Gregory Gelfond for useful discussions related to this paper, and to anony-
mous referees for useful comments. This work was partially supported by the National
Science Foundation under Grant IIS-0916116 and by the South Korea IT R&D program
MKE/KIAT 2010-TD-300404-001.

References
[Babb and Lee, 2013] Joseph Babb and Joohyung Lee. CPLUS2ASP: Computing action language

C+ in answer set programming. In Proceedings of International Conference on Logic Program-
ming and Nonmonotonic Reasoning (LPNMR), 2013. To appear.

[Bartholomew and Lee, 2012] Michael Bartholomew and Joohyung Lee. Stable models of formulas
with intensional functions. In Proceedings of International Conference on Principles of Knowl-
edge Representation and Reasoning (KR), pages 2–12, 2012.

[Bartholomew and Lee, 2013] Michael Bartholomew and Joohyung Lee. On the stable model se-
mantics for intensional functions. TPLP, 2013. To appear.

[Cabalar, 2011] Pedro Cabalar. Functional answer set programming. TPLP, 11(2-3):203–233, 2011.
[Casolary and Lee, 2011] Michael Casolary and Joohyung Lee. Representing the language of the

causal calculator in answer set programming. In ICLP (Technical Communications), pages 51–61,
2011.

[Ferraris et al., 2009] Paolo Ferraris, Joohyung Lee, Vladimir Lifschitz, and Ravi Palla. Symmetric
splitting in the general theory of stable models. In Proceedings of International Joint Conference
on Artificial Intelligence (IJCAI), pages 797–803. AAAI Press, 2009.

[Ferraris et al., 2011] Paolo Ferraris, Joohyung Lee, and Vladimir Lifschitz. Stable models and
circumscription. Artificial Intelligence, 175:236–263, 2011.

[Gelfond and Lifschitz, 1991] Michael Gelfond and Vladimir Lifschitz. Classical negation in logic
programs and disjunctive databases. New Generation Computing, 9:365–385, 1991.

[Lifschitz, 2002] Vladimir Lifschitz. Answer set programming and plan generation. Artificial In-
telligence, 138:39–54, 2002.

[Lifschitz, 2012] Vladimir Lifschitz. Two-valued logic programs. In ICLP (Technical Communica-
tions), pages 259–266, 2012.

64 M. Bartholomew and J. Lee

An Algebra of Causal Chains?

Pedro Cabalar and Jorge Fandinno

Department of Computer Science
University of Corunna, SPAIN

{cabalar, jorge.fandino}@udc.es

Abstract. In this work we propose a multi-valued extension of logic programs
under the stable models semantics where each true atom in a model is associ-
ated with a set of justifications, in a similar spirit than a set of proof trees. The
main contribution of this paper is that we capture justifications into an algebra
of truth values with three internal operations: an addition ‘+’ representing alter-
native justifications for a formula, a commutative product ‘∗’ representing joint
interaction of causes and a non-commutative product ‘·’ acting as a concatenation
or proof constructor. Using this multi-valued semantics, we obtain a one-to-one
correspondence between the syntactic proof tree of a standard (non-causal) logic
program and the interpretation of each true atom in a model. Furthermore, thanks
to this algebraic characterization we can detect semantic properties like redun-
dancy and relevance of the obtained justifications. We also identify a lattice-based
characterization of this algebra, defining a direct consequences operator, proving
its continuity and that its least fix point can be computed after a finite number of
iterations. Finally, we define the concept of causal stable model by introducing
an analogous transformation to Gelfond and Lifschitz’s program reduct.

1 Introduction

A frequent informal way of explaining the effect of default negation in an introductory
class on semantics in logic programming (LP) is that a literal of the form ‘not p’ should
be read as “there is no way to derive p.” Although this idea seems quite intuitive, it
is actually using a concept outside the discourse of any of the existing LP semantics:
the ways to derive p. To explore this idea, [1] introduced the so-called causal logic
programs. The semantics was an extension of stable models [2] relying on the idea of
“justification” or “proof”. Any true atom, in a standard (non-causal) stable model needs
to be justified. In a causal stable model, the truth value of each true atom captures these
possible justifications, called causes. Let us see an example to illustrate this.

Example 1. Suppose we have a row boat with two rowers, one at each side of the boat,
port and starboard. The boat moves forward fwd if both rowers strike at a time. On the
other hand, if we have a following wind, the boat moves forward anyway. �

? This research was partially supported by Spanish MEC project TIN2009-14562-C05-04 and
Xunta program INCITE 2011.

Suppose now that we have indeed that both rowers stroke at a time when we addi-
tionally had a following wind. A possible encoding for this example could be the set of
rules Π1:

p : port s : starb w : fwind

fwd← port ∧ starb fwd← fwind

In the only causal stable model of this program, atom fwd was justified by two al-
ternative and independent causes. On the one hand, cause {p, s} representing the joint
interaction of port and starb. On the other hand, cause {w} inherited from fwind. We
label rules (in the above program only atoms) that we want to be reflected in causes.
Unlabelled fwd rules are just ignored when reflecting causal information. For instance,
if we decide to keep track of the application of these rules, we would handle instead a
program Π2 obtained just by labelling these two rules in Π1 as follows:

a : fwd← port ∧ starb (1)
b : fwd← fwind (2)

The two alternative justifications for atom fwd become the pair of causes {p, s} · a and
{w} · b. The informal reading of {p, s} · a is that “the joint interaction of {p} and {s},
the cause {p, s}, is necessary to apply rule a.” From a graphical point of view, we can
represent causes as proof trees.

p : port

**

s : starb

tt

a : fwd← port ∧ starb

w : fwind

��

b : fwd← fwind

Fig. 1. Proof trees justifying atom fwd in the program Π2

In this paper, we show that causes can be embedded in an algebra with three internal
operations: an addition ‘+’ representing alternative justifications for a formula, a com-
mutative product ‘∗’ representing joint interaction of causes (in a similar spirit to the
‘+’ in [3]) and a non-commutative product ‘·’ acting as a concatenation or rule appli-
cation. Using these operations, we can see that justification for fwd would correspond
now to the value ((p ∗ s) · a) + (w · b) which means that fwd is justified by the two
alternative causes, (p ∗ s) · a and (w · b). The former refers to the application of rule a
to the join interaction of p and s. Similarly, the later refers to the application of rule b to
w. From a graphical point of view, each cause corresponds to one of proof trees in the
Figure 1, the right hand side operator of application corresponds to the head whereas
the left hand side operator corresponds to the product of its children.

The rest of the paper is organised as follows. Section 2 describes the algebra with
these three operations and a quite natural ordering relation on causes. The next sec-
tion studies the semantics for positive logic programs and shows the correspondence
between the syntactic proof tree of a standard (non-causal) logic program and the in-
terpretation of each atom in a causal model. Section 4 introduces default negation and
stable models. Finally, Section 5 concludes the paper.

66 P. Cabalar and J. Fandiño

2 Algebra of causal values

As we have introduced, our set of causal values will constitute an algebra with three in-
ternal operations: addition ‘+’ representing alternative causes, product ‘∗’ representing
joint interaction between causes and rule application ‘·’. We define now causal terms,
the syntactic counterpart of (causal) values, just as combinations of these three opera-
tions over labels (events).

Definition 1 (Causal term). A causal term, t, over a set of labels Lb is recursively
defined as one of the following expressions:

t ::= l |
∏

ti∈S
ti |

∑

ti∈S
ti | t1 · t2

where l is a label l ∈ Lb, t1, t2 are in their turn causal terms and S is a (possibly empty
or possibly infinite) set of causal terms. The set of causal terms over Lb is denoted by
TLb. �

As we can see, infinite products and sums are allowed whereas a term may only con-
tain a finite number of concatenation applications. Constants 0 and 1 will be shorthands
for the empty sum

∑
t∈∅ t and the empty product

∏
t∈∅ t, respectively.

We adopt the following notation. To avoid an excessive use of parentheses, we as-
sume that ‘·’ has the highest priority, followed by ‘∗’ and ‘+’ as usual, and we further
note that the three operations will be associative. When clear from the context, we will
sometimes remove ‘·’ so that, for instance, the term l1l2 stands for l1 · l2. As we will
see, two (syntactically) different causal terms may correspond to the same causal value.
However, we will impose Unique Names Assumption (UNA) for labels, that is, l 6= l′

for any two (syntactically) different labels l, l′ ∈ Lb, and similarly l 6= 0 and l 6= 1 for
any label l.

To fix properties of our algebra we recall that addition ‘+’ represents a set of al-
ternative causes and product ‘∗’ a set of causes that are jointly used. Thus, since both
represent sets, they are associative, commutative and idempotent. Contrary, although
associative, application ‘·’ is not commutative. Note that the right hand side operator
represents the applied rule and left hand one represents a cause that is necessary to ap-
ply it, therefore they are clearly not interchangeable. We can note another interesting
property: application ‘·’ distributes over both addition ‘+’ and product ‘∗’. To illustrate
this idea, consider the following variation of our example. Suppose now that the boat
also leaves a wake behind when it moves forward. Let Π3 be the set of rules Π1 plus
the rule k : wake ← fwd reflecting this new assumption. As we saw, fwd is justified
by p ∗ s + w and thus wake will be justified by applying rule k : wake ← fwd to
it, i.e.the value (p ∗ s + w) · k. We can also see that there are two alternative causes
justifying wake, graphically represented in the Figure 2. The term that corresponds
which this graphical representation is (p ∗ s) · k + w · k = (p ∗ s + w) · k. Moreover,
application ‘·’ also distributes over product ‘∗’ and (p ∗ s) · k + w · k is equivalent to
(p ·k) ∗ (s ·k)+ (w ·k). Intuitively, if the joint iteration of p and s is necessary to apply
k then both p and s are also necessary to apply it, and conversely. Note that each chain
of applications , (p · k), (s · k) and (w · k) corresponds to a path in one of the trees in
the Figure 2. Causes can be seen as sets (products) of paths (causal chains).

An Algebra of Causal Chains 67

p : port

**

s : starb

tt

fwd← port ∧ starb
��

k : wake← fwd

w : fwind

��

fwd← fwind

��

k : wake← fwd

Fig. 2. Proof trees pontificating atom fwd in the program Π3

Definition 2 (Causal Chain). A causal chain x over a set of labels Lb is a sequence
x = l1 · l2 · . . . · ln, or simply l1l2 . . . ln, with length |x| = n > 0 and li ∈ Lb. �

We denote XLb to stand for the set of causal chains over Lb and will use letters
x, y, z to denote elements from that set. It suffices to have a non-empty set of labels, say
Lb = {a}, to get an infinite set of chains XLb = {a, aa, aaa, . . . }, although all of them
have a finite length. It is easy to see that, by an exhaustive application of distributivity,
we can “shift” inside all occurrences of the application operator so that it only occurs in
the scope of other application operators. A causal term obtained in this way is a normal
causal term.

Definition 3 (Normal causal term). A causal term, t, over a set of labels Lb is recur-
sively defined as one of the following expressions:

t ::= x |
∏

ti∈S
ti |

∑

ti∈S
ti

where x ∈ XLb is a causal chain over Lb and S is a (possibly empty or possibly infinite)
set of normal causal terms. The set of causal terms over Lb is denoted by ULb. �

Proposition 1. Every causal term t can be normalized, i.e. written as an equivalent
normal causal term u. �

In the same way as application ‘·’ distributes over addition ‘+’ and product ‘∗’, the
latter, in their turn, also distributes over addition ‘+’. Consider a new variation of our
example to illustrate this fact. Suppose that we have now two port rowers that can strike,
encoded as the set of rules Π4:

p1 : port1 p2 : port2 s : starb

port← port1 port← port2 fwd← port ∧ starb

We can see that, in the only causal stable model of this program, atom portwas justified
by two alternative, and independent causes, p1 and p2, and after applying unlabelled
rules to them, the resulting value assigned to fwd is (p1 + p2) ∗ s. It is also clear that
there are two alternative causes justifying fwd: the result from combining the starboard
rower strike with each of the port rower strikes, p1 ∗ s and p2 ∗ s. That is, causal terms
(p1 + p2) ∗ s and p1 ∗ s+ p2 ∗ s are equivalent.

Furthermore, as we introduce above, causes can be ordered by a notion of “strength”
of justification. For instance, in our example, fwd is justified by two independent

68 P. Cabalar and J. Fandiño

causes, p ∗ s + w while fwind is only justified by w. If we consider the program
Π5 obtained by removing the fact w : fwind from Π1 then fwd keeps being justi-
fied by p ∗ s but fwind becomes false. That is, fwd is “more strongly justified” than
fwind in Π1, written w ≤ p ∗ s + w. Similarly, p ∗ s ≤ p ∗ s + w. Note also that,
in this program Π5, fwd needs the joint interaction of p and s to be justified but port
and starb only need p and s, respectively. That is, p is “more strongly justified” than
p ∗ s, written p ∗ s ≤ p. Similarly, p ∗ s ≤ s. We can also see that in program Π2

which labels rules for fwd, one of the alternative causes for fwd is w · b and this is
“less strongly justified” than w, i.e. w · b ≤ w since, from a similar reasoning, w · b
needs the application of b to w when w only requires itself. In general, we will see that
a ·b ≤ a∗b ≤ X ≤ a+b whereX can be either a or b. We formalize this order relation
starting for causal chains. Notice that a causal chain x = l1l2 . . . ln can be alternatively
characterized as a partial function from naturals to labels x : N −→ Lb where x(i) = li
for all i ≤ n and undefined for i > n. Using this characterisation, we can define the
following partial order among causal chains:

Definition 4 (Chain subsumption). Given two causal chains x and y ∈ XLb, we say
that y subsumes x, written x ≤ y, if and only if there exists a strictly increasing function
δ : N −→ N such that for each i ∈ N with y(i) defined, x

(
δ(i)

)
= y(i). �

Proposition 2. Given two finite causal chains x, y ∈ XLb, they are equivalent (i.e. both
x ≤ y and y ≤ x) if and only if they are syntactically identical. �
Informally speaking, y subsumes x, when we can embed y into x, or alternatively when
we can form y by removing (or skipping) some labels from x. For instance, take the
causal chains x = abcde and y = ac. Clearly we can form y = ac = a · �b · c · �d · �e
by removing b, d and e from x. Formally, x ≤ y because we can take some strictly
increasing function with δ(1) = 1 and δ(2) = 3 so that y(1) = x(δ(1)) = x(1) = a
and y(2) = x(δ(2)) = x(3) = c.

Although, at a first sight, it may seem counterintuitive the fact that x ≤ y implies
|x| ≥ |y|, as we mentioned, a fact or formula is “more strongly justified” when we need
to apply less rules to derive it (and so, causal chains contain less labels) respecting their
ordering. In this way, chain ac is a “more strongly justification” than abcde.

As we saw above, a cause can be seen as a product of causal chains, that from a
graphical point of view correspond to the set of paths in a proof tree. We notice now
an interesting property relating causes and the “more strongly justified” order relation:
a joint interaction of comparable causal chains should collapse to the weakest among
them. Take, for instance, a set of rules Π6:

a : p b : q ← p r ← p ∧ q
where, in the unique causal stable model, r corresponds to the value a∗a · b. Informally
we can read this as “we need a and apply rule b to rule a to prove r”. Clearly, we are
repeating that we need a. Term a is redundant and then a∗a·b is simply equivalent to a·b.
This idea is quite related to the definition of order filter in order theory. An order filter F
of a poset P is a special subset F ⊆ P satisfying1 that for any x ∈ F and y ∈ P , x ≤ y

1 Order filter is a weaker notion than filter which further satisfies that any pair x, y ∈ F has a
lower bound in F too.

An Algebra of Causal Chains 69

implies y ∈ F . An order filter F is furthermore generated by an element x ∈ P iff
x ≤ y for all elements y ∈ F , the order filter generated by x is written ||x||. Considering
causes as the union of filters generated by their causal chains, the join interaction of
causes just correspond to their union. For instance, if we consider the set of labels
Lb = {a, b} and its corresponding set of causal chains XLb = {a, b, ab, ba, . . . }, then
||ab|| and ||a|| respectively correspond to the set of all chains grater than ab and a in the
poset P = 〈XLb,≤〉. Those are, ||ab|| = {ab, a, b} and ||a|| = {a}. The term a ∗ ab
corresponds just to the union of both sets ||a|| ∪ ||ab|| = ||ab||. We define a cause as
follows:

Definition 5 (Cause). A cause for a set of labels Lb is any order filter for the poset of
chains 〈XLb,≤〉. We will write CLb (or simply C when there is no ambiguity) to denote
the set of all causes for Lb. �

This definition captures the notion of cause, or syntactically a product of causal
chains. To capture possible alternative causes, that is, additions of products of causal
chains, we notice that addition obeys a similar behaviour with respect to redundant
causes. Take, for instance, a set of rules Π7:

a : p b : p← p

It is clear, that the cause a is sufficient to justify p, but there are also infinitely many
other alternative and redundant causes a · b, a · b · b, . . . that justify p, that is a+ a · b+
a · b · b+ To capture a set of alternative causes we define the idea of causal value,
in its turn, as a filter of causes.

Definition 6 (Causal Value). Given a set of labels Lb, a causal value is any order filter
for the poset 〈CLb,⊆〉. �

The causal value ||||a||||, the filter generated by the cause ||a||, is the set containing ||a|| =
{a, a+b} and all its supersets. That is, ||||a|||| = {||a||, ||a∗b||, ||a ·b||, . . . }. Futhermore,
as we will se later, addition can be interpreted as the union of causal values for its
respective operands. Thus, a+ a · b+ a · b · b+ . . . just corresponds to the union of the
causal values generated by their addend causes, ||||a||||∪||||a · b||||∪||||a · b · b||||+. . . = ||||a||||.

The set of possible causal values formed with labels Lb is denoted as VLb. An ele-
ment from VLb has the form of a set of sets of causal chains that, intuitively, corresponds
to a set of alternative causes (sum of products of chains). From a graphical point of view,
it corresponds to a set of alternative proof trees represented as their respective sets of
paths. We define now the correspondence between syntactical causal terms and their
semantic counterpart, causal values.

Definition 7 (Valuation of normal terms). The valuation of a normal term is a map-
ping ε : ULb −→ VLb defined as:

ε(x)
def
= |||x||| with x ∈ XLb, ε

(∑

t∈S
t
)

def
=

⋃

t∈S
ε(t), ε

(∏

t∈S
t
)

def
=

⋂

t∈S
ε(t) �

70 P. Cabalar and J. Fandiño

Note that any causal term can be normalized and then this definition trivially extends to
any causal term. Furthermore, a causal chain x is mapped just to the causal value gen-
erated by the cause, in their turn, generated by x, i.e. the set containing all causes which
contain x. The aggregate union of an empty set of sets (causal values) corresponds to
∅. Therefore ε(0) =

⋃
t∈∅ ε(t) = ∅, i.e. 0 just corresponds to the absence of justifica-

tion. Similarly, as causal values range over parts of C, the aggregate intersection of an
empty set of causal values corresponds to C, and thus ε(1) =

⋂
t∈∅ ε(t) = C, i.e. 1 just

corresponds to the “maximal” justification.

Theorem 1 (From [4]). 〈VLb,∪,∩〉 is the free completely distributive lattice gener-
ated by 〈XLb,≤〉, and the restriction of ε to XLb is an injective homomorphism (or
embedding). �

The above theorem means that causal terms form a complete lattice. The order rela-
tion≤ between causal terms just corresponds to set inclusion between their correspond-
ing causal values, i.e. x ≤ y iff ε(x) ⊆ ε(y). Furthermore, addition ‘+’ and product ‘∗’
just respectively correspond to the least upper bound and the greater lower bound of the
associated lattice 〈TLb,≤〉 or 〈TLb,+, ∗〉 where:

t ≤ u def
= ε(t) ⊆ ε(u) (⇔ t ∗ u = t ⇔ t+ u = u)

for any normal term t and u. For instance, in our example Π2, fwd was associated with
the causal term p · a ∗ s · a+w · b. Thus, the causal value associated with it corresponds
to

ε(p · a ∗ s · a+ w · b) = ||||p · a|||| ∩ ||||s · a|||| ∪ ||||w · b||||
Causal values are, in general, infinite sets. For instance, as we saw before, simply

with Lb = {a} we have the chains XLb = {a, aa, aaa, . . . } and ε(a) contains all possi-
ble causes in C that are supersets of {a}, that is, ε(a) = {{a}, {aa, a}, {aaa, aa, a}, . . . }.
Obviously, writing causal values in this way is infeasible – it is more convenient to use
a representative causal term instead. For this purpose, we define a function γ that acts as
a right inverse morphism for ε selecting minimal causes, i.e., given a causal value V , it
defines a normal term γ(V) = t such that ε(t) = V and γ(V) does not have redundant
subterms. The function γ is defined as a mapping γ : VLb −→ ULb such that for any

causal value V ∈ VLb, γ(V)
def
=
∑
C∈V

∏
x∈C x where V = {C ∈ V |6 ∃D ∈ V,D ⊂

C} and C = {x ∈ C |6 ∃y ∈ C, y < x} respectively stand for ⊆-minimal causes of V
and ≤-minimal chains of C. We will use γ(V) to represent V .

Proposition 3. The mapping γ is a right inverse morphism of ε. �

Given a term t we define its canonical form as γ(ε(t)). Canonical terms are of the
form of sums of products of causal chains. As it can be imagined, not any term in
that form is a canonical term. For instance, going back, we easily can check that terms
a ∗ ab = ab and a+ ab+ abb+ · · · = a respectively correspond to the canonical terms
γ(ε(ab ∗ a)) = γ(ε(ab)) = ab and γ(ε(a+ ab+ abb+ . . .)) = γ(ε(a)) = a. Figure 3
summarizes addition and product properties while Figure 4 is analogous for application
properties.

An Algebra of Causal Chains 71

Associativity
t + (u+w) = (t+u) + w
t ∗ (u∗w) = (t∗u) ∗ w

Commutativity
t + u = u + t
t ∗ u = u ∗ t

Absorption
t = t + (t∗u)
t = t ∗ (t+u)

Distributive
t + (u∗w) = (t+u) ∗ (t+w)
t ∗ (u+w) = (t∗u) + (t∗w)

Identity

t = t + 0
t = t ∗ 1

Idempotence
t = t + t
t = t ∗ t

Annihilator
1 = 1 + t
0 = 0 ∗ t

Fig. 3. Sum and product satisfy the properties of a completely distributive lattice.

Associativity
t · (u·w) = (t·u) · w

Absorption
t = t + u · t · w

u · t · w = t ∗ u · t · w

Identity
t = 1 · t
t = t · 1

Addition distributivity
t · (u+w) = (t·u) + (t·w)
(t + u) · w = (t·w) + (u·w)

Product distributivity
c · (d ∗ e) = (c · d) ∗ (c · e)
(c ∗ d) · e = (c · e) ∗ (c · e)

Annihilator
0 = t · 0
0 = 0 · t

Fig. 4. Properties of the application ‘·’ operator. Note: c, d and e denote a causes instead of
arbitrary causal terms.

For practical purposes, simplification of causal terms can be done by applying the
algebraic properties shown in Figures 3 and 4. For instance, the examples from Π6 and
Π7 containing redundant information can now be derived as follows:

a ∗ a · b = (a ∗ 1 · a · b) identity for ‘·’
= 1 · a · b absorption for ‘·’
= a · b identity for ‘·’

a+ a · b+ a · b · b+ . . . = a+ 1 · a · b+ a · b · b+ . . . identity for ‘·’
= a+ a · b · b+ . . . absorption for ‘·’
= a+ 1 · a · b · b+ . . . identity for ‘·’
.
= a absorption for ‘·’

Let us see another example involving distributivity. The term ab ∗ c+ a can be derived
as follows:

a · b ∗ c+ a = (a · b+ a) ∗ (c+ a) distributivity
= (1 · a · b+ a) ∗ (c+ a) identity for ‘·’
= (a+ 1 · a · b) ∗ (c+ a) commutativity for ‘+’
= a ∗ (c+ a) absorption for ‘·’
= a absorption for ‘∗’

72 P. Cabalar and J. Fandiño

3 Positive programs and minimal models

Let us describe now how to use the causal algebra to evaluate causal logic programs.
A signature is a pair 〈At, Lb〉 of sets that respectively represent the set of atoms (or
propositions) and the set of labels. As usual, a literal is defined as an atom p (positive
literal) or its negation ¬p (negative literal). In this paper, we will concentrate on pro-
grams without disjunction in the head, leaving the treatment of disjunction for a future
study.

Definition 8 (Causal logic program). Given a signature 〈At, Lb〉 a (causal) logic pro-
gram Π is a set of rules of the form:

t : L0 ← L1 ∧ . . . ∧ Lm ∧ not Lm+1 ∧ . . . ∧ not Ln

where t is a causal term over Lb, L0 is a literal or ⊥ (the head of the rule) and L1 ∧
. . .∧Lm ∧ not Lm+1 ∧ . . . not Ln is a conjunction of literals (the body of the rule). An
empty body is represented as >. �

For any rule φ of the form t : L0 ← L1∧. . .∧Lm∧not Lm+1∧. . . not Ln we define
label(φ) = t. Most of the following definitions are standard in logic programming. We
denote head(φ) = L0, B+ (resp. B−) to represent the conjunction of all positive (resp.
negative) literals L1 ∧ . . . ∧ Ln (resp. not Lm+1 ∧ . . . ∧ not Ln) that occur in B. A
logic program is positive if B− is empty for all rules (n = m), that is, if it contains
no negations. Unlabelled rules are assumed to be labelled with the element 1 which, as
we saw, is the identity for application ‘·’. > (resp. ⊥) represent truth (resp. falsity). If
n = m = 0 then← can be dropped.

Given a signature 〈At, Lb〉 a causal interpretation is a mapping I : At −→ VLb
assigning a causal value to each atom. Partial order ≤ is extended over interpretations
so that given two interpretations I, J we define I ≤ J

def
= I(p) ≤ J(p) for each atom

p ∈ At. There is a≤-bottom interpretation 0 (resp. a≤-top interpretation 1) that stands
for the interpretation mapping each atom p to 0 (resp. 1). The set of interpretations I
with the partial order ≤ forms a poset 〈I,≤〉 with supremum ‘+’ and infimum ‘∗’ that
are respectively the sum and product of atom interpretations. As a result, 〈I,+, ∗〉 also
forms a complete lattice.

Observation 1 When Lb = ∅ the set of causal values becomes VLb = {0, 1} and
interpretations collapse to classical propositional logic interpretations. �

Definition 9 (Causal model). Given a positive causal logic program Π and a causal
interpretation I over the signature 〈At, Lb〉, I is a causal model, written I |= Π , if and
only if (

I(L1) ∗ . . . ∗ I(Lm)
)
· t ≤ I(L0)

for each rule ϕ ∈ Π of the form ϕ = L0 ← L1, . . . , Lm.

For instance, take rule (1) from Example 1 and let I be an interpretation such that
I(port) = p and I(starb) = s. Then I will be a model of (1) when (p ∗ s) · a ≤

An Algebra of Causal Chains 73

I(fwd). In particular, this holds when I(fwd) = (p ∗ s) ·a+w · b which was the value
we expected for program Π2. But it would also hold when, for instance, I(fwd) =
a + b or I(fwd) = 1. Note that this is important if we had to accommodate other
possible additional facts (a : fwd) or even (1 : fwd) in the program. The fact that
any I(fwd) greater than (p ∗ s) · a + w · b is also a model clearly points out the need
for selecting minimal models. In fact, as happens in the case of non-causal programs,
positive programs have a least model (this time, with respect to≤ relation among causal
interpretations) that can be computed by iterating an extension of the well-known direct
consequences operator defined by [5].

Definition 10 (Direct consequences). Given a positive logic program Π for signature
〈At, Lb〉 and a causal interpretation I , the operator of direct consequences is a function
TΠ : I −→ I such that, for any atom p ∈ At:

TΠ(I)(L0)
def
=
∑{ (

I(L1) ∗ . . . ∗ I(Lm)
)
· t | (t : L0 ← L1 ∧ . . . ∧ Lm) ∈ Π

}

In order to prove some properties of this operator, an important observation should
be made: since the set of causal values forms now a lattice, causal logic programs can
be translated to Generalized Annotated Logic Programming (GAP). GAP is a general
a framework for multivalued logic programming where the set of truth values must to
form an upper semilattice and rules (annotated clauses) have the following form:

L0 : ρ← L1 : µ1 & . . . & Lm : µm (3)

where L0, . . . , Lm are literals, ρ is an annotation (may be just a truth value, an an-
notation variable or a complex annotation) and µ1, . . . , µm are values or annotation
variables. A complex annotation is the result to apply a total continuous function to a
tuple of annotations. For instance ρ can be a complex annotation f(µ1, . . . , µm) that
applies the function f to a m-tuple (µ1, . . . , µm) of annotation variables in the body of
(3). Given a positive program Π , each rule ϕ ∈ Π of the form

t : L0 ← L1 ∧ . . . ∧ Lm (4)

is translated to an annotated clause GAP (ϕ) of the form of (3) where µ1, . . . , µm are
annotation variables that capture the causal values of each body literal. The head com-
plex annotation corresponds to the function ρ def

= (µ1 ∗ . . . ∗µm) · t that forces the head
to inherit the causal value obtained by applying the rule label t to the product of the
interpretation of body literals µ1 ∗ . . . ∗ µm. The translation of a program Π is simply
defined as:

GAP (Π)
def
= {GAP (ϕ) | ϕ ∈ Π}

A complete description of GAP restricted semantics, denoted as |=r, is out of the scope
of this paper (the reader is referred to [6]). For our purposes, it suffices to observe that
the following important property is satisfied.

Theorem 2. A positive causal logic program Π can be translated to a general an-
notated logic program GAP (Π) s.t. a causal interpretation I |= Π if and only if
I |=r GAP (Π). Furthermore, TΠ(I) = RGAP (Π)(I) for any interpretation I .

74 P. Cabalar and J. Fandiño

Corollary 1. Given a positive logic program Π the following properties hold:

1. Operator TΠ is monotonic.
2. Operator TΠ is continuous.
3. TΠ ↑ ω (0) = lfp(TΠ) is the least model of Π .
4. The iterative computation TΠ ↑ k (0) reaches the least fixpoint in n steps for some

positive integer n.

Proof. Directly follows from Theorem 2 and Theorems 1, 2 and 3 in [6].

The existence of a least model for a positive program and its computation using TΠ
is an interesting result, but it does not provide any information on the relation between
the causal value it assigns to each atom with respect to its role in the program. As we
will see, we can establish a direct relation between this causal value and the idea of
proof in the positive program. Let us formalise next the idea of proof tree.

Definition 11 (Proof tree). Given a causal logic program Π , a proof tree is a directed
acyclic graph T = 〈V,E〉, where vertices V ⊆ Π are rules from the program, and
E ⊆ V × V satisfying:

(i) There is at exactly one vertex without outgoing edges denoted as sink(T).
(ii) For each rule ϕ = (t : L0 ← B) ∈ V and for each atom Li ∈ B+ there is exactly

one ϕ′ with (ϕ′, ϕ) ∈ E and this rule satisfies head(ϕ′) = Li. �

Notice that condition (ii) forces us to include an incoming edge for each atom in the
positive body of a vertex rule. As a result, source vertices must be rules with empty
positive body, or just facts in the case of positive programs. Another interesting obser-
vation is that, proof tree do not require an unique parent for each vertex. For instance, in
Example 1, if both port and starb were obtained as a consequence of some command
made by the captain, we could get instead a proof tree, call it T1, of the form:

c : command

rr ,,

p : port← command

++

s : starb← command

ss

a : fwd← port ∧ starb

Definition 12 (Proof path). Given a proof tree T = 〈V,E〉 we define a proof path for
T as a concatenation of terms t1 . . . tn satisfying:

1. There exists a rule ϕ ∈ V with label(r) = t1 such that ϕ is a source, that is, there
is no ϕ′ s.t. (ϕ′, ϕ) ∈ E.

2. For each pair of consecutive terms ti, ti+1 in the sequence, there is some edge
(ϕi, ϕi+1) ∈ E s.t. label(ϕi) = ti and label(ϕi+1) = ti+1.

3. label(sink(T)) = tn. �
Let us write Paths(T) to stand for the set of all proof paths for a given proof

tree T . We define the cause associated to any tree T = 〈V,E〉 as the causal term
cause(T)

def
=
∏
t∈Paths(T) t. As an example, cause(T1) = (c · p · a) ∗ (c · s · a). Also

(p · a) ∗ (s · a) and w · b correspond to each tree in Figure 1.

An Algebra of Causal Chains 75

Theorem 3. Let Π be a positive program and I be the least model of Π , then for each
atom p:

I(p) =
∑

T∈PTp

cause(T)

where PTp = {T = 〈V,E〉 | head(sink(T)) = p} is a set of proof trees with nodes
V ⊆ Π .

From this result, it may seem that our semantics is just a direct translation of the syntac-
tic idea of proof trees. However, the semantics is actually a more powerful notion that
allows detecting redundancies, tautologies and inconsistencies. In fact, the expression∑
T∈PTp

cause(T) may contain redundancies and is not, in the general case, in normal
form. As an example, recall the program Π6:

a : p b : q ← p r ← p ∧ q

that has only one proof tree for p whose cause would correspond to I(r) = a ∗ a · b.
But, by absorption, this is equivalent to I(r) = a · b pointing out that the presence of p
in rule r ← p ∧ q is redundant.

A corollary of Theorem 3 is that we can replace a rule label by a different one, or
by 1 (the identity for application ‘·’) and we get the same least model, modulo the same
replacement in the causal values for all atoms.

Corollary 2. Let Π be a positive program, I the least model of Π , l ∈ Lb be a label,
m ∈ Lb ∪ {1} and Π l

m (resp. I lm) be the program (resp. interpretation) obtained after
replacing each occurrence of l by m in Π (resp. in the interpretation of each atom in
I). Then I lm is the least model of Π l

m. �

In particular, replacing a label bym = 1 has the effect of removing it from the signature.
Suppose we make this replacement for all atoms in Lb and call the resulting program
and least model ΠLb

1 and ILb1 respectively. Then ΠLb
1 is just the non-causal program

resulting from Π after removing all labels and it is easy to see (Observation 1) that ILb1

coincides with the least classical model of this program2. Moreover, this means that for
any positive program Π , if I is its least model, then the classical interpretation:

I ′(p)
def
=

{
1 if I(p) 6= 0

0 otherwise

is the least classical model of Π ignoring its labels.

4 Default negation and stable models

Consider now the addition of negation, so that we deal with arbitrary programs. To
illustrate this, we introduce a variation in Example 1 introducing the qualification prob-
lem from [7]: actions for moving the boat forward can be disqualified if an abnormal

2 Note that ILb is Boolean: if assigns either 0 or 1 to any atom in the signature.

76 P. Cabalar and J. Fandiño

situation occurs (for instance, that the boat is anchored, any of the oars are broken, the
sail is full of holes, etc.) . As usual this can be represented using default negation as
shown in the set of rules Π8:

p : port s : starb

a : fwd← port ∧ starb ∧ not ab a

ab a← anchored

ab a← broken oar1

ab a← broken oar2

w : fwind

b : fwd← fwind ∧ not ab b

ab b← anchored

ab b← holed sail

. . .

The causes that justify an atom should not be a list of not occurred abnormal situ-
ations. For instance, in program Π8 where no abnormal situation occurs, the causal
value that justify atom fwd should be (p · a ∗ s · a) + (w · b) as in the program Π2

where abnormal situations are not included. References to the not occurred abnormal
situations (not anchored, not broken oar1. . .) are not mentioned. Default negation
does not affect the causes justifying an atom when the default holds. Of course, when
the default does not hold, for instance adding the fact anchored to the above program,
fwd becomes false. Thus, we introduce the following straightforward rephrasing of the
traditional program reduct [2].

Definition 13 (Program reduct). The reduct of a program Π with respect to an inter-
pretation I , written ΠI is the result of the following transformations on Π:

1. Removing all rules s.t. I(B−) = 0
2. Removing all negative literals from the rest of rules. �

A causal interpretation I is a causal stable model of a causal program Π if I is the
least model of ΠI . This definition allows us to extend Theorem 3 to normal programs
in a direct way:

Theorem 4 (Main theorem). LetΠ be a causal program and I be causal stable model
of Π , then for each atom p:

I(p) =
∑

T∈PTp

cause(T) where

PTp = {T = 〈V,E〉 | head(sink(T)) = p and V ⊆ {(t : q ← B) ∈ Π | I(B−) 6=
0}}. �

That is, the only difference now is that the set of proof trees PTp is formed with rules
whose negative body is not false I(B−) 6= 0 (that is, they would generate rules in the
reduct).

Corollary 3. Let Π be a normal program, I a causal stable model of Π , l ∈ Lb be a
label, m ∈ Lb∪ {1} and Π l

m (resp. I lm) be the program (resp. interpretation) obtained
after replacing every occurrence of l bym inΠ (resp. in the interpretation of each atom
in I). Then I lm is a causal stable model of Π l

m. �

An Algebra of Causal Chains 77

As in the case of positive programs, replacing a label by m = 1 has the effect of
removing it from the signature. Then, for any normal program Π , if I is a causal stable
model, then the classical interpretation:

I ′(p)
def
=

{
1 if I(p) 6= 0

0 otherwise

is a classical stable model of Π ignoring its labels. It is easy to see that not only the
above program Π8 has an unique causal stable model that corresponds to:

I(port) = p
I(starb) = s
I(fwind) = w
I(fwd) = (p · a ∗ s · a) + (w · b)

I(ab f) = 0
I(anchored) = 0
I(broken oar1) = 0

. . . = 0

but also the program obtained from it ignoring the labels has an unique standard stable
model {port, starb, fwind, fwd} that corresponds to the atoms whose interpretations
differ from 0 in the former.

5 Conclusions

In this paper we have provided a multi-valued semantics for normal logic programs
whose truth values form a lattice of causal chains. A causal chain is nothing else but a
concatenation of rule labels that reflects some sequence of rule applications. In this way,
a model assigns to each true atom a value that contains justifications for its derivation
from existing rules. We have further provided three basic operations on the lattice: an
addition, that stands for alternative, independent justifications; a product, that represents
joint interaction of causes; and a concatenation that acts as a chain constructor. We have
shown that this lattice is completely distributive and provided a detailed description of
the algebraic properties of its three operations.

A first important result is that, for positive programs, there exists a least model that
coincides with the least fixpoint of a direct consequences operator, analogous to [5].
With this, we are able to prove a direct correspondence between the semantic values we
obtain and the syntactic idea of proof tree. The main result of the paper generalises this
correspondence for the case of stable models for normal programs.

Many open topics remain for future study. For instance, ongoing work is currently
focused on implementation, complexity assessment, extension to disjunctive programs
or introduction of strong negation. Regarding expressivity, an interesting topic is the
introduction of new syntactic operators for inspecting causal information like check-
ing the influence of a particular event or label in a conclusion, expressing necessary or
sufficient causes, or even dealing with counterfactuals. Another interesting topic is re-
moving the syntactic reduct definition in favour of some full logical treatment of default
negation, as happens for (non-causal) stable models and their characterisation in terms
of Equilibrium Logic [8]. This would surely simplify the quest for a necessary and
sufficient condition for strong equivalence, following similar steps to [9]. It may also
allow extending the definition of causal stable models to an arbitrary syntax and to the

78 P. Cabalar and J. Fandiño

first order case, where the use of variables in labels may also introduce new interesting
features.

There are also other areas whose relations deserve to be formally studied. For in-
stance, the introduction of a strong negation operator will immediate lead to a connec-
tion to Paraconsistency approaches. In particular, one of the main problems in the area
of Paraconsistency is deciding which parts of the theory do not propagate or depend on
an inconsistency. This decision, we hope, will be easier in the presence of causal justifi-
cations for each derived conclusion. A related area for which similar connections can be
exploited is Belief Revision. In this case, causal information can help to decide which
relevant part of a revised theory must be withdrawn in the presence of new information
that would lead to an inconsistency if no changes are made. A third obvious related
area is Debugging in Answer Set Programming, where we try to explain discrepancies
between an expected result and the obtained stable models. In this field, there exists
a pair of relevant approaches [10, 11] to whom we plan to compare. Finally, as poten-
tial applications, our main concern is designing a high level action language on top of
causal logic programs with the purpose of modelling some typical scenarios from the
literature on causality in Artificial Intelligence.

References

1. Cabalar, P.: Causal logic programming. In Erdem, E., Lee, J., Lierler, Y., Pearce, D., eds.:
Correct Reasoning. Volume 7265 of Lecture Notes in Computer Science., Springer (2012)
102–116

2. Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. In Kowalski,
R.A., Bowen, K.A., eds.: Logic Programming: Proc. of the Fifth International Conference
and Symposium (Volume 2). MIT Press, Cambridge, MA (1988) 1070–1080

3. Artëmov, S.N.: Explicit provability and constructive semantics. Bulletin of Symbolic Logic
7(1) (2001) 1–36

4. Stumme, G.: Free distributive completions of partial complete lattices. Order 14 (1997)
179–189

5. van Emden, M.H., Kowalski, R.A.: The semantics of predicate logic as a programming
language. J. ACM 23(4) (1976) 733–742

6. Kifer, M., Subrahmanian, V.S.: Theory of generalized annotated logic programming and its
applications. Journal of Logic Programming 12 (1992)

7. McCarthy, J.: Epistemological problems of artificial intelligence. In Reddy, R., ed.: IJCAI,
William Kaufmann (1977) 1038–1044

8. Pearce, D.: Equilibrium logic. Ann. Math. Artif. Intell. 47(1-2) (2006) 3–41
9. Lifschitz, V., Pearce, D., Valverde, A.: Strongly equivalent logic programs. ACM Trans.

Comput. Log. 2(4) (2001) 526–541
10. Gebser, M., Pührer, J., Schaub, T., Tompits, H.: A meta-programming technique for de-

bugging answer-set programs. In Fox, D., Gomes, C.P., eds.: AAAI, AAAI Press (2008)
448–453

11. Pontelli, E., Son, T.C., El-Khatib, O.: Justifications for logic programs under answer set
semantics. TPLP 9(1) (2009) 1–56

An Algebra of Causal Chains 79

80

Query Answering in Object Oriented Knowledge
Bases in Logic Programming: Description and

Challenge for ASP

Vinay K. Chaudhri1, Stijn Heymans1, Michael Wessel1, and Tran Cao Son2

1 Artificial Intelligence Center, SRI International, Menlo Park, CA 94025, USA
2 Computer Science Department, New Mexico State University, NM 88003, USA

Abstract. Research on developing efficient and scalable ASP solvers
can substantially benefit by the availability of data sets to experiment
with. KB Bio 101 contains knowledge from a biology textbook, has been
developed as part of Project Halo, and has recently become available for
research use. KB Bio 101 is one of the largest KBs available in ASP and
the reasoning with it is undecidable in general. We give a description
of this KB and ASP programs for a suite of queries that have been of
practical interest. We explain why these queries pose significant practical
challenges for the current ASP solvers.

1 Introduction

The KB Bio 101 represents knowledge from a textbook used for advanced high
school and introductory college biology courses [19]. The KB was developed by
SRI as part of their work for Project Halo3 and contains a concept taxonomy
for the whole textbook and detailed rules for 20 chapters of the textbook. SRI
has tested the educational usefulness of this KB in the context of an intelligent
textbook called Inquire4.
The KB Bio 101 was originally developed using a knowledge representation and
reasoning system called Knowledge Machine (KM) [9]. To express KB Bio 101

in answer set programming (ASP) required us to define a conceptual modeling
layer called Object Oriented Knowledge Base or OOKB [6]. The goal of this
paper is not to introduce OOKB as a more complete specification and analysis of
formal properties of OOKBs are available elsewhere [6]. OOKB is of more general
interest as it supports conceptual modeling primitives that are commonly found
in description logic (DL) family of languages such as a facility to define classes
and organize them into a hierarchy, define partitions, ability to define relations
(also known as slots) and organize them into a relation hierarchy, support for
domain, range and qualified number constraints, support for defining sufficient
conditions of a class, and support for descriptive rules. The features in OOKB
also overlap with the features of logic programming (LP) languages such as

3 http://www.projecthalo.com/
4 http://www.aaaivideos.org/2012/inquire_intelligent_textbook/

FDNC [11], Datalog± [5], and ASPfs [1] in its support for function symbols. It
differs from these previous LP languages as well as from the DL systems in that
the functions can be used to specify graph-structured objects which cannot be
done in these other languages. The reasoning with OOKBs has been proven to
be undecidable [6].
The approach taken in this paper fosters work on multi-paradigm problem solv-
ing in the following ways. First, it aims to give a declarative formalization of
reasoning tasks that were originally implemented in KM which is a very different
paradigm for reasoning as compared to ASP. Second, the conceptual modeling
primitives considered here directly overlap with many description logics, thus,
providing another example of integration between ASP with DLs.
The primary objective of this paper is to introduceKB Bio 101as a valuable and
data set and four queries of practical interest on this KB. These queries have
been found extremely useful in the context of Inquire. This dataset presents an
excellent opportunity for further development of ASP solvers for the following
reasons.
• Recent developments in ASP suggest that it could potentially provide an ideal

tool for large scale KBs. Yet, most of the KBs described in the literature are
fairly small. KB Bio 101 provides a real-world ASP program that fits this bill.
• We note that KB Bio 101 contains rules with function symbols for which the

grounding is infinite. A simple example is a KB consisting of a single class
person, and a single relation has-parent, and a statement of the form “for
each person there exists an instance of the has-parent relation between this
person with another individual who is also a person”. The skolemized versions
of these statements require function symbols. An obvious first challenge that
must be addressed is to develop suitable grounding techniques.
• Even though rules in KB Bio 101 follow a small number of axiom templates,

the size of this KB indicates that this could be a non-trivial task for ASP
solvers.
• The KB Bio 101 cannot be expressed in commonly available decidable DLs

because it contains graph structured descriptions. Efficient reasoning with
graph structures is an area of active recent research [15, 16], and since there
exists an export of KB Bio 101 for DL systems also [7], it provides an ideal
usecase to explore the relative effectiveness of DL reasoners vs ASP solvers on
a common problem.
• The reasoning tasks of computing differences between two concepts and finding

relationships between two individuals are computationally intensive tasks. The
implementations of these tasks in Inquire rely on graph algorithms and trade
completeness for efficiency. These tasks will present a tough challenges to ASP
solvers.
• Last but not the least, we believe that the KB could entice the development

and/or experimentation with new solvers for extended classes of logic pro-
grams (e.g., language with existential quantifiers or function symbols).

82 V.K. Chaudhri et al.

In addition to the challenges listed above, it will be possible to define multi-
ple new challenges of increasing difficulty that can be used to motivate further
research and development of ASP solvers.

2 Background: Logic Programming and OOKB

2.1 Logic Programming

A logic program Π is a set of rules of the form

c← a1, . . . , am, not am+1, . . . , not an (1)

where 0≤m≤n, each ai is a literal of a first order language and not aj , m<j≤n,
is called a negation as failure literal (or naf-literal). c can be a literal or omitted.
A rule (program) is non-ground if it contains some variable; otherwise, it is a
ground rule (program). When n = 0, the rule is called a fact. When c is omitted,
the rule is a constraint. Well-known notions such as substitution, the Herbrand
universe UΠ , and Herbrand base BΠ of a program Π are defined as usual.
The semantics of a program is defined over ground programs. For a ground rule
r of the form (1), let pos(r)={a1, . . . , am} and neg(r)={am+1, . . . , an}. A set of
ground literals X is consistent if there exists no atom a s.t. {a,¬a}⊆X. A ground
rule r is satisfied by X if (i) neg(r)∩X 6=∅; (ii) pos(r)\X 6=∅; or (iii) c ∈ X.
Let Π be a ground program. For a consistent set of ground literals S, the reduct
of Π w.r.t. S, denoted by ΠS , is the program obtained from the set of all rules
of Π by deleting (i) each rule that has a naf-literal not a in its body with a ∈ S,
and (ii) all naf-literals in the bodies of the remaining rules. S is an answer set
of Π [13] if it satisfies the following conditions: (i) If Π does not contain any
naf-literal then S is the minimal set of ground literals satisfying all rules in Π;
and (ii) If Π contains some naf-literal then S is an answer set of Π if S is the
answer set of ΠS .
For a non-ground program Π, a set of literals in BΠ is an answer set of Π if it is
an answer set of ground(Π) that is the set of all possible ground rules obtained
from instantiating variables with terms in UΠ . Π is consistent if it has an answer
set. Π entails a ground literal a, Π |= a, if a belongs to every answer set of Π.
For convenience in notation, we will make use of choice atoms as defined in [20]
that can occur in a rule wherever a literal can. Answer sets of logic programs
can be computed using answer set solvers (e.g., Clasp [12], dlv [8]).

2.2 Object-Oriented Knowledge Bases

We will now review the notion of an OOKB [6]. We note that an OOKB could
be viewed as a logic program with function symbols and the language of OOKBs
contains features that cannot be represented in previous investigated classes of
function symbols such as FDNC [11], Datalog± [5], or ASPfs [1]. In essense, an
OOKBs is a logic program consisting of the following components:

Query Answering in Object Oriented Knowledge Bases in Logic Programming 83

• Taxonomic Knowledge: This group of facts encodes the class hierarchy, the
relation hierarchy, individual constants and their class membership. It con-
tains ASP-atoms of the following form:

class(c) (2)

individual(i) (3)

subclass of(c1, c2) (4)

disjoint(c1, c2) (5)

instance of(i, c) (6)

relation(r) (7)

range(r, c) (8)

domain(r, c) (9)

subrelation of(r1, r2) (10)

compose(r1, r2, r3) (11)

inverse(r1, r2) (12)

The predicate names are self-explanatory.
• Descriptive statements: Relationships between individuals are encoded in

OOKB by descriptive statements of the form:

value(r, f(X), g(X)) ← instance of(X, c) (13)

value(r,X, g(X)) ← instance of(X, c) (14)

where f and g are unary functions, called Skolem functions, such that f 6= g
and c is a class. Axiom 13 (or 14) describes a relation value of individ-
uals belonging to class c, encoded by the atom value(r, f(X), g(X)) (or
value(r,X, f(X)). It states that for each individual X in c, f(X) (or X)
is related to g(X) via the relation r. An example use of axiom 14 is: Every
Eukaryotic Cell has part a Nucleus, where Eukaryotic Cell and Nucleus are
individuals from these two classes, and has part is a relationship between
those individuals. It is required that if f (or g) appears in (13) or (14), then
the OOKB also contains the following rule

instance of(f(X), cf) ← instance of(X, c) or (15)

instance of(g(X), cg) ← instance of(X, c) (16)

which specify the class of which f(X) (resp. g(X)) is a member. For example,
if f(X) represents a nucleus individual, then cf will be the class Nucleus.

• Cardinality constraints on relations: OOKB allows cardinality constraints on
relations to be specified by statements of the following form:

constraint(t, f(X), r, d, n)← instance of(X, c) (17)

where r is a relation, n is a non-negative integer, d and c are classes, and t
can either be min, max, or exact. This constraint states that for each instance
X of the class c, the set of values of relation r restricted on f(X)—which
must occur in a relation value literal value(r, f(X), g(X)) of c—has minimal
(resp. maximal, exactly) n values belonging to the class d. The head of (17)
is called a constraint literal of c.

• Sufficient conditions: A sufficient condition of a class c defines sufficient
conditions for membership of that class based on the relation values and

84 V.K. Chaudhri et al.

constraints applicable to an instance:

instance of(X, c)← Body(X) (18)

whereBody(X) is a conjunction of relation value literals, instance-of literals,
constraint-literals of c, and X is a variable occurring in the body of the rule.
• (In)Equality between individual terms: The rules in this group specify in/equality

between terms, which are constructable from Skolem functions and the vari-
able X (t1 and t2), and have the followimg form:

eq(t1, t2)← instance of(X, c) (19)

neq(t1, t2)← instance of(X, c) (20)

• Domain-independent axioms: An OOKB also contains a set of domain-independent
axioms ΠR for inheritance reasoning, reasoning about the relation values of
individuals (rules (25)—(27)), in/equality between terms (rules (28)—(40)),
and enforcing constraints (rules (42)—(47)).

subclass of(C,B) ← subclass of(C,A), subclass of(A,B). (21)

instance of(X,C) ← instance of(X,D), subclass of(D,C). (22)

disjoint(C,D) ← disjoint(D,C). (23)

¬instance of(X,C) ← instance of(X,D), disjoint(D,C). (24)

value(U,X,Z) ← compose(S, T, U), value(S,X, Y), value(T, Y, Z). (25)

value(T,X, Y) ← subrelation of(S, T), value(S,X, Y). (26)

value(T, Y,X) ← inverse(S, T), value(S,X, Y). (27)

eq(X,Y) ← eq(Y,X) (28)

eq(X,Z) ← eq(X,Y), eq(Y,Z), X 6= Z (29)

← eq(X,Y), neq(X,Y) (30)

{substitute(X,Y)} ← eq(X,Y). (31)

← eq(X,Y), {substitute(X,Z) : eq(X,Z)}0, (32)

{substitute(Y,Z) : eq(Y,Z)}0.
← substitute(X,Y), substitute(X,Z), (33)

X 6= Y,X 6= Z, Y 6= Z. (34)

← substitute(X,Y), X 6= Y, neq(X,Y). (35)

substitute(Y,Z) ← substitute(X,Z), X 6= Z, eq(X,Y). (36)

is substituted(X) ← substitute(X,Y), X 6= Y. (37)

substitute(X,X) ← term(X), not is substituted(X). (38)

term(X) ← value(S,X, Y). (39)

term(Y) ← value(S,X, Y). (40)

valuee(S, P,Q) ← value(S,X, Y), substitute(X,P), substitute(Y,Q). (41)

← value(S,X, Y), domain(S,C), not instance of(X,C).(42)

← value(S,X, Y), range(S,C), not instance of(Y,C). (43)

← constraint(min, Y, S,D,M), (44)

Query Answering in Object Oriented Knowledge Bases in Logic Programming 85

{valuee(S, Y, Z) : instance of(Z,D)}M − 1.

← constraint(max, Y, S,D,M), (45)

M + 1{valuee(S, Y, Z) : instance of(Z,D)}.
← constraint(exact, Y, S,D,M), (46)

{valuee(S, Y, Z) : instance of(Z,D)}M − 1.

← constraint(exact, Y, S,D,M), (47)

M + 1{valuee(S, Y, Z) : instance of(Z,D)}.

For a detailed explanation of the above rules, please refer to [6]. An OO-domain
is a collection of rules of the form (2)—(20). ¿From now on, whenever we refer
to an OOKB, we mean the prorgram D ∪ΠR, denoted by KB(D), where D is
the OO-domain of the OOKB5.

2.3 KB Bio 101: An OOKB Usage and Some Key Characteristics

The KB Bio 101 is an instance of OOKB and is available in ASP format6. The
KB is based on an upper ontology called the Component Library [3]. The biol-
ogists used a knowledge authoring system called AURA to represent knowledge
from a biology textbook. As an example, in Figure 1, we show an example AURA
graph. The white node labeled as Eukaryotic-Cell is the root node and repre-
sents the universally quantified variable X, whereas the other nodes shown in
gray represent existentials, or the Skolem functions fn(X). The nodes labeled as
has part and is inside represent the relation names. The authoring process in

Fig. 1. Example graph for “Eukaryotic-Cell”

AURA can be abstractly characterized as involving three steps: inherit, specialize
and extend. For example, the biologist creates the class Eukaryotic-Cell as a sub-
class of Cell. While doing so, the system would first inherit the relation values
defined for Cell which in this case is a Chromosome, and show it in the graphical
editor. The biologist then uses a gesture in the editor to specialize the inher-
ited Chromosome to a Eukaryotic-Chromosome, and then introduces a new Nucleus

and relates it to the Eukaryotic-Chromosome, via an is-inside relationship. The

5 In [6], general OOKBs, that can contain arbitrary logic programming rules, were
defined. The discussion in this paper is applicable to general OOKBs as well.

6 See http://www.ai.sri.com/~halo/public/exported-kb/biokb.html

86 V.K. Chaudhri et al.

inherited Chromosome value for the has-part relationship, is thus, specialized to
Eukaryotic-Chromosome and extended by connecting it to the Nucleus by using
an is-inside relationship.
The statistics about the size of the exported OOKB are summarized in Table
1. In total KB Bio 101 has more than 300,000 non-ground rules. It contains 746
individuals which are members of classes which represent constants of measure-
ments, colors, shapes, quantity, priority, etc. The KB does not contain individuals
of biology classes such as cell, ribosome, etc. For computing properties of an in-
dividual or comparing individuals, the input needs to introduce the individuals.

classes 6430 domain constraints 449
individuals 746 range constraints 447
relations 455 inverse relation statements 442
subclass of statements 6993 compose statements 431
subrelation of statements 297 qualified number constraints 936
instance of statements 714 sufficient conditions 198
disjoint-ness statements 18616 descriptive rules 6430
avg. number of Skolem functions 24 equality statements 108755
in each descriptive rule

Table 1. Statistics on KB Bio 101

3 Queries in OOKBs

We will now describe the queries given an OOKB, say KB(D). These queries
play a central role in the educational application Inquire [17] which employs the
knowledge encoded in KB Bio 101. These queries were developed by extensive
analysis of the questions from an exam, the questions at the back of the book,
and the questions that are educationally useful [4, 18].
We divide these queries into four groups. The first type of queries which includes
the first two queries asks about facts and relatiolnships. The second type of
queries asks about the taxonomic information. These first two question types are
usually referred to as the wh-questions. The third type is about the differences
and similarities between individuals from different classes. This type of query
has been traditionally studied as an example of analogical reasoning [10]. The
fourth type of queries that includes the last two questions query for relationships
between concepts and are unique to our work.

• what is a eukaryotic cell?
• what process provides raw materials for the citric acic cycle during cellu-

lar respiration?
• is oocyte a subclass of a eukaryotic cell?
• describe the differences and similarities between mitochondrions and chloroplasts

• What is the relationship between a mitochondrion and a chloroplast

Query Answering in Object Oriented Knowledge Bases in Logic Programming 87

• in the absence of oxygen, yeast cells can obtain energy bywhich process?

Let Z be a set of literals of KB(D), r be a relation, and i be an individual from
a class c. T (i) denotes the set of terms constructable from Skolem functions and
the individual i. We characterize the set of pairs in the relation r w.r.t. Z in
KB(D) by the set V (r, i, c, Z) = {(r, x, y) | value(r, x, y) ∈ Z, x, y ∈ T (i)} if
instance of(i, c) ∈ Z; otherwise, V (r, i, c, Z)=∅.
Definition 1 (Value set of an individual). Let KB(D) be an OOKB. For
an answer set M of KB(D), the value set of an individual i at a class c w.r.t.
M , Σ(i, c,M), is defined by Σ(i, c,M) =

⋃
relation(r)∈M V (i, c, r,M).

Observe that the rules (29)—(41) indicate that KB(D) can have multiple answer
sets. Nevertheless, the structure of KB(D) allows us to prove the following
important property of answer sets of KB(D).

Proposition 1. Let KB(D) be an OOKB. For every two answer sets M1 and
M2 of KB(D), every literal in M1 \ M2 has one of the following forms: (i)
substitute(x, y); (ii) is substituted(x, y); or (iii) valuee(r, x, y).

The above proposition indicates that Σ(i, c,M1) = Σ(i, c,M2) for arbitrary
individual i and class c and answer sets M1 and M2 of KB(D). The relationship
between atoms of the form value(r, x, y) and valuee(r, x, y) is as follows.

Proposition 2. Let KB(D) be an OOKB, i an individual, and c a class. For
every answer sets M of KB(D), we have that valuee(r, x, y) ∈ M iff there
exists x′, y′ such that (i) M contains the following atoms eq(x′, x), eq(y′, y),
substitute(x′, x), and substitute(y′, y); and (ii) (r, x′, y′) ∈ Σ(i, c,M).

The significance of these two propositions is that cautious reasoning about values
of individuals at classes can be accomplished by computing one answer set of
KB(D). As we will see, the majority of queries is related to this type of reasoning.
We next describe, for each query Q, an input program I(Q) and a set R(Q) of
rules for computing the answer of Q. Throughout the section, KB denotes an
arbitrary but fixed OOKB KB(D) and KB(Q) = KB(D) ∪ I(Q) ∪R(Q).

3.1 Subsumption Between Classes (Q1)

Subsumption requires us to compute whether a class c1 is subsumed by a class c2,
i.e., whether for each answer setM ofKB(Q1), we have for each instance of(x, c1) ∈
M also instance of(x, c2) ∈ M . We can answer this question by introducing a
fresh constant i in the OOKB and set I(Q1) = {instance of(i, c1)}. R(Q1)
consists of a rule:

subclass of(c1, c2)← instance of(i, c2) (48)

Indeed, we then have that a class c1 is subsumbed by c2 iff for each answer
set M of KB(Q1), subclass of(c1, c2) ∈ M . Proposition 1 can be extended to
KB(Q1) and thus we only need to compute one answer set of KB(Q1). Note
that this shows how, as in description logics, subsumption can be reduced to
entailment in the OOKB framework. We can show that

88 V.K. Chaudhri et al.

Proposition 3. If KB(Q1) has an answer set M and subclass of(c1, c2) ∈M
then c1 is subsumed by c2.

We note that computing answer sets of KB(Q1) is not a simple task (see [6]).
In particular, the problem for KB Bio 101 is quite challenging due to its size and
the potential infiniteness of the grounding program of KB(Q1).
One can define many more taxonomic queries than what we have considered here.
Some examples of such queries are as follows. Given a class C, compute all its
super classes or subclasses? Given a class, return only most specific superclass?
Given two classes, return there nearest common superclass?
Some of the taxonomic queries can require a higher order representation. For
example, given two classes, compute a class description that is their union or
intersection. Such queries are straightforward in a DL system, and are examples
of capabilities that are challenging for the current ASP systems.

3.2 Description of an Individual (Q2)

Queries about the description of an individual ask for a description of an individ-
ual of a class c, represented by a fresh constant i in the language of KB(D). This
query can be represented by the program I(Q2) = {get value(i, c).instance of(i, c).}
where get value(i, c) encodes the query of “inquiring about values of i at the
class c.” We will now discuss the answer to this query. Intuitively, a complete
description of i should contain the following information:
• C(c)={d | KB(D)|=subclass of(c, d)}, the classes from which i inherits its

relation values; and
• its relation values, i.e., the triples in Σ(i, c,M) where M is a given answer

set of R(Q2).
Computing a complete description of i could be achieved by the following rules:

out member of(Y) ← get value(I, C), instance of(I, C), instance of(I, Y). (49)

out value(R,X, Y) ← get value(I, C), value(R,X, Y), relation(R), (50)

term of(X, I), term of(Y, I).

where term of(X, I) defines a term (X) that is constructable from Skolem
functions and an individual (I), out member of(d) indicates that i is an in-
stance of the class d (i.e., d ∈ C(c)), and out value(r, x, y) says that KB(D) |=
value(r, x, y). This answer is correct but may contain too much information for
users of an OOKB who have knowledge about the class hierarchy. This is be-
cause the above description could also include values that i can inherit from the
superclasses of c. This can be seen in the next example.

Example 1. Let us consider the class Eukaryotic cell. The description of this
class contains 88 statements of the form (13)—(14) that involve 167 classes
and 150 equality specifications. A first-level answer7 computed using (49)–(50)

7 Current solvers can only approximate the answer due to the infiniteness of the
grounding program. We computed the answer by limiting the maximum nesting
level for complex terms of the term to be 1 (e.g., the option maxnesting in dlv).

Query Answering in Object Oriented Knowledge Bases in Logic Programming 89

contains 9 atoms of the form out member of(x) which indicate that a eukaryotic

cell is also a cell, a living entity, a physical object, etc. In addition, there
are 643 atoms of the form out value(r, x, y) which contains inverse, composition,
sub-relation, and the relation value defined in statements of the form (13)—(14)
and those that are obtained by the rules (25)–(27).

The example highlights two challenges in computing the description of an in-
dividual. First, since the grounding of the KB is infinite, it raises the question
of what counts as an adequate grounding that returns a sufficient description
of an individuals? Second, for practical query answering applications that use
KB Bio 101, one must post-process the results to deciding which subset of the
answers should be preesnted to the user. It should be noted that because of the
infiniteness of the grounded KB, current ASP solvers can be used to approximate
the answers, by setting depth bounds. Whether this will result in acceptable per-
formance, both in terms of the quality of the answers and the efficiency, is a topic
open for future research.

3.3 Comparing between Classes (Q3)

A comparison query takes the general form of “What are the differences/similarities
between c1 and c2?” (e.g., “what are the differences between chromosome and
ribosome?”). More specific versions of the query may ask for specific kinds of
differences, e.g., structural differences.
The query can be represented and answered by (i) introducing two new constants
i1 and i2 which are instances of c1 and c2, respectively; and (ii) identifying the
differences and similarities presented in the descriptions of i1 and i2. We therefore
encode I(Q3) using the following program:

instance of(i1, c1). instance of(i2, c2). comparison(i1, c1, i2, c2). (51)

Let us first discuss the features that can be used in comparing individuals of
two classes. Individuals from two classes can be distinguished from each other
using different dimensions, either by their superclass relationship or by the re-
lations defined for each class. More specifically, they can be differentiated from
each other by the generalitation and/or specialitation between classes; or the
properties of instances belonging to them. We will refer to these two dimensions
as class-dimension and instance-dimension, respectively. We therefore define the
following notions, given an answer set M of KB(Q3):
• The set of similar classes between c1 and c2: is the intersection between the

set of superclasses of c1 and of c2 U(c1, c2) = C(c1) ∩ C(c2).
• The set of different classes between c1 and c2: is the set difference between the

set of superclasses of c1 and of c2 D(c1, c2) = (C(c1)\C(c2))∪(C(c2)\C(c1)).
where C(c) denotes the set of superclasses of c.
We next discuss the question of what should be considered as a similar and/or
different property between individuals of two different classes. Our formalization
is motivated from the typical answers to this type of question such as an answer
“a chromosome has a part as protein but a ribosome does not” to the query

90 V.K. Chaudhri et al.

“what is the different between a chromosome and a ribosome?” This answer
indicates that for each chromosome x there exists a part of x, say f(x), which
is a protein, i.e., value(has part, x, f(x)) and instance of(f(x), protein) hold;
furthermore, no part of a ribosome, say y, is a protein, i.e., there exists no g
such that value(has part, y, g(y)) and instance of(g(y), protein) hold.
For a set of literals M of KB(Q3) and a class c with instance of(i, c) ∈M , let
T (i, c) be the set of triples (r, p, q) such that (r, x, y) ∈ Σ(i, c,M), instance of(x, p) ∈
M , and instance of(y, q) ∈ M . p (q) is called the domain (range) of r if
(r, p, q) ∈ T (i, c). We define
• The set of similar relations between c1 and c2: is the set Rs(c1, c2) of relations
s such that (i) c1 and c2 are domain of s; (ii) c1 and c2 are range of s; or
(iii) there exist (p, q) such that (s, p, q) ∈ T (i1, c1) ∩ T (i2, c2).

• The set of different relations between c1 and c2: is the set Rd(c1, c2) of rela-
tions s such that (i) c1 is and c2 is not a domain of s or vice versa; (ii) c1
is and c2 is not a range of s vice versa; or (iii) there exist (p, q) such that
(s, p, q) ∈ (T (i1, c1) \ T (i2, c2)) ∪ (T (i2, c2) \ T (i1, c1)).

An answer to Q3 must contain information from U(c1, c2), D(c1, c2), Rs(c1, c2),
and Rd(c1, c2). Computing U(c1, c2) and D(c1, c2) rely on the rules for deter-
mining the most specific classes among a group of classes which can easily be
implemented using the naf-operator.
We now describe the set of rules R(Q3), dividing it into different groups. First,
the set of rules for computing U(c1, c2) is as follows:

shared(C,P,Q)← comparison(X,P, Y,Q), subclass of(P,C), subclass of(Q,C). (52)

The rule identifies the classes that are superclass of both c1 and c2. We can
show that KB(Q3) |= shared(c, c1, c2) iff c ∈ U(c1, c2).
The next set of rules is for computing D(c1, c2).

dist(C,P,Q) ← comparison(X,P, Y,Q), subclass of(P,C), not subclass of(Q,C). (53)

dist(C,P,Q) ← comparison(X,P, Y,Q), not subclass of(P,C), subclass of(Q,C). (54)

The two rules identify the classes that are superclass of c1 but not c2 and vice
versa. Again, we can show that KB(Q3) |= dist(c, c1, c2) iff c ∈ D(c1, c2).
For computing Rs(c1, c2) and Rd(c1, c2), we need to compute the sets T (i1, c1)
and T (i2, c2). For this purpose, we define two predicates t1 and t2 such that
for every answer set M of KB(Q3), tk(s, p, q) ∈ M iff (s, p, q) ∈ T (ik, ck) for
k = 1, 2. Before we present the rules, let us denote a predicate msc of , called
the most specific class of an individual, by the following rules.

not msc of(X,P) ← subclass of(Q,P), instance of(X,P), instance of(X,Q). (55)

msc of(X,P) ← instance of(X,P), not not msc of(X,P). (56)

These rules state that the class p is the most specific class of an individual x
if x is a member of p and x is not an instance of any subclass q of p. This will
allow us to define the set T (i1, c1) and T (i2, c2) as follows.

3{t1(R,P,Q), ← comparison(X1, C1, Y1, C2), value(R,X, Y), (57)

Query Answering in Object Oriented Knowledge Bases in Logic Programming 91

q d(R,P), term of(Y,X1), term of(X,X1),

q r(R,Q)} msc of(X,P),msc of(Y,Q).

3{t2(R,P,Q), ← comparison(X1, C1, Y1, C2), value(R,X, Y), (58)

q d(R,P), term of(X,Y1), term of(Y, Y1), (59)

q r(R,Q)} msc of(X,P),msc of(Y,Q).

The following rules identify relations that are similar between c1 and c2:

shared property(R) ← comparison(X1, C1, Y1, C2), t1(R,C1, Q1), t2(R,C2, Q2).(60)

shared property(S) ← comparison(X1, C1, Y1, C2), t1(R,P1, C1), t2(R,P2, C2). (61)

shared property(S) ← comparison(X1, C1, Y1, C2), t1(R,P,Q), t2(R,P,Q). (62)

The rules say that individuals i1 and i2 from class c1 and c2 respectively share
a relation r. The first rule says that ik (k = 1, 2) is a source in the relation r
(i.e., there exists some tk such that (r, ik, tk) ∈ Σ(ik, ck,M)); The second rule
says that ik is a destination in the relation r (i.e., the first rule: there exists
some tk such that (r, tk, ik) ∈ Σ(ik, ck,M)). The third rule says that there
exist some pair t1k, t

2
k such that t1k and t2k are instances of the same class and

(r, t1k, t
2
k) ∈ Σ(ik, ck,M).

The set of rules for computing Rd(c1, c2) is similar to the above set of rules. It
is omitted here for space reason.
The key challenge in computing the differences/similarities between classes in
KB Bio 101 are the same as for Q2. First, since the grounded program is infinite,
one has to determine what is an adequate description that should be used for
the purposes of comparsion. Second, even though the computation will return all
differences and similarties, the users are frequently interested in knowing about
salient differences. The current AURA system uses a complex set of heuristics to
post process the results to group and rank the results to draw out the salience.
The description of such heuristics is outside the scope of the present paper.

3.4 Relationship between Individuals (Q4)

A relationship query takes the general form of “What is the relationship be-
tween individual i1 and individual i2?”, e.g., “what is the relationship between
a biomembrane and a carbohydrate”? Since this type of query refers to a path
between two individuals, it can involve significant search in the KB making it
especially suitable for solution by ASP solvers. In more specific forms of this
query, the choice of relationships can be limited to a specific subset of relation-
ships in the KB. For example, “What is the structural or functional relationship
between individual i1 and individual i2?” We can formulate this query as follows.
Given a set of literals M of an OOKB and a set of relations S, a sequence of
classes alternated with relation ω = (c1, s1, c2, s2, . . . , sn−1, cn) is called a path be-
tween q1 and qn with restrictive relations S inM if there exists instance of(t, c1) ∈
M and Skolem functions f1 = id, f2, . . . , fn−1 such that value(si, fi(t), fi+1(t)) ∈
M for i = 1, . . . , n − 1 and instance of(fi(t), ci) ∈ M for i ≥ 2 and si ∈ S for

92 V.K. Chaudhri et al.

1 ≤ i < n. A query of type Q4 asks for a path between c1 and c2 with restrictive
relations in S and is encoded by the program I(Q4):

instance of(i1, c1). instance of(i2, c2). p relation(c1, c2). include(r). (r ∈ S)

The answer to the query should indicate paths between c1 and c2 with restrictive
relations in S. Observe that an answer can be generated by (i) selecting some
atoms of the form value(s, x, y) such that s ∈ S; and (ii) checking whether these
atoms create a path from c1 to c2. We next present the set of rules R(Q4),
dividing them into two groups that implement the steps (i) and (ii) as follows.

p segment(R,E,C, F,D) ← include(R), value(R,E, F), instance of(E,C), (63)

instance of(F,D).

{seg(S,E,C, F,D)} ← p segment(S,E,C, F,D). (64)

← p relation(C1, C2), {seg(, , C1, ,)}0. (65)

← p relation(C1, C2), 2{seg(, , C1, ,)}. (66)

← p relation(C1, C2), {seg(, , , , C2)}0. (67)

← p relation(C1, C2), 2{seg(, , , , C2)}. (68)

The first rule defines possible segments of the path. The second rule, a choice
rule, picks some arbitrary segments to create the path. A segment is represented
by the atom seg(s, e, c, e′, c′) that encodes a relation s between e (an instance
of class c) and e′ (an instance of class c′). The rest of the rules eliminate com-
binations that do not create a path from c1 to c2. For example, the first two
constraints make sure that there must be exactly one segment starting from c1;
the next two ensure that there must be exactly one segment that ends at c2.
The next four constraints make sure that the segments create a path.

← p relation(C1, C2), seg(S,E,C,E1, D), D 6= C2, {seg(, E1, D, ,)}0. (69)

← p relation(C1, C2), seg(S,E,C,E1, D), D 6= C2, 2{seg(, E1, D, ,)}. (70)

← p relation(C1, C2), seg(S,E,C,E1, D), D 6= C2, C 6= C1, {seg(, , , E, C)}0. (71)

← p relation(C1, C2), seg(S,E,C,E1, D), D 6= C2, C 6= C1, 2{seg(, , , E, C)}. (72)

Even if one could define a suitable finite grounding of KB Bio 101, comput-
ing KB(Q4) can be exponential in the worst case. The implementation of this
query in AURA relies on a set of heuristics and depth-bound incomplete rea-
soning. E.g., one heuristic involves first performing the search on the subclass
relationships. The existing implementation is unsatisfactory as it misses out im-
portant relationships. In an ideal implementation, one would first compute all
candidate paths, and then rank them based on user provided critieria. Comput-
ing all such paths especially at the runtime has been infeasible in AURA so far.
We hope that ASP could provide a solution for an efficient path computation.

4 Discussion

We observe that there was no use of default negation in the axioms (2)-(20) that
specify OOKB. The default negation is used in the domain independent axioms,

Query Answering in Object Oriented Knowledge Bases in Logic Programming 93

for example, in axiom (38) and in axioms (53)-(54). In principle, default nega-
tion could be used in axioms (13) or axiom (14), but in our practical experience
in developing KB Bio 101 such usage has not been necessary. That is primarily
because while formalizing the textbook knowledge, one typically requires classi-
cal negation. It is only for query answering that the usage of negation becomes
critical. If one generalizes OOKB to other domains, it may well be necessary to
use default negation in the domain specification axioms (2)-(20), but we have
not considered such usage in our work so far. Since default negation is necessary
to specify query answering for OOKB, ASP provides a compelling paradigm for
declarative specification of such reasoning.
Let us also consider comparison between using ASP vs DLs for OOKB queries
presented here. There are two key features of OOKBs that are not directly ex-
pressible in description logics: graph-structured objects and (in)equality state-
ments. Using axioms (13) and (14), it is possible to define a graph structure. It
is well known that graph structured descriptions usually lead to undecidability
in reasoning [16]. In(equality) statements as in axiom (19) and (20), allow us to
relate skolem functions that have been introduced as part of two different class
descriptions. Such modeling paradigm is not supported by DLs. Of course, the
reasoning with OOKBs in full generality is undecidable, and it is an open ques-
tion whether there exist decidable fragments of OOKB for which the reasoning
is decidable [6].
Another important difference between a DL and ASP is in handling of con-
straints. To illustrate this difference, consider a KB that has a statement: every
person has exactly two parents, and further individuals p1, p2, p3 and p4, such
that p2, p3 and p4 are the parents of p1. With axioms (43)-(47), such a KB will
be inconsistent. In contrast, most DL system will infer that either p2 must be
equal to p3, or p3 must be equal to p4, or p4 must be equal to p2. The semantics
of constraints in AURA conform to the semantics captured in axioms (43)-(47).
Our work on formalizing the OOKB queries in ASP has been only theoretical,
and an experimental evaluation is open for future work. Some example answers
of the queries considered in Section 3 which are produced by the Inquire system
can be seen at [17].

5 Conclusions

We described the contents of an OOKB knowledge base, and formulated ASP
programs for answering four classes of practically interesting queries. We also
presented a practical OOKB, KB Bio 101, whose size and necessary features
make the computation of the answers to these queries almost impossible using
contemporary ASP solvers. The specific challenges include developing suitable
grounding strategies and dealing with potential undecidability in reasoning with
an OOKB. Given the large overlap in features supported by OOKB and DLs,
the KB Bio 101 also presents a unique dataset which could be used to explore
relative tradeoffs in reasoning efficiency across these two different paradigms. Be-
ing a concrete OOKB, KB Bio 101 presents a real challenge for the development

94 V.K. Chaudhri et al.

of ASP-solvers. This also calls for the development of novel query answering
methods with huge programs in ASP. We welcome engaging with both the ASP
and DL research communities so that KB Bio 101 could be used as a driver for
advancing the state of the art in efficient and scalable reasoning.

Acknowledgment

This work was funded by Vulcan Inc. and SRI International.

References

1. M. Alviano, W. Faber, and N. Leone. Disjunctive ASP with functions: Decidable
queries and effective computation. TPLP, 10(4-6):497–512, 2010.

2. F. Baader, I. Horrocks, and U. Sattler. Description Logics. In Handbook of Knowl-
edge Representation. Elsevier.

3. K. Barker, B. Porter, and P. Clark. A library of generic concepts for composing
knowledge bases. In Proc. 1st Int Conf on Knowledge Capture, 2001. 14–21.

4. P. Clark. and V. Chaudhri and S. Mishra and J. Thomere and K. Barker and B.
Porter. Enabling Domain Experts to Convey Questions to Machine: A Modified,
Template-Based Approach In Proc. 2nd Int Conf on Knowledge Capture, 2003.
14–21.

5. A. Cal̀ı, G. Gottlob, and T. Lukasiewicz. Datalog±: a unified approach to ontologies
and integrity constraints. In Database Theory - ICDT 2009. ACM.

6. V. Chaudhri, S. Heymans, M. Wessel, and T. C. Son. Object Oriented Knowl-
edge Bases in Logic Programming. In Technical Communications of International
Conference on Logic Programming, 2013.

7. V. Chaudhri, S. Heymans, and M. Wessel. KB Bio 101: A Challenge for OWL
Reasoners. In Proceedings of the Workshop on OWL Reasoner Evaluation, 2013.

8. T. Eiter, N. Leone, C. Mateis, G. Pfeifer, and F. Scarcello. The KR System dlv:
Progress Report, Comparisons, and Benchmarks. KRR, 406–417, 1998.

9. P. Clark and B. Porter. KM (v2.0 and later): Users Manual, 2011.
10. S. Nicholson and K. Forbus Answering Comparison Questions in SHAKEN: A

Progress Report AAAI Spring Symposium on Mining Answers From Text and
Knowledge Bases, 2002.

11. T. Eiter and M. Simkus. FDNC: Decidable nonmonotonic disjunctive logic pro-
grams with function symbols. ACM TOCL, 11(2), 2010.

12. M. Gebser, B. Kaufmann, A. Neumann, and T. Schaub. clasp: A conflict-driven
answer set solver. LPNMR’07, LNAI 4483, 260–265. Springer-Verlag, 2007.

13. M. Gelfond and V. Lifschitz. Logic programs with classical negation. ICLP, 579–
597, 1990.

14. D. Gunning, V. K. Chaudhri, P. Clark, K. Barker, S-Y. Chaw, M. Greaves,
B. Grosof, A. Leung, D. McDonald, S. Mishra, J. Pacheco, B. Porter, A. Spaulding,
D. Tecuci, and J. Tien. Project Halo Update—Progress Toward Digital Aristotle.
AI Magazine, pages 33–58, 2010.

15. D. Magka, B. Motik, B., and I. Horrocks. Modeling Structured Domains using
Description Graphs and Logic Programming. In DL 2012.

16. B. Motik, B. C. Grau, I. Horrocks, and U. Sattler. Representing ontologies using
description logics, description graphs, and rules. AIJ, 173:1275-1309, 2009.

Query Answering in Object Oriented Knowledge Bases in Logic Programming 95

17. A. Overholtzer, A. Spaulding, V. K. Chaudhri, and D. Gunning. Inquire: An
Intelligent Textbook. In Proceedings of AAAI Video Competition Track, 2012.
http://www.aaaivideos.org/2012/inquire_intelligent_textbook/.

18. V. Chaudhri, B. Cheng, A. Overholtzer, J. Roschelle, A. Spaulding, P. Clark, M.
Greaves, D. Gunning. Inquire Biology: A Textbook that Answers Questions. In
AI Magazine, Vol 34, No 3, September 2013.

19. J. B. Reece, L. A. Urry, M. L. Cain, S. A. Wasserman, P. V. Minorsky, and R. B.
Jackson. Campbell Biology, 9/E. Benjamin Cummings, 2011.

20. P. Simons, N. Niemelä, and T. Soininen. Extending and implementing the stable
model semantics. Artificial Intelligence, 138(1–2):181–234, 2002.

21. M. Wessel, V. Chaudhri, and S. Heymans. Automatic Strengthening of Graph-
Structured Knowledge Bases. In 3rd International Workshop on Graph Structures
for Knowledge Representation and Reasoning, 2013.

96 V.K. Chaudhri et al.

The DIAMOND System for Argumentation:
Preliminary Report?

Stefan Ellmauthaler and Hannes Strass

Computer Science Institute, Leipzig University

Abstract Abstract dialectical frameworks (ADFs) are a powerful gener-
alisation of Dung’s abstract argumentation frameworks. In this paper we
present an answer set programming based software system, called DIA-
MOND (DIAlectical MOdels eNcoDing). It translates ADFs into answer
set programs whose stable models correspond to models of the ADF with
respect to several semantics (i.e. admissible, complete, stable, grounded).

1 Introduction

Formal argumentation has established itself as a vibrant subfield of artificial in-
telligence, contributing to such diverse topics as legal decision making and multi-
agent interactions. A particular, well-known formalism to model argumentation
scenarios are Dung’s abstract argumentation frameworks [1]. In that model, ar-
guments are treated as abstract atomic entities. The only information given
about them is a binary relation expressing that one argument attacks another.

A criticism often advanced against Dung frameworks is their restricted ex-
pressive capability of allowing only attacks between arguments. This leads to
quite a number of extensions of Dung AFs, for example with attacks from sets
of arguments [2], attacks on attacks [3] and meta-argumentation [4]. Unifying
these and other extensions to AFs, Brewka and Woltran [5] proposed a general
model, abstract dialectical frameworks (ADFs). In ADFs, attack, support, joint
support, combined attacks and many more relations between arguments (called
statements there) can be expressed, while the whole formalism stays on the same
abstraction level as Dung’s.

In this paper we present the DIAMOND software system that computes
models of ADFs with respect to several different semantics. The name DIA-
MOND abbreviates “DIAlectical MOdels eNcoDing” and hints at the fact that
DIAMOND is built on top of the state of the art in answer set programming:
abstract dialectical frameworks are encoded into logic programs, and an answer
set solver is used to compute the models of the ADF. By providing an expressive
argumentation formalism with an implementation, we pave the way for practical
applications of ADFs in scenarios where dialectical aspects are of interest, for
example in group decision making.

The paper proceeds as follows. We first introduce the necessary background
in abstract dialectical frameworks and answer set programming. We then present

? This research has been supported by DFG projects BR 1817/7-1 and FOR 1513.

the DIAMOND system – how ADFs are represented there, and how the ADF
semantics are encoded into answer set programs. We conclude with a contrasting
discussion of the most significant related work.

2 Background

An abstract dialectical framework (ADF) [5] is a directed graph whose nodes
represent statements or positions that can be accepted or not. The links represent
dependencies: the status of a node s only depends on the status of its parents
(denoted par(s)), that is, the nodes with a direct link to s. In addition, each
node s has an associated acceptance condition Cs specifying the exact conditions
under which s is accepted. Cs is a function assigning to each subset of par(s) one
of the truth values t, f . Intuitively, if for some R ⊆ par(s) we have Cs(R) = t,
then s will be accepted provided the nodes in R are accepted and those in
par(s) \R are not accepted.

Definition 1. An abstract dialectical framework is a tuple D = (S,L,C) where

– S is a set of statements (positions, nodes),
– L ⊆ S × S is a set of links,
– C = {Cs}s∈S is a set of total functions Cs : 2par(s) → {t, f}.

In many cases it is convenient to represent the acceptance condition of a state-
ment s by a propositional formula ϕs, as is done in our running example.

Example 1. Consider the ADF D = (S,L,C) with a support cycle and one at-
tack relation: S = {a, b, c} , L = {(a, b), (b, a), (b, c)} , ϕa = b, ϕb = a, ϕc = ¬b. This
ADF can also be represented as a graph, where the nodes are statements and
the relations between them are directed edges. The boxes below each node are
the acceptance conditions for the particular statement.

a b c

b a ¬b

In recent work [6], we redefined several standard ADF semantics and defined
additional ones. In this paper, we use these revised definitions, which are based
on three-valued logic.1 The three truth values true (t), false (f) and unknown
(u) are partially ordered by ≤i according to their information content: we have
u <i t and u <i f and no other pair in <i, which intuitively means that the
classical truth values contain more information than the truth value unknown.
On the set of truth values, we define a meet operation, consensus, which assigns

1 For further details on those newly introduced semantics we refer the interested reader
to Brewka et al. [6].

98 S. Ellmauthaler and H. Straß

t u t = t, f u f = f , and returns u otherwise. The information ordering ≤i ex-
tends in a straightforward way to valuations v1, v2 over S in that v1 ≤i v2 iff
v1(s) ≤i v2(s) for all s ∈ S. Obviously, a three-valued interpretation v is two-
valued if all statements are mapped to either true or false. For a three-valued
interpretation v, we say that a two-valued interpretation w extends v iff v ≤i w.
We denote by [v]2 the set of all two-valued interpretations that extend v. A three-
valued interpretation Ev has an associated extension Ev = {s ∈ S | v(s) = t}.

Brewka and Woltran [5] defined an operator ΓD over three-valued interpret-
ations. For each statement s, the operator returns the consensus truth value for
its acceptance formula ϕs, where the consensus takes into account all possible
two-valued interpretations w that extend the input valuation v.

Definition 2. Let D be an ADF and v be a three-valued interpretation. Then
the interpretation ΓD(v) is given by s 7→ d {w(ϕs) | w ∈ [v]2}. Furthermore v is
admissible iff v ≤i ΓD(v); complete iff ΓD(v) = v, that is, v is a fixpoint of ΓD;
grounded iff v is the ≤i-least fixpoint of ΓD.

A two-valued interpretation v is a model of D iff ΓD(v) = v; it is a stable
model of D = (S,L,C) iff v is a model of D and Ev equals the grounded exten-
sion of the reduced ADF Dv = (Ev, L

v, Cv), where Lv = L ∩ (Ev × Ev) and for
s ∈ Ev we set ϕvs = ϕs[r/f : v(r) = f].

Example 2. We will now show the models with respect to the different semantics
for the ADF introduced in Example 1. For readability, we write interpretations
v as sets of literals Lv = {s ∈ S | v(s) = t} ∪ {¬s | s ∈ S, v(s) = f}. There are

– five admissible interpretations: ∅, {a, b}, {a, b,¬c} {¬a,¬b, c}, {¬a,¬b},
– three complete models: {¬a,¬b, c}, ∅, {a, b,¬c}; of which ∅ is grounded;

– two models: {a, b,¬c}, {¬a,¬b, c}, of which one is stable: {¬a,¬b, c}

Brewka et al. [6] also defined an approach to handle preferences in ADFs.
The approach generalises the one for AFs from Amgoud and Cayrol [7]. Since
DIAMOND also implements this treatment of preferences, we recall it here. For
this approach, the links are restricted to links that are attacking or supporting.

Definition 3. A prioritised ADF (PADF) is a tuple P = (S,L+, L−, >) where
S is the set of nodes, L+ and L− are subsets of S×S, the supporting and attack-
ing links, and > is a strict partial order (irreflexive, transitive, antisymmetric)
on S representing preferences among the nodes.

Here (a, b) ∈ > (alternatively: a > b) expresses that a is preferred to b. The
semantics of prioritised ADFs is given by a translation to standard ADFs: P
translates to (S,L+ ∪ L−, C), where for each statement s ∈ S the acceptance
condition Cs is defined as: Cs(M) = t iff for each a ∈ M such that (a, s) ∈ L−
and not s > a we have: for some b ∈ M , (b, s) ∈ L+ and b > a. Intuitively, an
attacker does not succeed if the attacked node is more preferred or if there is a
more preferred supporting node.

The DIAMOND System for Argumentation: Preliminary Report 99

2.1 Answer Set Programming

A propositional normal logic program Π is a set of finite rules r over a set of
ground atoms A. A rule r is of the form α← β1, . . . , βm,not βm+1 . . . ,not βn,
where α ∈ A, βi ∈ A are ground atoms and m ≤ n ≤ 0. Each rule consists of a
body B(r) = {β1, . . . , βm,not βm+1 . . . ,not βn} and a head H(r) = {α}, divided
by the ←-symbol. We will split up the body into two parts, B(r) = B+(r) ∪
B−(r), where B+(r) = {β1, . . . , βm} and B−(r) = {not βm+1 . . . ,not βn}. A
rule r is said to be positive if B−(r) = ∅ and a program Π is positive if every
rule r ∈ Π is positive. For a positive program Π, its immediate consequence
operator TΠ is defined for S ⊆ A by TΠ(S) = {H(r) ∈ A | r ∈ Π,B+(r) ⊆ S}.
A set A ⊆ A of ground atoms is a minimal model of a positive propositional
logic program Π iff A is the least fixpoint of TΠ . To allow rules with negative
body atoms, Gelfond and Lifschitz [8] proposed the stable model semantics (also
called answer set semantics).

Definition 4. Let A ⊆ A be a set of ground atoms. A is a stable model for the
propositional normal logic program Π iff A is the minimal model of the reduced
program ΠA, where ΠA = {H(r)← B+(r) | r ∈ Π,B−(r) ∩A = ∅}.
We use clasp from the Potsdam Answer Set Solving Collection Potassco2 [9] as
the back-end answer set solver for our software system. Potassco allows us to use
an enriched input language where in addition to the above pictured propositional
logic programs we can use first-order variables and predicates. Ground atoms
are generally written in lower case while variables are represented with upper
case characters. Additionally Potassco offers features like aggregates, cardinality
constraints, choice rules and conditional literals. For further details we refer to
the recent book by Gebser et al. [10].

3 DIAMOND

Our software system DIAMOND is a collection of answer set programming en-
codings and tools to compute the various models with respect to the semantics
for a given ADF. The different encodings are designed around the Potsdam
Answer Set Solving Collection (Potassco) [9] and the additional provided tools
utilise clasp as solver, too. Note that the encodings for DIAMOND are built in
a modular way. To compute the models of an ADF with respect to a semantics,
different modules need to be grounded together to get the desired behaviour.

DIAMOND is available for download and experimentation at the web page
http://www.informatik.uni-leipzig.de/~ellmau/diamond. There we also
provide further documentation on its usage. In short, DIAMOND is a Python-
script,3 which can be invoked via the command line. Different switches are used
to designate the desired semantics, and the input file is given as a file name or
via the standard input. The options for the command line are as follows:

2 Available at http://potassco.sourceforge.net
3 Python is available at http://www.python.org.

100 S. Ellmauthaler and H. Straß

usage: diamond.py [-h] [-cf] [-m] [-sm] [-g] [-c] [-a]

[--transform pform | --transform prio] [-all] [--version] instance

positional arguments:

instance File name of the ADF instance

optional arguments:

-h, --help show this help message and exit

-cf, --conflict-free compute the conflict free sets

-m, --model compute the two-valued models

-sm, --stablemodel compute the stable models

-g, --grounded compute the grounded model

-c, --complete compute the complete models

-a, --admissible compute the admissible models

--transform pform transform a propositional formula ADF before the computation

--transform prio transform a prioritized ADF before the computation

-all, --all compute all sets and models

--version prints the current version

We next describe how specific ADF instances are represented in DIAMOND.

3.1 Instance Representation

In order to represent an ADF for DIAMOND its acceptance conditions need to
be in the functional representation as given in Definition 1. The statements of
an ADF are declared by the predicate s, and the links are represented by the
binary predicate l, such that l(b,a) reflects that there is a link from b to a. The
acceptance condition is modelled via the unary and tertiary predicates ci and
co. Intuitively ci (resp. co) identifies the parents which need to be accepted,
such that the acceptance condition maps to true (i.e. in) (resp. false (i.e. out)).
To achieve a flat representation of each set of parent statements, we use an
arbitrary third term in the predicate to identify them. To express what happens
to a statement when none of the parents is accepted we use the unary versions
of ci and co. Here is the DIAMOND representation of Example 1:

s(a). s(b). s(c). l(b,a). l(a,b). l(b,c).

co(a). ci(a,1,b). co(b). ci(b,1,a). ci(c). co(c,1,b).

The first line declares the statements and links. The second line expresses the
acceptance conditions: statement a is out if b is out and in if b is; likewise b gets
the same status as a; statement c is in if b is out , and c is out if b is in.

As a part of the DIAMOND software bundle, we also provide an ECLiPSe

Prolog4 [11] program that transforms acceptance functions given as formulas
into the functional representation used by DIAMOND.

We have chosen this functional representation of acceptance conditions for
pragmatic reasons. An alternative would have been to represent acceptance con-
ditions by propositional formulas. In this case, computing a single step of the
operator would entail solving several NP-hard problems. The standard way to

4 ECLiPSe is available at http://eclipseclp.org/.

The DIAMOND System for Argumentation: Preliminary Report 101

solve these is the use of saturation [12], which however causes undesired side-
effects when employed together with meta-ASP [13]. Furthermore, other ADF se-
mantics (e.g. preferred) utilise concepts like ⊆-minimality, which also require the
use of meta-argumentation. We plan to extend DIAMOND to further semantics
and therefore chose the functional representation of acceptance conditions to
forestall potential implementation issues.

Due to compatibility considerations, it is possible for DIAMOND to under-
stand the propositional formula representation as well as a PADF. The propos-
itional formula representation uses the unary predicate statement to identify
statements. The binary predicate ac(s,φ) associates to each statement s one
formula φ. Each formula φ is constructed in the usual inductive way, where
atomic formulae are other statements and the truth constants (i.e. c(v) and
c(f)) and the operators are written as functions. The allowed operators are
neg, and, or, imp, and iff for their respective logical operators. To describe
a PADF, we use the unary predicate s to describe the set of statements. In
addition the support (i.e. L+) and attack (i.e. L−) links are represented by the
binary predicates lp and lm (i.e. positive resp. negative links). To express a pref-
erence, such as a > b, we use the predicate pref(a,b). Note that DIAMOND
provides a method to translate propositional formula ADFs and PADFs into
ADFs with total functions and only computes the models using the functional
representation.

For illustration, let us look at another, slightly more complicated example.

Example 3. Consider the ADF D2 = (S2, L2, C2) with S2 = {a, b, c, d}, L2 =
{(a, c), (b, b), (b, c), (b, d)}, and C2 = {ϕa = t, ϕb = b, ϕc = a ∧ b, ϕd = ¬b}.

a b

c d

ϕa = t ϕb = b

ϕc = a ∧ b ϕd = ¬b

For this ADF there are

– 16 admissible interpretations: ∅, {a}, {b}, {¬b}, {b,¬d}, {a, b}, {a,¬b},
{¬b, d}, {¬b,¬d}, {a, b, c}, {a, b,¬d}, {a,¬b, d}, {a,¬b,¬c}, {¬b,¬c, d},
{a, b, c,¬d}, {a,¬b,¬c, d}

– three complete models: {a}, {a, b, c,¬d}, {a,¬b,¬c, d}; of these, {a} is the
grounded model;

– two models: {a, b, c,¬d}, {a,¬b,¬c, d}, of which one is stable: {a,¬b,¬c, d}.
Its propositional formula representation for DIAMOND (inherited from
ADFsys) is given by the following ASP code:

102 S. Ellmauthaler and H. Straß

statement(a). statement(b). statement(c). statement(d).

ac(a,c(v)).

ac(b, b).

ac(c, and(a,b)).

ac(d, neg(b)).

The functional ASP representation of the same ADF looks thus:

s(a). s(b). s(c). s(d).

l(a,c). l(b,b). l(b,c). l(b,d).

ci(a).

co(b). ci(b,1,b).

co(c). co(c,1,a). co(c,2,b). ci(c,3,a). ci(c,3,b).

ci(d). co(d,1,b).

Arguably, the formula representation is easier to read for humans.

3.2 Implementation of ΓD

Since all of the semantics are defined via the operator ΓD, we will now present
how the implementation of the operator is done in DIAMOND. The unary pre-
dicate step with an arbitrary term is used to apply the operator several times.
The input for the operator is given by the predicates in and out to represent
mappings to t and f . The resulting interpretation can be read off the predicates
valid and unsat. Predicates fp and nofp denote whether a fixpoint is reached
or not. First, DIAMOND decides which of the mappings to t are still of interest
(cii) (i.e. which of those can still be satisfied under the given interpretation):

ciui(S,J,I) :- lin(X,S,I), not ci(S,J,X), ci(S,J).

ciui(S,J,I) :- lout(X,S,I), ci(S,J,X).

cii(S,J,I) :- not ciui(S,J,I), ci(S,J), step(I).

The predicates lin and lout are those links between arguments which are
already decided by the given three-valued interpretation. The binary predic-
ate ci (resp. co) is just the projection of its tertiary version to express that
at least one predicate with a specific statement occurs in a specific acceptance
condition. The treatment of the interesting mappings to f (coi) is dual:

coui(S,J,I) :- lin(X,S,I), not co(S,J,X), co(S,J).

coui(S,J,I) :- lout(X,S,I), co(S,J,X).

coi(S,J,I) :- not coui(S,J,I), co(S,J), step(I).

Afterwards it is checked whether there exist two-valued extensions of the given
interpretation that are a model or not, which is denoted by the predicates pmodel
(resp. imodel). Then a statement can be seen to be valid (resp. unsat) if there
does not exist an interpretation which is not a model (is a model). The predicate
verum (resp. falsum) represents that the acceptance condition is always true
(resp. false).

The DIAMOND System for Argumentation: Preliminary Report 103

pmodel(S,I) :- cii(S,J,I). pmodel(S,I) :- verum(S), step(I).

pmodel(S,I) :- not lin(S,I), ci(S), step(I).

pmodel(S,I) :- not lin(S,I), ci(S), step(I).

valid(S,I) :- pmodel(S,I), not imodel(S,I).

imodel(S,I) :- coi(S,J,I).

imodel(S,I) :- falsum(S), step(I).

imodel(S,I) :- not lin(S,I), co(S), step(I).

unsat(S,I) :- imodel(S,I), not pmodel(S,I).

At last, either nofp or fp is deduced. To achieve this, DIAMOND checks whether
the application of the operator resulted in an interpretation that is different from
the given one.

nofp(I) :- in(X,I), not valid(X,I), step(I).

nofp(I) :- valid(X,I), not in(X,I), step(I).

nofp(I) :- out(X,I), not unsat(X,I), step(I).

nofp(I) :- unsat(X,I), not out(X,I), step(I).

fp(I) :- not nofp(I), step(I).

3.3 Semantics

The admissible model is computed by the use of a guess and check approach. At
first a three-valued interpretation is guessed, by an assignment of the statements
to be in, out, or neither. The last two lines remove all guesses which violate the
definition of the admissible model (i.e. check which guesses are right):

step(0).

{in(S,0):s(S)}.
{out(S,0):s(S)}.
:- in(S,0), out(S,0).

:- in(S), not valid(S,0).

:- out(S), not unsat(S,0).

The complete model encoding uses the same concept as used for the ad-
missible model. The only difference is that the guessed model needs to be a
fixpoint. To this effect the last two rules of the above encoding are replaced by
the constraint “:- nofp(0).”.

To compute the grounded model, we need to apply ΓD until a fixpoint is
reached. This is done via a sequence of steps, where the result of one step is
taken as the used given interpretation for the next step:

maxit(I) :- I:={s(S)}. step(0).

in(S,I+1) :- valid(S,I). out(S,I+1) :- unsat(S,I).

step(I+1) :- step(I), not maxit(I).

in(S) :- fp(I), in(S,I).

out(S) :- fp(I), out(S,I).

udec(S) :- fp(I), s(S), not in(S), not out(S).

104 S. Ellmauthaler and H. Straß

Note that we use the number of statements as the upper bound on the number
of operator applications as this is the maximal number of steps needed to reach
a fixpoint.

To implement the model semantics, the operator is not essential: as the model
is only two-valued, there do not remain undecided parts. So each variable is
mapped to a truth-value and therefore every acceptance condition may only
map to one value (i.e. t or f). The encoding just guesses a two-valued interpret-
ation and checks whether the guessed interpretation agrees with the acceptance
conditions of each statement or not. The stable model combines the encoding
for models with the operator encoding to check for each model whether it is also
the grounded extension of its reduced ADF or not.

4 Discussion and Future Work

We presented the DIAMOND software system that uses answer set programming
to compute models of abstract dialectical frameworks under various semantics.
DIAMOND can be seen as a continuation of the trend to utilise ASP for im-
plementing abstract argumentation. The most important existing tool in this
line of work is the ASPARTIX system5 [14] for computing extensions of Dung
argumentation frameworks.

Quite recently, Ellmauthaler and Wallner presented their system ADFsys6 for
determining the semantics of ADFs [15]. Since their system likewise uses answer
set programming, it is natural to ask where the differences lie. For one, after
the discovery of several examples where some original ADF semantics do not
behave as intended, Brewka et al. [6] proposed revised and generalised versions
of these semantics. The DIAMOND system implements the new semantics while
ADFsys still computes the old versions. For another, ADFsys relies solely on
the representation of acceptance conditions via propositional formulas, while
DIAMOND can additionally deal with functional representations. Due to the
new semantics it is not trivial to compare those two systems. In fact only the
model and the grounded semantics have not changed. During preliminary tests,
we used different methods to generate randomised ADF instances. Depending on
the used generation method, DIAMOND could compete with ADFsys and even
outperform it. Alas, there were also instances for which ADFsys outperformed
DIAMOND. We consider it an important future task to determine specific classes
of ADFs that distinguish the two systems, and to connect these ADF classes to
possible real-world applications.

To adapt ADFsys to the new semantics, it would be needed to decide at each
operation of ΓD which acceptance formulae are (under the given three-valued in-
terpretation) irrefutable (resp. unsatisfiable). To solve such an embedded co-NP

5 ASPARTIX is available at http://www.dbai.tuwien.ac.at/research/project/

argumentation/systempage/
6 ADFsys is available at http://www.dbai.tuwien.ac.at/research/project/

argumentation/adfsys/

The DIAMOND System for Argumentation: Preliminary Report 105

problem it would be necessary to use the saturation technique or similar con-
cepts, which will make the use of disjunctive logic programs obligatory. Therefore
there would also be issues with more complex semantics (like the preferred se-
mantics). There the use of meta-ASP would conflict with the use of saturation
in the disjunctive program.

Apart from the semantics implemented in this paper, there are also ADF
semantics that DIAMOND cannot yet deal with – these remain for future work.
For example, the preferred semantics is based on maximisation, and so we will
need meta-ASP to implement that. In general, ADFs are a quite new formalism,
and we expect that further ADF semantics will be defined in the future. Natur-
ally, we plan to implement these new semantics using the infrastructure already
available through DIAMOND.

Another future research interest concerns a possible practical application
for ADFs: We intend to analyse discussions in social media, where opinions
and viewpoints can be modelled by statements that are in some relation to
each other. ADF semantics can guide the respective online community, for ex-
ample as to what positions everybody can agree on, or how a group decision
can be justified. Such an approach was proposed by Toni and Torroni [16] as a
possible application of assumption-based argumentation frameworks [17]. How-
ever, assumption-based argumentation inherits the expressiveness limitations of
abstract argumentation, that is, it can also express only attack relationships
between statements. We expect that ADFs with their greater expressiveness are
better suited to model online interactions in social media.

A similar application of argumentation in online social communities is the
approach by Snaith et al. [18]. They utilise their database for arguments in the
Argument Interchange Format [19] to capture discussions via different blogging-
sites and use their tool TOAST [20] to compute an acceptable consensus about
the issues under discussion. Again we think that ADFs are more suitable for this
application due to their expressiveness.

References

1. Dung, P.M.: On the Acceptability of Arguments and its Fundamental Role in
Nonmonotonic Reasoning, Logic Programming and n-Person Games. Artificial
Intelligence 77 (1995) 321–358

2. Nielsen, S.H., Parsons, S.: A generalization of Dung’s abstract framework for
argumentation: Arguing with sets of attacking arguments. In: Argumentation in
Multi-Agent Systems. Volume 4766 of LNCS., Springer (2006) 54–73

3. Modgil, S.: Reasoning about preferences in argumentation frameworks. Artif.
Intell. 173(9-10) (2009) 901–934

4. Boella, G., Gabbay, D.M., van der Torre, L., Villata, S.: Meta-argumentation
modelling I: Methodology and techniques. Studia Logica 93(2–3) (2009) 297–355

5. Brewka, G., Woltran, S.: Abstract Dialectical Frameworks. In: KR. (2010) 102–111
6. Brewka, G., Ellmauthaler, S., Strass, H., Wallner, J.P., Woltran, S.: Abstract Dia-

lectical Frameworks Revisited. In: IJCAI, AAAI Press (August 2013) To appear.
7. Amgoud, L., Cayrol, C.: On the acceptability of arguments in preference-based

argumentation. In: UAI, Morgan Kaufmann (1998) 1–7

106 S. Ellmauthaler and H. Straß

8. Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. In:
ICLP/SLP. (1988) 1070–1080

9. Gebser, M., Kaminski, R., Kaufmann, B., Ostrowski, M., Schaub, T., Schneider,
M.: Potassco: The Potsdam answer set solving collection. AI Communications
24(2) (2011) 105–124

10. Gebser, M., Kaminski, R., Kaufmann, B., Schaub, T.: Answer Set Solving in Prac-
tice. Synthesis Lectures on Artificial Intelligence and Machine Learning. Morgan
and Claypool Publishers (2012)

11. Schimpf, J., Shen, K.: ECLiPSe – from LP to CLP. CoRR abs/1012.4240 (2010)
12. Eiter, T., Gottlob, G.: On the computational cost of disjunctive logic program-

ming: Propositional case. Annals of Mathematics and Artificial Intelligence 15(3–4)
(1995) 289–323

13. Gebser, M., Kaminski, R., Schaub, T.: Complex optimization in answer set pro-
gramming. Theory and Practice of Logic Programming 11(4–5) (2011) 821–839

14. Egly, U., Gaggl, S.A., Woltran, S.: Answer-set programming encodings for argu-
mentation frameworks. Argument and Computation 1(2) (2010) 147–177

15. Ellmauthaler, S., Wallner, J.P.: Evaluating Abstract Dialectical Frameworks with
ASP. [21] 505–506

16. Toni, F., Torroni, P.: Bottom-up argumentation. In Modgil, S., Oren, N., Toni, F.,
eds.: TAFA. Volume 7132 of Lecture Notes in Computer Science., Springer (2011)
249–262

17. Bondarenko, A., Dung, P.M., Kowalski, R.A., Toni, F.: An abstract,
argumentation-theoretic approach to default reasoning. Artificial Intelligence 93
(1997) 63–101

18. Snaith, M., Bex, F., Lawrence, J., Reed, C.: Implementing argublogging. [21]
511–512

19. Rahwan, I., Reed, C.: The Argument Interchange Format. In: Argumentation in
Artificial Intelligence. Springer (2009) 383–402

20. Snaith, M., Reed, C.: Toast: Online aspic+ implementation. [21] 511–512
21. Verheij, B., Szeider, S., Woltran, S., eds.: Computational Models of Argument -

Proceedings of COMMA 2012, Vienna, Austria, September 10-12, 2012. In Verheij,
B., Szeider, S., Woltran, S., eds.: COMMA. Volume 245 of Frontiers in Artificial
Intelligence and Applications., IOS Press (2012)

The DIAMOND System for Argumentation: Preliminary Report 107

108

A System for Interactive Query Answering
with Answer Set Programming

Martin Gebser, Philipp Obermeier, and Torsten Schaub?

Universität Potsdam, Institut für Informatik

Abstract. Reactive answer set programming has paved the way for incorporating
online information into operative solving processes. Although this technology
was originally devised for dealing with data streams in dynamic environments,
like assisted living and cognitive robotics, it can likewise be used to incorporate
facts, rules, or queries provided by a user. As a result, we present the design
and implementation of a system for interactive query answering with reactive
answer set programming. Our system quontroller is based on the reactive solver
oclingo and implemented as a dedicated front-end. We describe its functionality
and implementation, and we illustrate its features by some selected use cases.

1 Introduction

Traditional logic programming [1, 2] is based upon query answering. Unlike this, logic
programs under the stable model semantics [3] are implemented by model generation
based systems, viz. answer set solvers [4]. Although the latter also allows for checking
whether a query is entailed by some stable model, there is so far no way to explore a
domain at hand by posing consecutive queries without relaunching the solver. The same
applies to the interactive addition and/or deletion of temporary program parts that come
in handy during theory exploration, for instance, when dealing with hypotheses.

An exemplary area where such exploration capacities would be of great benefit is
bio-informatics (cf. [5–10]). Here, we usually encounter problems with large amounts
of data, resulting in runs having substantial grounding and solving times. Furthermore,
problems are often under-constrained, thus yielding numerous alternative solutions. In
such a setting, it would be highly beneficial to explore a domain via successive queries
and/or under certain hypotheses. For instance, for determining nutritional requirements
for sustaining maintenance or growth of an organism, it is important to indicate seed
compounds needed for the synthesis of other compounds. Now, rather than continu-
ously analyzing several thousand stable models (or their intersection or union), a biolo-
gist may rather perform interactive “in-silico” experiments by temporarily adding com-
pounds and subsequently exploring the resulting models by posing successive queries.

We address this shortcoming and show how recently developed systems for reactive
answer set programming (ASP) [11, 12] can be harnessed to provide query answering

? Affiliated with the School of Computing Science at Simon Fraser University, Burnaby, Canada,
and the Institute for Integrated and Intelligent Systems at Griffith University, Brisbane, Aus-
tralia.

and theory exploration capacities. In fact, reactive ASP was conceived for incorporat-
ing online information into operative ASP solving processes. Although this technology
was originally devised for dealing with data streams in dynamic environments, like as-
sisted living and cognitive robotics, it can likewise be used to incorporate facts, rules,
or queries provided by a user. As a result, we present the design and implementation of
a system for interactive query answering and theory exploration with ASP. Our system
quontroller1 is based on the reactive answer set solver oclingo and implemented as a
dedicated front-end. We describe its functionality and implementation, and we illustrate
its features on a running example.

2 Approach

In order to provide dedicated support for query answering, the quontroller encapsulates
oclingo along with its basic front-end for entering online progressions. The basic idea is
to condition the stable models of an underlying logic program via query programs, tem-
porarily asserting atoms to be contained in stable models of interest. For circumventing
restrictions due to the modularity requirement of reactive ASP (cf. [11, 12]) and en-
abling repeated assertions of an atom in a series of queries, the quontroller associates
query programs with sequence numbers and exploits oclingo’s step counter to auto-
matically map their contents. In the following, we detail this idea on the well-known
example of n-coloring.

To begin with, Listing 1 provides an ASP encoding of n-coloring. The encoding
applies to graphs represented by facts over predicate edge/2. Given such facts, the
nodes of the graph are extracted in Line 6–7, each node is marked with exactly one of n
colors in Line 10, and Line 11 forbids that connected nodes are marked with the same
color. In Line 14–15, stable models are projected onto atoms over predicate mark/2.

Unlike with one-shot ASP solving, we do not combine the encoding in Listing 1
with fixed facts, but rather aim at a selective addition as well as withdrawal of atoms
over edge/2. In order to prepare reactive ASP rules for this purpose, the instructions
in Listing 2 can be fed into the quontroller. They are then mapped to the language of
oclingo as shown in Listing 3. The resulting reactive ASP rules are divided into a static
#base part (Line 1–13), a stepwise #cumulative part (Line 15–25), and a stepwise
#volatile part (Line 27–34). The stepwise parts are instantiated for successive step
numbers replacing the constant t, where instances of #cumulative rules are gathered
over steps and #volatile ones are discarded when progressing to the next step.

In more detail, the #domain instructions in Line 2 and 3 of Listing 2 are mapped to
the static rules in Line 4 and 7 of Listing 3. They define the (quontroller-internal) predi-
cates _domain_edge/2 and _domain_mark/2, which provide the domains of instances
of edge/2 and mark/2 that can be asserted by query programs. In particular, the rule in
Line 4 expresses that edges may connect distinct nodes with labels running from 1 to 4,
and the rule in Line 7 declares that each node can be marked with the colors provided
by color/1. Furthermore, the instruction in Line 4 of Listing 2 is mapped to the static
choice rule in Line 10 of Listing 3. This rule compensates for the lack of facts over

1 To be pronounced ‘cointreau’-ler; URL: potassco.sourceforge.net/labs.html.

110 M. Gebser et al.

1 % n colors
2 #const n = 3.
3 color(1..n).

5 % extract nodes from edges
6 node(X) :- edge(X,_).
7 node(X) :- edge(_,X).

9 % generate n-coloring
10 1 { mark(X,C) : color(C) } 1 :- node(X).
11 :- edge(X,Y), mark(X;Y,C).

13 % display n-coloring
14 #hide.
15 #show mark/2.

Listing 1: ASP encoding of n-coloring (encoding.lp)

1 #setup.
2 #domain edge(X,Y) : X := 1..4, Y := 1..4, X != Y.
3 #domain mark(X,C) : X := 1..4, color(C).
4 #choose edge/2.
5 #define edge/2.
6 #query mark/2.
7 #show edge/2.
8 #endsetup.

Listing 2: quontroller setup instructions (setup.ini)

edge/2 and allows for instantiating the original encoding in Listing 1 relative to the do-
main given by _domain_edge/2. Again relying on _domain_edge/2, the instruction
in Line 7 of Listing 2 is mapped to the #show statement in Line 13 of Listing 3 for
including atoms over edge/2 (in addition to those over mark/2) in output projections.

The #cumulative and #volatile parts in Listing 3 deal with the instructions in
Line 5 and 6 of Listing 2. In particular, the #external statements in Line 18 and 23
of Listing 3 declare (quontroller-internal) instances of _assert_mark(X1,X2,t)

and _assert_edge(X1,X2,t) as potential online inputs from query programs,
where X1 and X2 are instantiated relative to domains given by static rules and the
constant t is added as an argument to distinguish separate queries. The rules in
Line 19–20 and 24–25 of Listing 3 further define the (quontroller-internal) predi-
cates _derive_mark/3 and _derive_edge/3 for indicating “active” assertions from
query programs. Given that such assertions may remain active over several queries,
the rules defining _derive_mark/3 and _derive_edge/3 include one case for re-
flecting current assertions (Line 19 and 24) and another for passing on former asser-
tions (Line 20 and 25). As a consequence, instances of _derive_mark(X1,X2,t) and
_derive_edge(X1,X2,t) capture active assertions regarding the original predicates

A System for Interactive Query Answering with Answer Set Programming 111

1 #base.

3 % #domain edge(X,Y) : X := 1..4, Y := 1..4, X != Y.
4 _domain_edge(X,Y) :- X := 1..4, Y := 1..4, X != Y.

6 % #domain mark(X,C) : X := 1..4, color(C).
7 _domain_mark(X,C) :- X := 1..4, color(C).

9 % #choose edge/2.
10 { edge(X1,X2) : _domain_edge(X1,X2) }.

12 % #show edge/2.
13 #show edge(X1,X2) : _domain_edge(X1,X2).

15 #cumulative t.

17 % #query mark/2.
18 #external _assert_mark(X1,X2,t) : _domain_mark(X1,X2).
19 _derive_mark(X1,X2,t) :- _domain_mark(X1,X2), _assert_mark(X1,X2,t).
20 _derive_mark(X1,X2,t) :- _domain_mark(X1,X2), _derive_mark(X1,X2,t-1).

22 % #define edge/2.
23 #external _assert_edge(X1,X2,t) : _domain_edge(X1,X2).
24 _derive_edge(X1,X2,t) :- _domain_edge(X1,X2), _assert_edge(X1,X2,t).
25 _derive_edge(X1,X2,t) :- _domain_edge(X1,X2), _derive_edge(X1,X2,t-1).

27 #volatile t.

29 % #query mark/2.
30 :- _domain_mark(X1,X2), _derive_mark(X1,X2,t), not mark(X1,X2).

32 % #define edge/2.
33 :- _domain_edge(X1,X2), _derive_edge(X1,X2,t), not edge(X1,X2).
34 :- _domain_edge(X1,X2), edge(X1,X2), not _derive_edge(X1,X2,t).

Listing 3: Mapping of quontroller setup instructions in setup.ini to reactive ASP rules

mark/2 and edge/2, and corresponding matches are established via #volatile in-
tegrity constraints. For one, the #query instruction in Line 6 of Listing 2 is mapped to
the integrity constraint in Line 30 of Listing 3, thus requiring mark(X1,X2) to hold at
any step where _derive_mark(X1,X2,t) indicates an active assertion, and the anal-
ogous integrity constraint in Line 33 is obtained in view of the #define instruction
in Line 5 of Listing 2. The latter is complemented by another integrity constraint in
Line 34, denying edge(X1,X2) to hold when _derive_edge(X1,X2,t) does not
indicate any active assertion. That is, a #query instruction expresses that assertions
may require atoms to belong to stable models of interest, and a #define instruction is
stronger by additionally claiming some active assertion for atoms to hold.

After launching oclingo with the encoding in Listing 1 and the reactive ASP
rules in Listing 3 (via ‘quontroller.py -o encoding.lp -c setup.ini’), the
quontroller is ready to process query programs provided by a user. An exemplary
stream of query programs is shown in Figure 1(a), and Figure 1(b) provides its
counterpart in the syntax of oclingo’s basic front-end. In fact, the quontroller maps
query programs to available stream constructs and automatically performs replace-
ments for interacting with reactive ASP rules. To begin with, the keywords ‘#query.’
and ‘#endquery.’, which encapsulate individual query programs, are mapped to
‘#step q : 0. #forget q-1.’ and ‘#endstep.’, where q is the sequence number

112 M. Gebser et al.

1 #query.
2 #assert : e(1).
3 edge(1,2).
4 edge(1,3).
5 edge(2,3).
6 edge(2,4).
7 edge(3,4).
8 #endquery.

10 #query.
11 #assert.
12 mark(1,1).
13 #endquery.

15 #query.
16 #assert : e(2).
17 edge(1,4).
18 #endquery.

20 #query.
21 #retract : e(2).
22 #assert.
23 mark(1,1).
24 mark(2,2).
25 #endquery.

27 #query.
28 #retract : e(1).
29 #endquery.

31 #stop.

(a) quontroller query stream

1 #step 1 : 0. #forget 0.
2 #assert : e(1).
3 _assert_edge(1,2,1).
4 _assert_edge(1,3,1).
5 _assert_edge(2,3,1).
6 _assert_edge(2,4,1).
7 _assert_edge(3,4,1).
8 #endstep.

10 #step 2 : 0. #forget 1.
11 #volatile : 1.
12 _assert_mark(1,1,2).
13 #endstep.

15 #step 3 : 0. #forget 2.
16 #assert : e(2).
17 _assert_edge(1,4,3).
18 #endstep.

20 #step 4 : 0. #forget 3.
21 #retract : e(2).
22 #volatile : 1.
23 _assert_mark(1,1,4).
24 _assert_mark(2,2,4).
25 #endstep.

27 #step 5 : 0. #forget 4.
28 #retract : e(1).
29 #endstep.

31 #stop.

(b) Mapping of quontroller query stream in (a)

Fig. 1: A quontroller query stream and its mapping to a reactive ASP online progression

of a query program and the #forget directive enables simplifications of reactive ASP
rules for yet undefined #external atoms introduced at step q-1. Also note that ‘: 0’
in #step directives tells oclingo not to increment the step counter on unsatisfiability.

Each query program may include labeled assertions, as declared via
‘#assert : e(1).’ in Line 2 of Figure 1(a) and 1(b). Such a construct ex-
presses that subsequently provided rules remain active until the labeled assertion is
explicitly retracted. In view of its reactive ASP rules, the quontroller however replaces
each head atom p(...) of a rule (or fact) to assert by its internal representation
_assert_p(...,q), where q is again the sequence number of the query program
at hand. For instance, ‘edge(1,2).’ is mapped to ‘_assert_edge(1,2,1).’ in
Line 3 of Figure 1(a) and 1(b). By means of reactive ASP rules capturing the #define

A System for Interactive Query Answering with Answer Set Programming 113

instruction in Line 5 of Listing 2, the instances of _assert_edge/3 provided by
facts in Line 3–7 of Figure 1(b) are matched with the original atoms over edge/2.
As a consequence, the first query program yields six stable models, in which the
unconnected nodes 1 and 4 share one of the colors 1, 2, or 3 and the nodes 2 and 3 are
marked with distinct remaining colors.

The second query program in Line 10–13 of Figure 1(a) includes ‘mark(1,1).’ as
an unlabeled assertion, indicated by the keyword ‘#assert.’ The latter is mapped to
the stream construct ‘#volatile : 1.’ (cf. Line 11 of Figure 1(b)), meaning that the
internal representation ‘_assert_mark(1,1,2).’ of the assertion expires “automati-
cally” in the next step. Technically, such expiration is implemented by adding assump-
tion literals to the bodies of transient rules, i.e. ‘_assert_mark(1,1,2).’ is internally
turned into ‘_assert_mark(1,1,2) :- _expire(3).’ and _expire(3) holds up
to step 3 where it is then permanently falsified. However, in the second step, the asser-
tion of color 1 for node 1 leads to two stable models of interest among the six obtained
in the first step. Also note that the quontroller language includes ‘#assert.’ in order
to indicate the beginning of query parts in which head atoms are replaced by internal
representations, so that any rules to be left untouched can still be provided beforehand.

Summarizing the remaining query programs, the labeled assertion e(2) in the third
query program turns the graph represented by atoms over edge/2 into a clique of four
nodes, so that no stable model is obtained in the third step. Hence, e(2) is retracted
in the fourth step (by discharging an assumption literal associated with e(2)), and the
additional unlabeled assertion of colors for the nodes 1 and 2 leads to a single stable
model of interest. Note that ‘mark(1,1).’ is turned into ‘_assert_mark(1,1,4).’
in Line 23 of Figure 1(b), while ‘_assert_mark(1,1,2).’ has been used in Line 12.
The rewriting by the quontroller thus avoids a clash with oclingo’s modularity require-
ment and enables repeated assertions of the “same” atom (in separate query programs).
Finally, the empty (projection of a) stable model is obtained after retracting all instances
of _assert_edge/3 in the last query program, and ‘#stop.’ afterwards signals the end
of the query stream to the quontroller.

3 Discussion

We presented a simple yet effective extension of reactive ASP that allows for interactive
query answering and theory exploration with ASP. This was accomplished by means of
a mapping scheme between queries and reactive ASP rules along with the assumption-
based solving capacities of oclingo. With it, programs can be temporarily added to the
solving process, either for an initially limited number of interactions or until they are
interactively withdrawn again. A typical use case of limited program parts are integrity
constraints, representing queries automatically vanishing after having been posed. Un-
like this, an assertion allows, for instance, for exploring the underlying domain under
user-defined hypotheses. All subsequent solving processes then include the asserted in-
formation until it is retracted by the user. The possibility of reusing ground rules as well
as recorded conflict information over a sequence of queries distinguishes reactive ASP
from ordinary one-shot reasoning methods. As future work, we want to study the per-
formance of query answering with the quontroller on challenging benchmark problems.

114 M. Gebser et al.

Acknowledgments This work was partially funded by DFG grant SCHA 550/9-1. We
are grateful to the anonymous reviewers for their suggestions.

References

1. Clocksin, W., Mellish, C.: Programming in Prolog. Springer (1981)
2. Lloyd, J.: Foundations of Logic Programming. Springer (1987)
3. Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. Proc. ICLP,

MIT (1988) 1070–1080
4. Gebser, M., Kaminski, R., Kaufmann, B., Schaub, T.: Answer Set Solving in Practice. Mor-

gan and Claypool (2012)
5. Baral, C., Chancellor, K., Tran, N., Tran, N., Joy, A., Berens, M.: A knowledge based ap-

proach for representing and reasoning about signaling networks. Proc. ISMB, (2004) 15–22
6. Erdem, E., Türe, F.: Efficient haplotype inference with answer set programming. Proc.

AAAI, AAAI (2008) 436–441
7. Gebser, M., Schaub, T., Thiele, S., Veber, P.: Detecting inconsistencies in large biological

networks with answer set programming. TPLP Journal 11(2-3) (2011) 323–360
8. Gebser, M., Guziolowski, C., Ivanchev, M., Schaub, T., Siegel, A., Thiele, S., Veber, P.:

Repair and prediction (under inconsistency) in large biological networks with answer set
programming. Proc. KR, AAAI (2010) 497–507

9. Ray, O., Whelan, K., King, R.: Logic-based steady-state analysis and revision of metabolic
networks with inhibition. Proc. CISIS, IEEE (2010) 661–666

10. Videla, S., Guziolowski, C., Eduati, F., Thiele, S., Grabe, N., Saez-Rodriguez, J., Siegel, A.:
Revisiting the training of logic models of protein signaling networks with ASP. Proc. CMSB,
Springer (2012) 342–361

11. Gebser, M., Grote, T., Kaminski, R., Schaub, T.: Reactive answer set programming. Proc.
LPNMR, Springer (2011) 54–66

12. Gebser, M., Grote, T., Kaminski, R., Obermeier, P., Sabuncu, O., Schaub, T.: Stream reason-
ing with answer set programming: Preliminary report. Proc. KR, AAAI (2012) 613–617

A System for Interactive Query Answering with Answer Set Programming 115

116

Generating Shortest Synchronizing Sequences
using Answer Set Programming

Canan Güniçen, Esra Erdem, and Hüsnü Yenigün

Sabanci University, Orhanli Tuzla, Istanbul 34956, Turkey
{canangunicen,esraerdem,yenigun}@sabanciuniv.edu

Abstract. For a finite state automaton, a synchronizing sequence is
an input sequence that takes all the states to the same state. Checking
the existence of a synchronizing sequence and finding a synchronizing
sequence, if one exists, can be performed in polynomial time. However,
the problem of finding a shortest synchronizing sequence is known to
be NP-hard. In this work, the usefulness of Answer Set Programming
to solve this optimization problem is investigated, in comparison with
brute-force algorithms and SAT-based approaches.

Keywords: finite automata, shortest synchronizing sequence, ASP

1 Introduction

For a state based system that reacts to events from its environment by changing
its state, a synchronizing sequence is a specific sequence of events that brings
the system to a particular state no matter where the system initially is. Synchro-
nizing sequences have found applications in many practical settings. In model
based testing, it can be used to bring the unknown initial state of an implemen-
tation to a specific state to start testing [1, 2]. As Natarajan [3] and Eppstein [4]
explain, it can be used to orient a part to a certain position on a conveyor belt.
Another interesting application is from biocomputing, where one can use a DNA
molecule encoding a synchronizing sequence to bring huge number of identical
automata (in the order of 1012 automata/µl) to a certain restart state [5].

Such a state based system can be formalized as a finite state automaton (FA).
We restrict ourselves to deterministic FA, which is defined as a tuple A =
(Q,Σ, δ), where Q is a finite set of states, Σ is a finite input alphabet, and
δ : Q×Σ 7→ Q is a transition function, defining how each state of A is changed
by the application of inputs. The transition function δ is extended to words in Σ?

naturally as δ(q, ε) = q, δ(q, wx) = δ(δ(q, w), x), where q ∈ Q, w ∈ Σ?, x ∈ Σ,
and ε is the empty word. A FA A = (Q,Σ, δ) is called completely specified when
δ is a total function. We will only consider completely specified FA in this work.
Figure 1 is an example of a FA.

We can now define a synchronizing sequence formally. Given an FA A =
(Q,Σ, δ), an input sequence w ∈ Σ? is called a synchronizing sequence for A if
∀q, q′ ∈ Q, δ(q, w) = δ(q′, w). As an example, baab is a synchronizing sequence
for A1 given in Figure 1.

s1

s2 s3

b

a

ab

b

a

Fig. 1: An example FA A1

Synchronizing sequences attracted much attention from a theoretical point
of view as well. In the literature, a synchronizing sequence is also referred to
as a synchronizing word, reset sequence, or a reset word. Not every FA has
a synchronizing sequence, and one can check the existence of a synchronizing
sequence for a given FA in polynomial time. On the other hand, the problem
of finding a shortest synchronizing sequence is known to be NP-hard [4]. For
this reason, several heuristic approaches have been suggested to compute short
synchronizing sequences [4, 6–8]. These algorithms guarantee a synchronizing
sequence of length O(n3) where n is the number of states in the FA. The best
known upper bound is n(7n2 +6n−16)/48 [9]. However, it has been conjectured
by Černý almost half a century ago that this upper bound is (n−1)2 [10, 11] after
providing a class of FA with n states whose shortest synchronizing sequence is of
length (n−1)2. The conjecture is shown to hold for certain classes of automata [4,
5, 12–15]. However, the conjecture is still open in general, and it is one of the
oldest open problems of finite state automata theory.

Despite the fact that it is NP-hard, considering the computation of shortest
synchronizing sequences is still useful. Such attempts are valuable both for un-
derstanding the characteristics of shortest synchronizing sequence problem (see
e.g. [16]) and for forming a base line for the performance evaluation of heuristics
for computing short synchronizing sequences.

In this work, we formulate the problem of computing a shortest synchronizing
sequence in Answer Set Programming (ASP) [17, 18]—a knowledge representa-
tion and reasoning paradigm with an expressive formalism and efficient solvers.
The idea of ASP is to formalize a given problem as a “program” and to solve the
problem by computing models (called “answer sets” [19]) of the program using
“ASP solvers”, such as Clasp [20].

After we represent the shortest synchronizing sequence problem in ASP, we
experimentally evaluate the performance and effectiveness of ASP, in comparison
with two other approaches, one based on SAT [16] and the other on a brute-force
algorithm [21]. For our experiments with the SAT-based approach, we extend
the SAT formulation of the existence of a synchronizing sequence of a given
length [16], to FA with more than two input symbols.

118 C. Güniçen et al.

The rest of the paper is organized as follows. In Section 2 we present four
different ASP formulations for the problem. An existing SAT formulation [16]
is extended to FAs with more than two inputs in Section 3. The experimental
results are given in Section 4 to compare the approaches. Finally, in Section 5
we give concluding remarks and some future research directions.

2 ASP Formulations of the Shortest Synchronizing
Sequence Problem

Let us first consider the decision version of the shortest synchronizing sequence
problem: For an FA A = (Q,Σ, δ) and a positive integer constant c, decide
whether A has a synchronizing word w of length c.

Without loss of generality, we represent states and input symbols of an FA
A = (Q,Σ, δ), by the range of numbers 1..n and 1..k (n = |Q|, k = |Σ|),
respectively. Then an FA A = (Q,Σ, δ) can be described in ASP by three forms
of atoms given below:

– state(s) (1 ≤ s ≤ n) describing the states in Q,
– symbol(j) (1 ≤ j ≤ k) describing the input symbols in Σ, and
– transition(s, j, s′) (1 ≤ s, s′ ≤ n, 1 ≤ j ≤ k) describing the transitions
δ(s, j) = s′.

We represent possible lengths i of sequences by atoms of the form step(i) (1 ≤
i ≤ c).

A synchronizing sequence of length c is characterized by atoms of the form
synchro(i, x) (1 ≤ i ≤ c, 1 ≤ x ≤ k) describing that the i’th symbol of the word
is x.

Using these atoms, we can represent the decision version of the shortest
synchronizing sequence problem with a “generate-and-test” methodology used
in various ASP formulations. In the following, we present two different ASP
formulations based on this approach.

In these ASP formulations, we use an auxiliary concept of a path in A char-
acterized by a sequence w1, w2, . . . , wx of symbols in Σ, which is defined as a
sequence q1, q2, . . . , qx+1 of states in Q such that δ(qi, wi) = qi+1 for every i
(1 ≤ i ≤ x). The existence of such a path of length i in A from a state s to a
state q (i.e., the reachability of a state q from a state s by a path of length i in
A) characterized by the first i symbols of a word w is represented by atoms of
the form path(s, i+ 1, q) defined as follows:

path(s, 1, s)← state(s)
path(s, i+ 1, q)← path(s, i, r), synchro(i, x), transition(r, x, q),

state(s), state(r), state(q), symbol(x), step(i)
(1)

2.1 Connecting All States to a Sink State

In the first ASP formulation, which we call ASP1, first we “generate” a sequence
w of c symbols by the following choice rule:

Generating Shortest Synchronizing Sequences using ASP 119

1{synchro(i, j) : symbol(j)}1← step(i) (2)

where step(i) is defined by a set of facts:

step(i)← (1 ≤ i ≤ c) (3)

Next, we ensure that it is a synchronizing sequence by “testing” that it does
not violate the condition:

C1 There exists a sink state f ∈ Q such that every path in A characterized by
w ends at f .

by adding the following constraints

← sink(f),not path(s, c+ 1, f), state(s), state(f) (4)

where sink(f) describes a sink state:

1{sink(f) : state(f)}1← . (5)

The union of the program ASP1 that consists of the rules (2), (3), (4), (5),
(1), with a set of facts describing an FA A has an answer set iff there exists a
synchronizing sequence of length c for A.

2.2 Merging States Pairwise

In the second ASP formulation, which we call ASP2, first we “generate” a se-
quence w of c symbols by the choice rule (2).

Next, we ensure that it is a synchronizing sequence by “testing” that it does
not violate the following condition, instead of constraint C1:

D1 For every pair qi, qi+1 of states in Q = {q1, q2, . . . , qn}, δ(qi, w) = δ(qi+1, w).

by adding the following cardinality constraints

← 1{merged(r) : state(r), r < n}n− 2 (6)

where merged(r) describes that there exists a state s reachable from the states r
and r+1 by paths characterized by the first i symbols of w for some i (1 ≤ i ≤ c):

merged(r)← path(r, i, s), path(r + 1, i, s),
state(s), state(r), state(r + 1), step(i)

(7)

The union of the program ASP2 that consists of the rules (2), (3), (6), (7),
(1), with a set of facts describing an FA A has an answer set iff there exists a
synchronizing sequence of length c for A.

120 C. Güniçen et al.

2.3 Optimization

The ASP formulations given in Section 2.1 and Section 2.2, with a set of facts
describing an FA A, have answer sets if the given FA A has a synchronizing
sequence of length c. In order to find the length of the shortest synchronizing
sequence, one can perform a binary search on possible values of c.

In this section, we present another ASP formulation where we let the ASP
solver first decide the length l of a shortest synchronizing sequence, where l ≤ c:

1{shortest(l) : 1 ≤ l ≤ c}1← (8)

and declare possible lengths of sequences:

step(j)← shortest(i) (1 ≤ j ≤ i ≤ c). (9)

Next, we ensure that l is indeed the optimal value, by the following optimiza-
tion statement

#minimize[shortest(l) = l]← (10)

We denote by ASPopt
1 (resp. ASPopt

2) the ASP formulation obtained from
ASP1 (resp. ASP2) by adding the rules (8) and (10), and replacing the rules (3)
by the rules (9). If ASPopt

1 (resp. ASPopt
2) with a set of facts describing an FA

A has an answer set X then X characterizes a shortest synchronizing sequence
for A.

3 SAT Formulation of the Shortest Synchronizing
Sequence Problem

In [16], a SAT formulation of the problem of checking if an FA A has a syn-
chronizing sequence of a certain length is presented. However, this formulation
is given only for FA with two input symbols. We extend this SAT formulation
to FA with any number of input symbols as follows.

We first define a boolean operator ∇ that will simplify the description of our
SAT formulation. For a given set of boolean variables {r1, r2, . . . , rk}, we define
∇{r1, r2, · · · , rk} as follows:

∇ {r1,r2,· · ·,rk} ≡ ((r1 ⇒ (¬ r2 ∧ ¬ r3 ∧ · · · ∧ ¬ rk))∧ (r2 ⇒ (¬ r1 ∧ ¬ r3 ∧
· · · ∧ ¬ rk))∧ · · · (rk ⇒ (¬ r1 ∧ ¬ r2 ∧ · · · ∧ ¬ rk−1))∧ (r1 ∨ r2 ∨ · · · ∨ rk))

Intuitively, ∇{r1, r2, · · · , rk} is true with respect to an interpretation I iff exactly
one of the variables ri is true and all the others are false with respect to I.

Checking the existence of a synchronizing sequence of length c is converted
into a SAT problem by considering the following boolean formulae. Below we
use the notation [c] to denote the set {1, 2, . . . , c}.

Generating Shortest Synchronizing Sequences using ASP 121

– F1: An input sequence of length c has to be created. At each step of this in-
put sequence, there should be exactly one input symbol being used. For this
purpose, we generate Boolean variables Xl,x which should be set to true (by
an interpretation) only if at step l the input symbol x is used. The following
formulae make sure that only one input symbol is picked for each step l.

σ1 =
∧

l∈[c](∇{Xl,x|x ∈ X})

– F2: Similar to what we accomplish in ASP formulations by atoms of the
form path(s, i, q), we need to trace the state reached when the input se-
quence guessed by formula σ1 is applied. For this purpose, boolean variables
Si,j,k (which we call state tracing variables) are created which are set to true
(by an interpretation) only if we are at state qk at step j when we start from
state qi. We first make sure that for each starting state and at any step,
there will always be exactly one current state.

σ2 =
∧

i∈[n],l∈[c](∇{Si,l,j |j ∈ n})

– F3: The initial configuration of the FA A must be indicated. For this purpose
state tracing variables should be initialized for their first step.

σ3 =
∧

i∈[n](Si,1,i)

– F4: Again, similar to the constraints in ASP formulations, over atoms of
the form path(s, i, q), we have the corresponding SAT formulae to make sure
that state tracing variables are assigned according to the transitions of the
FA A. For each state qj and input x of A, if we have δ(qj , x) = qk in A, then
we generate the following formulae:

σ4 =
∧

i,j∈[n],l∈[c],x∈X((Si,l,j

∧
Xl,x)⇒ Si,l+1,k)

– F5: A synchronizing sequence w merges all the states at a sink state after the
application of w. We use boolean variable Yi to pick a sink state. Since only
one of the states has to be a sink state, we introduce the following formulae:

σ5 = (∇{Yi|i ∈ [n]})

– F6: Finally, we need to make sure that all the states reach the sink state
picked by F5 at the end of the last step after the application of the synchro-
nizing sequence guessed by formulae F1.

σ6 =
∧

i,j∈[n](Yi ⇒ Sj,c+1,i)

The conjunction of all formulae introduced above is a Boolean formula that
is satisfiable iff there exists a synchronizing sequence of FA A of length c.

122 C. Güniçen et al.

4 Experimental Study

In this section, we present the experimental study carried out to compare the
performance of the ASP formulations, the SAT formulation, and the brute–force
algorithm for generating a shortest synchronizing sequence.

We first present our experiments using finite automata that are generated
randomly. Given the number of states and the number of input symbols, an
FA is generated by assigning the next state of each transition randomly. If the
FA generated in this way does not have a synchronizing sequence, then it is
discarded. Otherwise, it is included in the set of FAs used in our experiments.
We generated 100 random FAs this way for each number of states we used in
the experiments (except for the biggest set of tests with 50 states and 4-6 input
symbols, where we use only 50 FAs to speed up the experiments).

The implementation of the brute–force algorithm in the tool COMPAS [21]
is used. The brute–force algorithm could be used for FAs with up to 27 states.
Beyond this number of states, COMPAS could not complete the computation
due to memory restrictions.

We implemented tools that create ASP and SAT formulations from a given
FA and an integer constant c as explained in Section 2, Section 3, and also the
SAT formulation given in [16] for FAs with two inputs only.

In the results given below, the formulations ASP1, ASP2, ASPopt
1 , and

ASPopt
2 refer to the ASP formulations given in Section 2. SAT 1 and SAT 2 refer

to the SAT formulations given in [16] and Section 3, respectively. BF refers to
the brute–force algorithm.

Note that the ASP formulations ASPopt
1 and ASPopt

2 report the length of
a shortest synchronizing sequence, provided that the constant c given is not
smaller than the length of a shortest synchronizing sequence. When c is not
big enough, another experiment is performed by doubling the value of c. We
report only the results from successful ASPopt

1 and ASPopt
2 experiments, where

a sufficiently large c is given. An experimental study is presented in [16] where
the length of the shortest synchronizing sequence is reported to be around 2

√
n

on the average for an n state automaton with two input symbols. We therefore
initially take the value of c as 2

√
n.

On the other hand, the ASP formulations ASP1 and ASP2, and also the SAT
formulations SAT 1 and SAT 2, only report if a synchronizing sequence of length
c exists or not. Therefore, one has to try several c values to find the length of the
shortest synchronizing sequence using these formulations. In our experiments
with these formulations, we find the length of a shortest synchronizing sequence
by applying a binary search on the value of c, by using a script that invokes the
ASP solver for each attempt on a possible value of c separately. We similarly
take the initial value of c to be 2

√
n as explained above. The time reported is the

total time taken by all the attempts until the length of a shortest synchronizing
sequence is found. The memory reported is the average memory usage in these
attempts.

The experiments are carried out using MiniSat 2.2.0 [22] and Clingo 3.0.3 [23]
running on Ubuntu Linux where the hardware is a 2.4Ghz Intel Core-i3 machine.

Generating Shortest Synchronizing Sequences using ASP 123

Table 1: Experiments on FAs with 2 input symbols (time - secs)

n ASP1 ASP2 ASPopt
1 ASPopt

2 SAT 1 BF

5 0 0 0 0 7 0
10 2 2 2 11 10 0
15 1 2 2 5 10 0
20 4 6 5 8 12 4
25 6 12 7 14 13 73
26 7 11 8 15 14 145
27 9 12 8 14 15 289

Table 2: Experiments on FAs with 2 input symbols (memory - kBytes)

n ASP1 ASP2 ASPopt
1 ASPopt

2 SAT 1

5 7750 7731 7622 7620 7677
10 8169 7278 8154 8160 7983
15 6284 6566 6465 6300 7847
20 6909 6911 6943 6947 7810
25 6769 6775 6937 6779 8066
26 7151 6798 7136 6822 8213
27 7123 7106 6744 7119 8113

In Table 1 and Table 2, the time and the memory performance of the formu-
lations ASP1, ASP2, SAT 1, and the brute–force algorithm are given. We could
not get a report on the memory usage of COMPAS for the brute–force algorithm,
hence no data is given for the brute–force algorithm in Table 2. In this set of
experiments, the number of states n ranges between 5 and 27, and the number
of input symbols is fixed to 2.

In Table 3 and Table 4, the time and the memory performance of the formu-
lations ASPopt

1 , ASPopt
2 , and SAT 2 are given on FAs with the number of states

n ∈ {30, 40, 50} and the number of inputs k ∈ {2, 4, 6}.
Table 1 shows that the brute–force approach uses much more time than the

other approaches, especially as the size of the FA gets bigger. Therefore, after a
certain threshold size, the brute–force approach is not an alternative.

By investigating the results given in Table 1 and Table 3, one can see that the
ASP formulation approach of ASP1 and ASPopt

1 perform better than ASP2 and
ASPopt

2 , in general. This may be due to that the number of ground instances of
(4) and (5) is smaller than that of (6) and (7). However, after intelligent ground-
ing of Clingo, the program sizes of ASPopt

1 and ASPopt
2 become comparable.

On the other hand, we have observed that ASPopt
2 leads to more backtracking

and restarts compared to ASPopt
1 . For example, for an instance of 50 states

and 2 input symbols, ASPopt
1 leads to 82878 choices and no restarts, whereas

ASPopt
2 leads to 137276 choices and 4 restarts. This may be due to that, in

ASPopt
1 with respect to (4) and (5) , once a sink node is selected, for every state,

124 C. Güniçen et al.

Table 3: Experiments on FAs with different number of inputs (time - secs)

n k ASP1 ASP2 ASPopt
1 ASPopt

2 SAT 2

30 2 4 17 4 18 49
30 4 66 80 45 57 101
30 6 208 405 160 231 490
40 2 33 45 71 122 222
40 4 348 380 244 311 472
40 6 1158 1400 707 980 2133
50 2 93 120 117 146 430
50 4 902 1101 835 833 2975
50 6 3205 4010 2705 3032 7492

Table 4: Experiments on FAs with different number of inputs (memory - kBytes)

n k ASP1 ASP2 ASPopt
1 ASPopt

2 SAT 2

30 2 6063 7143 4973 6140 42764
30 4 7309 7438 5278 7457 49681
30 6 7735 7621 7496 10457 52250
40 2 6709 6029 5616 7448 67362
40 4 7050 7073 7880 8550 78697
40 6 7764 8024 7983 10234 84671
50 2 7222 8336 8965 16072 86453
50 4 8438 9056 9931 12843 85157
50 6 8773 9228 10729 14092 93118

existence of a path of a fixed length is checked; on the other hand, in ASPopt
2 with

respect to (6) and (7), for every state, existence of two paths of the same length
is checked, which may intuitively lead to more backtracking and restarts. On
the other hand, the memory performances of all ASP approaches are similar, as
displayed by Table 2 and Table 4.

As for the comparison of the ASP and SAT approaches, one can see that the
ASP approaches are both faster and uses less memory than the SAT approach,
in general. However, the ASP approach seems to have a faster increase in the
running time compared to the SAT approach. This trend needs to be confirmed
by further experiments.

We also experimented with finite state automata from MCNC’91 bench-
marks [24]. We used only those finite state machine examples in this benchmark
set that correspond to completely specified finite state automata. The results of
these experiments are given in Table 5 for the time comparison. We obtained
similar results to what we have observed in our experiments on random finite
state automata. The time performance of the ASP approaches are better than
the SAT approach in these experiments as well. We note that the benchmark
example “dk16”, which is also the automaton having the largest number of
states, has the longest running time among the automata in the benchmark set.

Generating Shortest Synchronizing Sequences using ASP 125

Table 5: Experiments on FAs from MCNC benchmarks (time - msecs)

Name n k ASP1 ASP2 ASPopt
1 ASPopt

2 SAT 2

bbtas 6 4 15 18 10 14 52
beecount 7 8 18 18 10 9 89
dk14 7 8 18 20 15 17 62
dk15 4 8 13 14 7 7 20
dk17 8 4 27 26 8 8 69
dk27 7 2 22 21 6 6 45
dk512 15 2 33 27 11 12 278
dk16 27 4 191 231 132 127 21253
lion9 9 4 91 138 36 137 449
MC 4 8 18 18 7 7 53

However, the running time does not depend only on the number of states. The
number of input symbols and the length of the shortest synchronizing sequence
would also have an effect. For the comparison of the memory used for these
examples, all ASP approaches used around 6 MBytes of memory, whereas the
SAT approach used minimum 6 MBytes and maximum 38 MBytes memory for
these experiments.

5 Conclusion and Future Work

In this paper, the problem of finding a shortest synchronizing sequence for a
FA is formulated in ASP. Four different ASP formulations are given. Also an
extension of the SAT formulation of the same problem given in [16] is suggested.

The performance of these formulations are compared by an experimental
evaluation. The ASP and SAT formulations are shown to scale better than the
brute–force approach. The experiments indicate that the ASP formulations per-
form better than the SAT approach. However this needs to be further investi-
gated with an extended set of experiments.

Based on the encouraging results obtained from this work, using ASP to
compute some other special sequences used in finite state machine based test-
ing can be considered as a future research direction. For example checking the
existence of, and computing a Preset Distinguishing Sequence is a PSPACE–
hard problem [1]. Although checking the existence and computing an Adaptive
Distinguishing Sequence [1] can be performed in polynomial time, generating a
minimal Adaptive Distinguishing Sequence is an NP–hard problem. These hard
problems can be addressed by using ASP.

References

1. Lee, D., Yannakakis, M.: Testing finite-state machines: State identification and
verification. IEEE Trans. Comput. 43(3) (March 1994) 306–320

126 C. Güniçen et al.

2. Kohavi, Z., Jha, N.K.: Switching and Finite Automata Theory. Cambridge Uni-
versity Press (2010)

3. Natarajan, B.K.: An algorithmic approach to the automated design of parts ori-
enters. In: FOCS, IEEE Computer Society (1986) 132–142

4. Eppstein, D.: Reset sequences for monotonic automata. SIAM J. Comput. 19(3)
(1990) 500–510

5. Ananichev, D.S., Volkov, M.V.: Synchronizing monotonic automata. Theor. Com-
put. Sci. 327(3) (2004) 225–239

6. Trahtman, A.: Some results of implemented algorithms of synchronization. In:
10th Journees Montoises d’Inform., Liege, Belgium (2004)

7. Roman, A.: Synchronizing finite automata with short reset words. Applied Math-
ematics and Computation 209(1) (2009) 125–136

8. Kudlacik, R., Roman, A., Wagner, H.: Effective synchronizing algorithms. Expert
Systems with Applications 39(14) (2012) 11746–11757

9. Trahtman, A.N.: Modifying the upper bound on the length of minimal synchroniz-
ing word. In Owe, O., Steffen, M., Telle, J.A., eds.: FCT. Volume 6914 of Lecture
Notes in Computer Science., Springer (2011) 173–180

10. Černý, J.: A remark on homogeneous experiments with finite automata. Mat.-Fyz.
Časopis Sloven. Akad. Vied 14 (1964) 208–216

11. Černý, J., Pirick, A., Rosenauerov, B.: On directable automata. Kybernetika 07(4)
(1971) (289)–298

12. Kari, J.: Synchronizing finite automata on eulerian digraphs. Theor. Comput. Sci.
295 (2003) 223–232

13. Ananichev, D.S., Volkov, M.V.: Synchronizing generalized monotonic automata.
Theor. Comput. Sci. 330(1) (2005) 3–13

14. Trakhtman, A.: The cernú conjecture for aperiodic automata. Discrete Mathemat-
ics & Theoretical Computer Science 9(2) (2007)

15. Volkov, M.V.: Synchronizing automata preserving a chain of partial orders. Theor.
Comput. Sci. 410(37) (2009) 3513–3519

16. Skvortsov, E., Tipikin, E.: Experimental study of the shortest reset word of random
automata. In: Proceedings of the 16th international conference on Implementation
and application of automata. CIAA’11, Berlin, Heidelberg, Springer-Verlag (2011)
290–298

17. Lifschitz, V.: What is answer set programming? In: Proc. of AAAI, MIT Press
(2008) 1594–1597

18. Brewka, G., Eiter, T., Truszczynski, M.: Answer set programming at a glance.
Commun. ACM 54(12) (2011) 92–103

19. Gelfond, M., Lifschitz, V.: Classical negation in logic programs and disjunctive
databases. New Generation Computing 9 (1991) 365–385

20. Gebser, M., Kaufmann, B., Neumann, A., Schaub, T.: clasp: A conflict-driven
answer set solver. In: Proc. of LPNMR. (2007) 260–265

21. Chmiel, K., Roman, A.: Compas: a computing package for synchronization. In:
Proceedings of the 15th international conference on Implementation and applica-
tion of automata. CIAA’10, Berlin, Heidelberg, Springer-Verlag (2011) 79–86

22. Eén, N., Sörensson, N.: An extensible sat-solver. In: Proc. of SAT. (2003) 502–518
23. Gebser, M., Kaminski, R., Kaufmann, B., Ostrowski, M., Schaub, T., Schneider,

M.: Potassco: The Potsdam answer set solving collection. AI Communications
24(2) (2011) 107–124

24. Yang, S.: Logic synthesis and optimization benchmarks user guide version 3.0
(1991)

Generating Shortest Synchronizing Sequences using ASP 127

128

On the Semantics of Gringo

Amelia Harrison, Vladimir Lifschitz, and Fangkai Yang

University of Texas, Austin, Texas, USA
{ameliaj, vl, fkyang}@cs.utexas.edu

Abstract. Input languages of answer set solvers are based on the math-
ematically simple concept of a stable model. But many useful constructs
available in these languages, including local variables, conditional liter-
als, and aggregates, cannot be easily explained in terms of stable models
in the sense of the original definition of this concept and its straightfor-
ward generalizations. Manuals written by designers of answer set solvers
usually explain such constructs using examples and informal comments
that appeal to the user’s intuition, without references to any precise se-
mantics. We propose to approach the problem of defining the semantics
of gringo programs by translating them into the language of infini-
tary propositional formulas. This semantics allows us to study equiv-
alent transformations of gringo programs using natural deduction in
infinitary propositional logic.

1 Introduction

In this note, Gringo is the name of the input language of the grounder gringo,1

which is used as the front end in many answer set programming (ASP) systems.
Several releases of gringo have been made public, and more may be coming
in the future; accordingly, we can distinguish between several “dialects” of the
language Gringo. We concentrate here on Version 4, released in March of 2013.
(It differs from Version 3, described in the User’s Guide dated October 4, 2010,2

in several ways, including the approach to aggregates—it is modified as proposed
by the ASP Standardization Working Group.3)

The basis of Gringo is the language of logic programs with negation as fail-
ure, with the syntax and semantics defined in [6]. Our goal here is to extend
that semantics to a larger subset of Gringo. Specifically, we would like to cover
arithmetical functions and comparisons, conditions, and aggregates.4

1 http://potassco.sourceforge.net/.
2 The User’s Guide can be downloaded from the Potassco website (Footnote 1).

It is posted also at http://www.cs.utexas.edu/users/vl/teaching/lbai/clingo

guide.pdf.
3 https://www.mat.unical.it/aspcomp2013/ASPStandardization.
4 The subset of Gringo discussed in this note includes also constraints, disjunctive

rules, and choice rules, treated along the lines of [7] and [3]. The first of these papers
introduces also “classical” (or “strong”) negation—a useful feature that we do not
include. (Extending our semantics of Gringo to programs with classical negation

Our proposal is based on the informal and sometimes incomplete description
of the language in the User’s Guide, on the discussion of ASP programming
constructs in [4], on experiments with gringo, and on the clarifications provided
in response to our questions by its designers.

The proposed semantics uses a translation from Gringo into the language
of infinitary propositional formulas—propositional formulas with infinitely long
conjunctions and disjunctions. Including infinitary formulas is essential, as we
will see, when conditions or aggregates use variables ranging over infinite sets
(for instance, over integers).

Alternatively, the semantics of Gringo can be approached using quantified
equilibrium logic [12] or its syntactic counterpart defined in [2]. This method
involves translating rules into the language of first-order logic. For instance, the
rule

p(Y)← count{X,Y : q(X,Y)} ≥ 1 (1)

can be represented by the sentence

∀y(∃xQ(x, y)→ P (y)).

However, this translation is not sufficiently general. For instance, it is not clear
how to represent the rule

total hours(N)← sum{H,C : enroll(C), hours(H,C)} = N (2)

from Section 3.1.10 of the Gringo 3 User’s Guide with a first-order formula.
One reason is that the aggregate sum is used here instead of count . The second
difficulty is that the variable N is used rather than a constant.

General aggregate expressions, as used in Gringo, can be represented by
first-order formulas with generalized quantifiers.5 The advantage of infinitary
propositional formulas as the target language is that properties of these formulas,
and of their stable models, are better understood. We may be able to prove, for
instance, that two Gringo programs have the same stable models by observing
that the corresponding infinitary formulas are equivalent in one of the natural
deduction systems discussed in [8]. We give here several examples of reasoning
about Gringo programs based on this idea.

The process of converting Gringo programs into infinitary propositional for-
mulas defined in this note uses substitutions to eliminate variables. This form
of grounding is quite different, of course, from the process of intelligent instanti-
ation implemented in gringo and other grounders. Mathematically, it is much
simpler than intelligent instantiation; as a computational procedure, it is much
less efficient, not to mention the fact that sometimes it produces infinite objects.
Like grounding in the original definition of a stable model [6], it is modular, in
the sense that it applies to the program rule by rule, and it is applicable even if

is straightforward, using the process of eliminating classical negation in favor of
additional atoms described in [7, Section 4].)

5 Stable models of formulas with generalized quantifiers are defined by Lee and Meng
[9][10][11].

130 A. Harrison et al.

the program is not safe. From this perspective, gringo’s safety requirement is
an implementation restriction.

Our description of the syntax of Gringo disregards some of the features re-
lated to representing programs as strings of ASCII characters, such as using :-

to separate the head from the body, using semicolons, rather than parentheses,
to indicate the boundaries of a conditional literal, and representing falsity (which
we denote here by ⊥) as #false. Since the subset of Gringo discussed in this
note does not include assignments, we can disregard also the requirement that
equality be represented by two characters ==.

2 Syntax

We begin with a signature σ in the sense of first-order logic that includes, among
others,

(i) numerals—object constants representing all integers,
(ii) arithmetical functions—binary function constants +, −, ×,
(iii) comparisons—binary predicate constants <, >, ≤, ≥.

We will identify numerals with the corresponding elements of the set Z of inte-
gers. Object, function, and predicate symbols not listed under (i)–(iii) will be
called symbolic. A term over σ is arithmetical if it does not contain symbolic ob-
ject or function constants. A ground term is precomputed if it does not contain
arithmetical functions.

We assume that in addition to the signature, a set of symbols called aggregate
names is specified, and that for each aggregate name α, the function denoted by
α, α̂, maps every tuple of precomputed terms to an element of Z ∪ {∞,−∞}.
Examples. The functions denoted by the aggregate names count , max , and
sum are defined as follows. For any set T of tuples of precomputed terms,

– ĉount(T) is the cardinality of T if T is finite, and ∞ otherwise;
– m̂ax (T) is the least upper bound of the set of the integers t1 over all tuples

(t1, . . . , tm) from T in which t1 is an integer;
– ŝum(T) is the sum of the integers t1 over all tuples (t1, . . . , tm) from T in

which t1 is a positive integer; it is∞ if there are infinitely many such tuples.6

A literal is an expression of one of the forms

p(t1, . . . , tk), t1 = t2, not p(t1, . . . , tk), not (t1 = t2)

where p is a symbolic predicate constant of arity k, and each ti is a term over σ,
or

t1 ≺ t2, not (t1 ≺ t2)

6 To allow negative numbers in this example, we would have to define summation for a
set that contains both infinitely many positive numbers and infinitely many negative
numbers. It is unclear how to do this in a natural way.

On the Semantics of Gringo 131

where ≺ is a comparison, and t1, t2 are arithmetical terms. A conditional literal
is an expression of the form H : L, where H is a literal or the symbol ⊥, and L
is a list of literals, possibly empty. The members of L will be called conditions.
If L is empty then we will drop the colon after H, so that every literal can be
viewed as a conditional literal.

Example. If available and person are unary predicate symbols then

available(X) : person(X)

and

⊥ : (person(X),not available(X))

are conditional literals.

An aggregate expression is an expression of the form

α{t : L} ≺ s

where α is an aggregate name, t is a list of terms, L is a list of literals, ≺ is a
comparison or the symbol =, and s is an arithmetical term.

Example. If enroll is a unary predicate symbol and hours is a binary predicate
symbol then

sum{H,C : enroll(C), hours(H,C)} = N

is an aggregate expression.

A rule is an expression of the form

H1 | · · · |Hm ← B1, . . . , Bn (3)

(m,n ≥ 0), where each Hi is a conditional literal, and each Bi is a conditional
literal or an aggregate expression. A program is a set of rules.

If p is a symbolic predicate constant of arity k, and t is a k-tuple of terms,
then

{p(t)} ← B1, . . . , Bn

is shorthand for

p(t) | not p(t)← B1, . . . , Bn.

Example. For any positive integer n,

{p(i)}← (i = 1, . . . , n),
← p(X), p(Y), p(X+Y)

(4)

is a program.

132 A. Harrison et al.

3 Semantics

We will define the semantics of Gringo using a syntactic transformation τ . It con-
verts Gringo rules into infinitary propositional combinations of atoms of the form
p(t), where p is a symbolic predicate constant, and t is a tuple of precomputed
terms. Then the stable models of a program will be defined as stable models,
in the sense of [13], of the set consisting of the translations of all rules of the
program. Truszczynski’s definition of stable models for infinitary propositional
formulas is reviewed below.

Prior to defining the translation τ for rules, we will define it for ground
literals, conditional literals, and aggregate expressions.

3.1 Review: Stable Models of Infinitary Formulas

Let σ be a propositional signature, that is, a set of propositional atoms. The sets
Fσ0 , Fσ1 , . . . are defined as follows:

– Fσ0 = σ ∪ {⊥},
– Fσi+1 is obtained from Fσi by adding expressions H∧ and H∨ for all subsets
H of Fσi , and expressions F → G for all F,G ∈ Fσi .

The elements of
⋃∞
i=0 Fσi are called (infinitary) formulas over σ. Negation and

equivalence are abbreviations.
Subsets of a signature σ will be also called its interpretations. The satisfaction

relation between an interpretation and a formula is defined in a natural way.
The reduct F I of a formula F w.r.t. an interpretation I is defined as follows:

– ⊥I = ⊥.
– For p ∈ σ, pI = ⊥ if I 6|= p; otherwise pI = p.
– (H∧)I = {GI | G ∈ H}∧.
– (H∨)I = {GI | G ∈ H}∨.
– (G→ H)I = ⊥ if I 6|= G→ H; otherwise (G→ H)I = GI → HI .

An interpretation I is a stable model of a set H of formulas if it is minimal w.r.t.
set inclusion among the interpretations satisfying the reducts of all formulas
from H.

3.2 Semantics of Well-Formed Ground Literals

A term t is well-formed if it contains neither symbolic object constants nor
symbolic function constants in the scope of arithmetical functions. For instance,
all arithmetical terms and all precomputed terms are well-formed; c+2 is not
well-formed. The definition of “well-formed” for literals, aggregate expressions,
and so forth is the same.

For every well-formed ground term t, by [t] we denote the precomputed term
obtained from t by evaluating all arithmetical functions, and similarly for tuples
of terms. For instance, [f(2+2)] is f(4).

The translation τL of a well-formed ground literal L is defined as follows:

On the Semantics of Gringo 133

– τ(p(t)) is p([t]);
– τ(t1 ≺ t2), where ≺ is the symbol = or a comparison, is > if the relation ≺

holds between [t1] and [t2], and ⊥ otherwise;
– τ(not A) is ¬τA.

For instance, τ(not p(f(2+2))) is ¬p(f(4)), and τ(2+2= 4) is >.
Furthermore, τ⊥ stands for ⊥, and, for any list L of ground literals, τL is

the conjunction of the formulas τL for all members L of L.

3.3 Global Variables

About a variable we say that it is global

– in a conditional literal H : L, if it occurs in H but does not occur in L;
– in an aggregate expression α{t : L} ≺ s, if it occurs in the term s;
– in a rule (3), if it is global in at least one of the expressions Hi, Bi.

For instance, the head of the rule (2) is a literal with the global variable N , and
its body is an aggregate expression with the global variable N . Consequently N
is global in the rule as well.

A conditional literal, an aggregate expression, or a rule is closed if it has no
global variables. An instance of a rule R is any well-formed closed rule that can
be obtained from R by substituting precomputed terms for global variables. For
instance,

total hours(6)← sum{H,C : enroll(C), hours(H,C)} = 6

is an instance of rule (2). It is clear that if a rule is not well-formed then it has
no instances.

3.4 Semantics of Closed Conditional Literals

If t is a term, x is a tuple of distinct variables, and r is a tuple of terms of the
same length as x, then the term obtained from t by substituting r for x will be
denoted by txr . Similar notation will be used for the result of substituting r for x
in expressions of other kinds, such as literals and lists of literals.

The result of applying τ to a closed conditional literalH : L is the conjunction
of the formulas

τ(Lx
r)→ τ(Hx

r)

where x is the list of variables occurring inH : L, over all tuples r of precomputed
terms of the same length as x such that both Lx

r and Hx
r are well-formed. For

instance,
τ(available(X) : person(X))

is the conjunction of the formulas person(r)→ available(r) over all precomputed
terms r;

τ(⊥ : p(2×X))

134 A. Harrison et al.

is the conjunction of the formulas ¬p(2× i) over all numerals i. When a condi-
tional literal occurs in the head of a rule, we will translate it in a different way.
By τh(H : L) we denote the disjunction of the formulas

τ(Lx
r) ∧ τ(Hx

r)

where x and r are as above. For instance,

τh(available(X) : person(X))

is the disjunction of the formulas person(r) ∧ available(r) over all precomputed
terms r.

3.5 Semantics of Closed Aggregate Expressions

In this section, the semantics of ground aggregates proposed in [1, Section 4.1]
is adapted to closed aggregate expressions. Let E be a closed aggregate expres-
sion α{t : L} ≺ s, and let x be the list of variables occurring in E. A tuple r
of precomputed terms of the same length as x is admissible (w.r.t. E) if both
txr and Lx

r are well-formed. About a set ∆ of admissible tuples we say that it
justifies E if the relation ≺ holds between α̂({[txr] : r ∈ ∆}) and [s]. For instance,
consider the aggregate expression

sum{H,C : enroll(C), hours(H,C)} = 6. (5)

In this case, admissible tuples are arbitrary pairs of precomputed terms. The set
{(3, cs101), (3, cs102)} justifies (5), because

ŝum({(H,C)H,C3,cs101 , (H,C)H,C3,cs102}) = ŝum({(3, cs101), (3, cs102)}) = 3+3 = 6.

More generally, a set ∆ of pairs of precomputed terms justifies (5) whenever ∆
contains finitely many pairs (h, c) in which h is a positive integer, and the sum
of the integers h over all these pairs is 6.

We define τE as the conjunction of the implications

∧

r∈∆
τ(Lx

r)→
∨

r∈A\∆
τ(Lx

r) (6)

over all sets ∆ of admissible tuples that do not justify E, where A is the set of
all admissible tuples. For instance, if E is (5) then the conjunctive terms of τE
are the formulas

∧

(h,c)∈∆
(enroll(c) ∧ hours(h, c))→

∨

(h,c) 6∈∆
(enroll(c) ∧ hours(h, c)).

The conjunctive term corresponding to {(3, cs101)} as ∆ says: if I am enrolled
in CS101 for 3 hours then I am enrolled in at least one other course.

On the Semantics of Gringo 135

3.6 Semantics of Rules and Programs

For any rule R, τR stands for the conjunction of the formulas

τB1 ∧ · · · ∧ τBn → τhH1 ∨ · · · ∨ τhHm

for all instances (3) of R. A stable model of a program Π is a stable model, in
the sense of [13], of the set consisting of the formulas τR for all rules R of Π.

Consider, for instance, the rules of program (4). If R is the rule {p(i)} then
τR is

p(i) ∨ ¬p(i) (7)

(i = 1, . . . , n). If R is the rule

← p(X), p(Y), p(X+Y)

then the instances of R are rules of the form

← p(i), p(j), p(i+j)

for all numerals i, j. (Substituting precomputed ground terms other than nu-
merals would produce a rule that is not well-formed.) Consequently τR is in this
case the infinite conjunction

∧

i,j,k∈Z
i+j=k

¬(p(i) ∧ p(j) ∧ p(k)). (8)

The stable models of program (4) are the stable models of formulas (7), (8), that
is, sets of the form {p(i) : i ∈ S} for all sum-free subsets S of {1, . . . , n}.

4 Reasoning about Gringo Programs

In this section we give examples of reasoning about Gringo programs on the
basis of the semantics defined above. These examples use the results of [8], and
we assume here that the reader is familiar with that paper.

4.1 Simplifying a Rule from Example 3.7 of User’s Guide

Consider the rule7

weekdays ← day(X) : (day(X),not weekend(X)). (9)

Replacing this rule with the fact weekdays within any program will not affect
the set of stable models. Indeed, the result of applying translation τ to (9) is the
formula ∧

r

(day(r) ∧ ¬weekend(r)→ day(r)) → weekdays, (10)

7 This rule is similar to a rule from Example 3.7 of the Gringo 3 User’s Guide (see
Footnote 2).

136 A. Harrison et al.

where the conjunction extends over all precomputed terms r. The formula

day(r) ∧ ¬weekend(r)→ day(r)

is intuitionistically provable. By the replacement property of the basic system
of natural deduction from [8], it follows that (10) is equivalent to weekdays in
the basic system. By the main theorem of [8], it follows that replacing (10) with
the atom weekdays within any set of formulas does not affect the set of stable
models.

4.2 Simplifying the Sorting Rule

The rule

order(X,Y)← p(X), p(Y), X < Y, not p(Z) : (p(Z), X < Z,Z < Y) (11)

can be used for sorting.8 It can be replaced by either of the following two shorter
rules within any program without changing that program’s stable models.

order(X,Y)← p(X), p(Y), X < Y, ⊥ : (p(Z), X < Z,Z < Y) (12)

order(X,Y)← p(X), p(Y), X < Y, not p(Z) : (X < Z,Z < Y) (13)

Let’s prove this claim for rule (12). By the main theorem of [8] it is sufficient
to show that the result of applying τ to (11) is equivalent in the basic system to
the result of applying τ to (12). The instances of (11) are the rules

order(i, j)← p(i), p(j), i < j, not p(Z) : (p(Z), i < Z,Z < j),

and the instances of (12) are the rules

order(i, j)← p(i), p(j), i < j, ⊥ : (p(Z), i < Z,Z < j)

where i and j are arbitrary numerals. The result of applying τ to (11) is the
conjunction of the formulas

p(i) ∧ p(j) ∧ i < j ∧
∧

k

(¬p(k) ∧ i < k ∧ k < j → p(k))→ order(i, j) (14)

for all numerals i, j. The result of applying τ to (12) is the conjunction of the
formulas

p(i) ∧ p(j) ∧ i < j ∧
∧

k

(¬p(k) ∧ i < k ∧ k < j → ⊥)→ order(i, j). (15)

By the replacement property of the basic system, it is sufficient to observe that

p(k) ∧ i < k ∧ k < j → ¬p(k)

is intuitionistically equivalent to

p(k) ∧ i < k ∧ k < j → ⊥.
The proof for rule (13) is similar. Rule (12), like rule (11), is safe; rule (13)

is not.
8 This rule was communicated to us by Roland Kaminski on October 21, 2012.

On the Semantics of Gringo 137

4.3 Eliminating Choice in Favor of a Conditional Literal

Replacing the rule

{p(X)} ← q(X) (16)

with

p(X)← q(X),⊥ : not p(X) (17)

within any program will not affect the set of stable models. Indeed, the result of
applying translation τ to (16) is

∧

r

(q(r)→ p(r) ∨ ¬p(r)) (18)

where the conjunction extends over all precomputed terms r, and the result of
applying τ to (17) is ∧

r

(q(r) ∧ ¬¬p(r)→ p(r)). (19)

The implication from (18) is equivalent to the implication from (19) in the ex-
tension of intuitionistic logic obtained by adding the axiom schema

¬F ∨ ¬¬F,

and consequently in the extended system presented in [8, Section 7]. By the
replacement property of the extended system, it follows that (18) is equivalent
to (19) in the extended system as well.

4.4 Eliminating a Trivial Aggregate Expression

The rule (1) says, informally speaking, that we can conclude p(Y) once we es-
tablished that there exists at least one X such that q(X,Y). Replacing this rule
with

p(Y)← q(X,Y) (20)

within any program will not affect the set of stable models.
To prove this claim, we need to calculate the result of applying τ to rule (1).

The instances of (1) are the rules

p(t)← count{X, t : q(X, t)} ≥ 1 (21)

for all precomputed terms t. Consider the aggregate expression E in the body
of (21). Any precomputed term r is admissible w.r.t. E. A set ∆ of precomputed
terms justifies E if

ĉount({(r, t) : r ∈ ∆}) ≥ 1,

that is to say, if ∆ is non-empty. Consequently τE consists of only one impli-
cation (6), with the empty ∆. The antecedent of this implication is the empty

138 A. Harrison et al.

conjunction >, and its consequent is the disjunction
∨
u q(u, t) over all precom-

puted terms u. Then the result of applying τ to (1) is

∧

t

(∨

u

q(u, t) → p(t)

)
. (22)

On the other hand, the result of applying τ to (20) is
∧

t,u

(q(u, t)→ p(t)).

This formula is equivalent to (22) in the basic system [8, Example 2].

4.5 Replacing an Aggregate Expression with a Conditional Literal

Informally speaking, the rule

q ← count{X : p(X)} = 0 (23)

says that we can conclude q once we have established that the cardinality of the
set {X : p(X)} is 0; the rule

q ← ⊥ : p(X) (24)

says that we can conclude q once we have established that p(X) does not hold
for any X. We’ll prove that replacing (23) with (24) within any program will
not affect the set of stable models. To this end, we’ll show that the results of
applying τ to (23) and (24) are equivalent to each other in the extended system
from [8, Section 7].

First, we’ll need to calculate the result of applying τ to rule (23). Consider
the aggregate expression E in the body of (23). Any precomputed term r is
admissible w.r.t. E. A set ∆ of precomputed terms justifies E if

ĉount({r : r ∈ ∆}) = 0,

that is to say, if ∆ is empty. Consequently τE is the conjunction of the implica-
tions ∧

r∈∆
p(r)→

∨

r∈A\∆
p(r) (25)

for all non-empty subsets ∆ of the set A of precomputed terms. The result of
applying τ to (23) is



∧

∆⊆A
∆6=∅


∧

r∈∆
p(r)→

∨

r∈A\∆
p(r)





→ q. (26)

The result of applying τ to (24), on the other hand, is
(∧

r∈A
¬p(r)

)
→ q. (27)

On the Semantics of Gringo 139

The fact that the antecedents of (26) and (27) are equivalent to each other in
the extended system can be established by essentially the same argument as in
[8, Example 7]. By the replacement property of the extended system, it follows
that (26) is equivalent to (27) in the extended system as well.

4.6 Eliminating Summation over the Empty Set

Informally speaking, the rule

q ← sum{X : p(X)} = 0 (28)

says that we can conclude q once we have established that the sum of the elements
of the set {X : p(X)} is 0. In the presence of the constraint

← p(X), (29)

replacing (28) with the fact q will not affect the stable models.

To see this, first we calculate the result of applying τ to rule (28). Consider
the aggregate expression E in the body of (28). Any precomputed term r is
admissible w.r.t. E. A set ∆ of precomputed terms justifies E if

ŝum({r : r ∈ ∆}) = 0,

that is to say, if ∆ contains no positive integers. Consequently τE is the con-
junction of the implications

∧

r∈∆
p(r)→

∨

r∈A\∆
p(r) (30)

for subsets ∆ of the set A of precomputed terms that contain at least one positive
integer. The result of applying τ to (28) is




∧

∆⊆A
∆∩Z 6=∅


∧

r∈∆
p(r)→

∨

r∈A\∆
p(r)





→ q. (31)

The result of applying τ to (29), on the other hand, is

∧

r∈A
¬p(r). (32)

For every nonempty ∆, the antecedent of (30) contradicts (32). Consequently,
the antecedent of (31) can be derived from (32) in the basic system. It follows
that the equivalence between (31) and the atom q can be derived in the basic
system under assumption (32).

140 A. Harrison et al.

5 Conclusion

In this note we approached the problem of defining the semantics of Gringo by
reducing Gringo programs to infinitary propositional formulas. We argued that
this approach to semantics may allow us to study equivalent transformations of
programs using natural deduction in infinitary propositional logic.

In the absence of a precise semantics, it is impossible to put the study of some
important issues on a firm foundation. This includes the correctness of ASP pro-
grams, grounders, solvers, and optimization methods, and also the relationship
between input languages of different solvers (for instance, the equivalence of the
semantics of aggregate expressions in Gringo to their semantics in the ASP Core
language and in the language proposed in [5] under the assumption that aggre-
gates are used nonrecursively). As future work, we are interested in addressing
some of these tasks on the basis of the semantics proposed in this note. Prov-
ing the correctness of the intelligent instantiation algorithms implemented in
gringo will provide justification for our informal claim that for a safe program,
the semantics proposed here correctly describes the output produced by gringo.

Acknowledgements

Many thanks to Roland Kaminski and Torsten Schaub for helping us under-
stand the input language of gringo. Roland, Michael Gelfond, Yuliya Lierler,
Joohyung Lee, and anonymous referees provided valuable comments on drafts
of this note.

References

1. Ferraris, P.: Answer sets for propositional theories. In: Proceedings of International
Conference on Logic Programming and Nonmonotonic Reasoning (LPNMR). pp.
119–131 (2005)

2. Ferraris, P., Lee, J., Lifschitz, V.: Stable models and circumscription. Artificial
Intelligence 175, 236–263 (2011)

3. Ferraris, P., Lifschitz, V.: Weight constraints as nested expressions. Theory and
Practice of Logic Programming 5, 45–74 (2005)

4. Gebser, M., Kaminski, R., Kaufmann, B., Schaub, T.: Answer Set Solving in Prac-
tice. Synthesis Lectures on Artificial Intelligence and Machine Learning, Morgan
and Claypool Publishers (2012)

5. Gelfond, M.: Representing knowledge in A-Prolog. Lecture Notes in Computer
Science 2408, 413–451 (2002)

6. Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. In:
Kowalski, R., Bowen, K. (eds.) Proceedings of International Logic Programming
Conference and Symposium. pp. 1070–1080. MIT Press (1988)

7. Gelfond, M., Lifschitz, V.: Classical negation in logic programs and disjunctive
databases. New Generation Computing 9, 365–385 (1991)

On the Semantics of Gringo 141

8. Harrison, A., Lifschitz, V., Truszczynski, M.: On equivalent transformations of
infinitary formulas under the stable model semantics (preliminary report)9. In:
Proceedings of International Conference on Logic Programming and Nonmonotonic
Reasoning (LPNMR) (2013), to appear

9. Lee, J., Meng, Y.: Stable models of formulas with generalized quantifiers. In: Work-
ing Notes of the 14th International Workshop on Non-Monotonic Reasoning (NMR)
(2012)

10. Lee, J., Meng, Y.: Stable models of formulas with generalized quantifiers (prelim-
inary report). In: Technical Communications of the 28th International Conference
on Logic Programming (ICLP). pp. 61–71 (2012)

11. Lee, J., Meng, Y.: Two new definitions of stable models of logic programs with
generalized quantifiers. In: Working Notes of the 5th Workshop of Answer Set
Programming and Other Computing Paradigms (ASPOCP) (2012)

12. Pearce, D., Valverde, A.: Towards a first order equilibrium logic for nonmonotonic
reasoning. In: Proceedings of European Conference on Logics in Artificial Intelli-
gence (JELIA). pp. 147–160 (2004)

13. Truszczynski, M.: Connecting first-order ASP and the logic FO(ID) through
reducts. In: Correct Reasoning: Essays on Logic-Based AI in Honor of Vladimir
Lifschitz. Springer (2012)

9 http://www.cs.utexas.edu/users/vl/papers/etinf.pdf

142 A. Harrison et al.

Abstract Modular Systems and Solvers

Yuliya Lierler1 and Miroslaw Truszczynski2

1 University of Nebraska at Omaha
ylierler@unomaha.edu

2 University of Kentucky
mirek@cs.uky.edu

Abstract. Integrating diverse formalisms into modular knowledge representa-
tion systems offers increased expressivity, modeling convenience and computa-
tional benefits. We introduce concepts of abstract modules and abstract modu-
lar systems to study general principles behind the design and analysis of model-
finding programs, or solvers, for integrated heterogeneous multi-logic systems.
We show how abstract modules and abstract modular systems give rise to tran-
sition systems, which are a natural and convenient representation of solvers pi-
oneered by the SAT community. We illustrate our approach by showing how it
applies to answer set programming and propositional logic, and to multi-logic
systems based on these two formalisms.

1 Introduction

Knowledge representation and reasoning (KR) is concerned with developing formal
languages and logics to model knowledge, and with designing and implementing cor-
responding automated reasoning tools. The choice of specific logics and tools depends
on the type of knowledge to be represented and reasoned about. Different logics are
suitable for common-sense reasoning, reasoning under incomplete information and un-
certainty, for temporal and spatial reasoning, and for modeling and solving boolean
constraints, or constraints over larger, even continuous domains. In applications in areas
such as distributed databases, semantic web, hybrid constraint modeling and solving, to
name just a few, several of these aspects come to play. Accordingly, often diverse logics
have to be accommodated together. Similar issues arise in research on multi-context
systems where the major task is to model contextual information and the flow of in-
formation among contexts [17, 7]. The contexts are commonly modeled by theories in
some logics.

Modeling convenience is not the only reason why diverse logics are combined into
modular hybrid KR systems. Another major motivation is to exploit in reasoning the
transparent structure that comes from modularity, computational strengths of individual
logics, and synergies that may arise when they are put together. Constraint logic pro-
gramming [8] and satisfiability modulo theories (SMT) [20, 2] are well-known exam-
ples of formalisms stemming directly from such considerations. More recent examples
include constraint answer set programming (CASP) [13], which integrates answer set
programming (ASP) [6, 15, 18]) with constraint modeling languages [22], and “multi-
logic” formalisms PC(ID) [16], SM(ASP) [14] and ASP-FO [4] that combine modules

expressed as logic theories under the classical semantics with modules given as answer-
set programs.

The key computational task arising in KR is that of model generation. Model-
generating programs or solvers, developed in satisfiability (SAT) and ASP proved to be
effective in a broad range of KR applications. Accordingly, model generation is of crit-
ical importance in modular multi-logic systems. Research on formalisms listed above
resulted in fast solvers that demonstrate gains one can obtain from their heterogeneous
nature. However, the diversity of logics considered and low-level technical details of
their syntax and semantics obscure general principles that are important in the design
and analysis of solvers for multi-logic systems.

In this paper we address this problem by proposing a language for talking about
modular multi-logic systems that (i) abstracts away the syntactic details, (ii) is expres-
sive enough to capture various concepts of inference, and (iii) is based only on the
weakest assumptions concerning the semantics. The basic elements of this language
are abstract modules. Collections of abstract modules constitute abstract modular sys-
tems. We define the semantics of abstract modules and show that they provide a uni-
form language capable of capturing different logics, diverse inference mechanisms, and
their modular combinations. Importantly, abstract modules and abstract modular sys-
tems give rise to transition systems of the type introduced by Nieuwenhuis, Oliveras,
and Tinelli [20] in their study of SAT and SMT solvers. We show that as in that ear-
lier work, our transition systems provide a natural and convenient representation of
solvers for abstract modules and abstract modular systems. We demonstrate that they
lend themselves well to extensions that capture such important solver design techniques
as learning (which here comes in two flavors: local that is limited to single modules,
and global that is applied across modules). Throughout the paper, we illustrate our ap-
proach by showing how it applies to propositional logic and answer set programming,
and to multi-logic systems based on these two formalisms.

The results of our paper show that abstract modular systems and the corresponding
abstract framework for describing and analyzing algorithms for modular declarative
programming tools relying on multi-logics are useful and effective conceptualizations
that can contribute to (i) clarifying computational principles of such systems and to (ii)
the development of new ones.

The paper is organized as follows. We start by introducing one of the main concepts
in the paper – abstract modules. We then proceed to formulating an algorithm (a family
of algorithms) for finding models of such modules. We use an abstract transition system
stemming from the framework by Nieuwenhuis et al. [20] for this purpose. Section 4
presents the definition of an abstract modular system and a corresponding solver based
on backtrack search. We then discuss how this solver maybe augmented by such ad-
vanced SAT solving technique as learning. Section 6 provides an account on related
work.

2 Abstract Modules

Let σ be a fixed finite vocabulary (a set of propositional atoms). A module over the
vocabulary σ is a directed graph S whose nodes are ⊥ and all consistent sets of literals,

144 Y. Lierler and M. Truszczynski

and each edge is of the form (M,⊥) or (M,Ml), where l /∈ M and Ml is a shorthand
for M ∪ {l}. If S is a module, we write σ(S) for its vocabulary. For a set X of literals,
we denote X+ = {a : a ∈ X} and X− = {a : ¬a ∈ X}.

Intuitively, an edge (M,Ml) in a module indicates that the module supports infer-
ring l whenever all literals in M are given. An edge (M,⊥), M 6= ∅, indicates that
there is a literal l ∈ M such that a derivation of its dual l̄ (and hence, a derivation of a
contradiction) is supported by the module, assuming the literals inM are given. Finally,
the edge (∅,⊥) indicates that the module is “explicitly” contradictory.

A node in a module is terminal if no edge leaves it. A terminal node that is consistent
and complete is a model node of the module. A set X of atoms is a model of a module
S if for some model node Y in S, X ∩ σ(S) = Y +. Thus, models of modules are not
restricted to the signature of the module. Clearly, for every model node Y in S, Y + is a
model of S.

a

(a)

∅

⊥
¬a a

(b)
⊥

∅
¬a a

(c)
⊥

∅
¬a

Fig. 1: Three modules over the vocabulary {a}.

A module S entails a formula ϕ, written S |= ϕ, if for every model I of S we
have I |= ϕ. It is immaterial what logic the formula ϕ comes from as long as (i) the
vocabulary of the logic is a subset of the vocabulary of S, and (ii) the semantics of the
logic is given by a satisfiability relation I |= ϕ. A module S entails a formula ϕ wrt a
set M of literals (over the same vocabulary as S), written S |=M ϕ, if for every model
I of S such that M+ ⊆ I and M− ∩ I = ∅, I |= ϕ.

Clearly, if two modules over the same signature have the same model nodes, they
have the same models. Semantically the three modules in Figure 1 are the same. They
have the same models (each has {a} as its only model in the signature of the module)
and so they entail the same formulas. We call modules with the same models equivalent.

Modules represent more than just the set of their models. As already suggested
above, the intended role of edges in a module is to represent allowed “local” inferences.
For instance, given the empty set of literals, the first module in Figure 1 supports in-
ferring a and the third module ¬a. In the latter case, the inference is not “sound” as it
contradicts the semantic information in the module as that module does not entail ¬a
with respect to the empty set of literals.

Formally, an edge from a node M to a node M ′ in a module S is sound if S |=M

M ′.3 Clearly, if M ′ has the form Ml then S |=M M ′ if and only if S |=M l. Similarly,
if M ′ = ⊥ then S |=M M ′ if and only if no model of S is consistent with M (that is,
contains M+ and is disjoint with M−). A module is sound if all of its edges are sound,

3 In the paper, we sometimes identify a set of literals with the conjunction of its elements. Here
M ′ is to be understood as the conjunction of its elements.

Abstract Modular Systems and Solvers 145

that is, if all inferences supported by the module are sound with respect to the semantics
of the module given by its set of models. The modules in Figures 1(a) and (b) are sound,
the one in Figure 1(c) is not. Namely, the inference of ¬a from ∅ is not sound.

Given two modules S and S′ over the same vocabulary, we say that S is equivalently
contained in S′, S v S′, if S and S′ are equivalent (have the same model nodes) and the
set of edges of S is a subset of the set of edges of S′. Maximal (wrt v) sound modules
are called saturated. We say that an edge from a node M to ⊥ in a module S is critical
if M is a complete and consistent set of literals over σ(S). The following properties are
evident.

Proposition 1. Every two modules over the same signature and with the same critical
edges are equivalent. For a saturated module S, every sound module with the same
critical edges as S is equivalently contained in S. A module S is saturated if and only
if it is sound and for every set M of literals and for every literal l 6∈M , (M,Ml) is an
edge of S whenever S |=M l.

Clearly, only the module in Figure 1(a) is saturated. The other two are not. The
one in (b) is not maximal with respect to the containment relation, the one in (c) is
not sound. We also note that all three modules have the same critical edges. Thus, by
Proposition 1, they are equivalent, a property we already observed earlier. Finally, the
module in Figure 1(b) is equivalently contained in the module in Figure 1(a).

a

a b a ¬b

¬b

∅

⊥

¬a

¬a b

b

¬a ¬b

Fig. 2: An abstract module over the vocabulary {a, b} related to the theory (1).

In practice, modules (graphs) are specified by means of theories and logics (more
precisely, specific forms of inference in logics). For instance, a propositional theory T
over a vocabulary σ and the inference method given by the classical concept of en-
tailment determine a module over σ in which (i) (M,Ml) is an edge if and only if
T ∪M |= l; and (ii) (M,⊥) is an edge if and only if no model of T is consistent with
M . Figure 1(a) shows the module determined in this way by the theory consisting of
the clause a. Similarly, Figure 2 presents such a module for the theory

a ∨ b, ¬a ∨ ¬b. (1)

This module is saturated. Also, theory (1) and the inference method given by the unit
propagate rule, a classical propagator used in SAT solvers, determines this module. In
other words, for the theory (1) the unit propagation rule captures entailment.

146 Y. Lierler and M. Truszczynski

We say that a module S is equivalent to a theory T in some logic if the models of
S coincide with the models of T . Clearly, the module in Figure 2 is equivalent to the
propositional theory (1).

Modules are not meant for modeling. Representations by means of logic theories are
usually more concise (the size of a module is exponential in the size of its vocabulary).
Furthermore, the logic languages align closely with natural language, which facilitates
modeling and makes the correspondence between logic theories and knowledge they
represent direct. Modules lack this connection to natural language.

The power of modules comes from the fact that they provide a uniform, syntax-
independent way to describe theories and inference methods stemming from different
logics. For instance, they represent equally well both propositional theories and logic
programs under the answer-set semantics. Indeed, let us consider the logic program

{a},
b← not a,

(2)

where {a} represents the so-called choice rule [23]. This program has two answer sets
{a} and {b}. Since these are also the only two models of the propositional theory (1),
it is clear that the module in Figure 2 represents the program (2) and the reasoning
mechanism of entailment with respect to its answer sets. Two other modules associated
with program (2) are given in Figure 3. The module in Figure 3(a) represents program
(2) and the reasoning on programs based on forward chaining; we call this moduleMfc .
We recall that given a set of literals, forward chaining supports the derivation of the
head of a rule whose body is satisfied. We note that the module Mfc is not equivalent to
program (2). Indeed, {a, b} is a model ofMfc whereas it is not an answer set of (2). This
is due to the fact that the critical edge from a b to⊥ is unsupported by forward chaining
and is not present in Mfc . On the other hand, all edges due to forward chaining are
sound both in the module in Figure 2, which we callMe, andMfc . In the next section we
discuss a combination of inference rules that yields a reasoning mechanism subsuming
forward chaining and resulting in a module, shown in Figure 3(b), that is equivalently
contained inMe and so, equivalent to the program (2). This discussion indicates that the
language of modules is flexible enough to represent not only the semantic mechanism
of entailment, but also syntactically defined “proof systems” — reasoning mechanisms
based on specific inference rules.

(a)

a

a b a ¬b

¬b

∅

⊥

¬a

¬a b

b

¬a ¬b

a

a b

(b)

a ¬b

¬b

∅

⊥

¬a

¬a b

b

¬a ¬b

Fig. 3: Two abstract modules over the vocabulary {a, b} related to the logic program (2).

Abstract Modular Systems and Solvers 147

3 Abstract Modular Solver: AMS

Finding models of logic theories and programs is a key computational task in declarative
programming. Nieuwenhuis et al. [20] proposed to use transition systems to describe
search procedures involved in model-finding programs commonly called solvers, and
developed that approach for the case of SAT. Their transition system framework can
express DPLL, the basic search procedure employed by SAT solvers, and its enhance-
ments such as conflict driven clause learning. Lierler [12] proposed a similar framework
for specifying an answer set solver SMODELS. Lierler and Truszczynski [14] extended
that framework to capture such modern ASP solvers as CMODELS and CLASP, as well
as a PC(ID) solver MINISAT(ID).

An abstract nature (independence from language and reasoning method selection)
of modules introduced in this work and their relation to proof systems makes them a
convenient, broadly applicable tool to study and analyze solvers. In this section, we
adapt the transition system framework of Nieuwenhuis et al. [20] to the case of abstract
modules. We then illustrate how it can be used to define solvers for instantiations of
abstract modules such as propositional theories under the classical semantics and logic
programs under the answer-set semantics.

A state relative to σ is either a special state ⊥ (fail state) or an ordered consis-
tent set M of literals over σ, some possibly annotated by ∆, which marks them as
decision literals. For instance, the states relative to a singleton set {a} of atoms are
∅, a, ¬a, a∆, ¬a∆, ⊥.

Frequently, we consider a state M as a set of literals, ignoring both the annotations
and the order between its elements. If neither a literal l nor its complement occur in M ,
then l is unassigned by M .

Each module S determines its transition graph AMS : The set of nodes of AMS

consists of the states relative to the vocabulary of S. The edges of the graph AMS are
specified by the transition rules listed in Figure 4. The first three rules depend on the
module, the fourth rule, Decide, does not. It has the same form no matter what module
we consider. Hence, we omit the reference to the module from its notation.

PropagateS : M −→ M l if S has an edge from M to M l

FailS : M −→ ⊥ if
{
S has an edge from M to ⊥,
M contains no decision literals

BacktrackS : P l∆ Q −→ P l if
{
S has an edge from P l Q to ⊥,
Q contains no decision literals

Decide: M −→ M l∆ if l is unassigned by M

Fig. 4: The transition rules of the graph AMS .

The graph AMS can be used to decide whether a module S has a model. The fol-
lowing properties are essential.

148 Y. Lierler and M. Truszczynski

Theorem 1. For every sound module S,

(a) graph AMS is finite and acyclic,
(b) for any terminal state M of AMS other than ⊥, M+ is a model of S,
(c) state⊥ is reachable from ∅ in AMS if and only if S is unsatisfiable (has no models).

Thus, to decide whether a sound module S has a model it is enough to find in
the graph AMS a path leading from node ∅ to a terminal node M . If M = ⊥, S is
unsatisfiable. Otherwise, M is a model of S.

For instance, let S be a module in Figure 2. Below we show a path in the transition
graph AMS with every edge annotated by the corresponding transition rule:

∅ Decide−→ b∆
PropagateS−→ b∆ ¬a. (3)

The state b∆ ¬a is terminal. Thus, Theorem 1 (b) asserts that {b,¬a} is a model of S.
There may be several paths determining the same model. For instance, the path

∅ Decide−→ ¬a∆ Decide−→ ¬a∆ b∆. (4)

leads to the terminal node¬a∆ b∆, which is different from b∆ ¬a but corresponds to the
same model. We can view a path in the graph AMS as a description of a process of search
for a model of module S by applying transition rules. Therefore, we can characterize a
solver based on the transition system AMS by describing a strategy for choosing a path
in AMS . Such a strategy can be based, in particular, on assigning priorities to some or
all transition rules of AMS , so that a solver will never apply a transition rule in a state if
a rule with higher priority is applicable to the same state. For example, priorities

BacktrackS ,FailS >> PropagateS >> Decide

on the transition rules of AMS specify a solver that follows available inferences (mod-
eled by edges in the module S) before executing a transition due to Decide. The path (3)
in the transition graph of the module from Figure 2 follows that strategy, whereas the
path (4) does not.

We now review the graph DPF introduced for the classical DPLL algorithm by Nieu-
venhuis et al. [20], adjusting the presentation to the form convenient for our purposes.
We then demonstrate its relation to the AMS graph. The set of nodes of DPF consists of
the states relative to the vocabulary of a CNF formula (a set of clauses) F . The edges of
the graph DPF are specified by the transition rule Decide of the graph AMS and the rules
presented in Figure 5. For example, let F1 be the theory consisting of a single clause a.
Figure 6 presents DPF1

.
For a CNF formula F , by µ(DPF) we denote the graph (abstract module) con-

structed from DPF by dropping all nodes that contain decision literals. We note that
for the graph DPF1

in Figure 6, the module µ(DPF1
) coincides with the module in Fig-

ure 1(a). This is a manifestation of a general property.

Proposition 2. For every CNF formula F , the graph µ(DPF) is a sound abstract mod-
ule equivalent to F . Furthermore, the graphs AMµ(DPF) and DPF are identical.

Abstract Modular Systems and Solvers 149

UnitPropagateF : M −→ M l if
{
C ∨ l ∈ F and M |= ¬C,
l is unassigned by M

FailF : M −→ ⊥ if
{
C ∈ F and M |= ¬C,
M contains no decision literals

BacktrackF : P l∆ Q −→ P l if
{
C ∈ F and P l∆ Q |= ¬C,
Q contains no decision literals

Fig. 5: Three transition rules of the graph DPF .

a∆

∅

¬a∆ a

¬a

⊥
UnitPropagateF1Decide Decide FailF1

BacktrackF1

Fig. 6: The DPF1 graph where F1 is a single clause a.

Theorem 1 and the fact that the module µ(DPF) is equivalent to a CNF formula F
(Proposition 2) imply that the graph DPF can be used for deciding the satisfiability of F .
It is enough to find a path leading from node ∅ to a terminal node M : if M = ⊥ then F
is unsatisfiable; otherwise, M is a model of F . For instance, the only terminal states
reachable from the state ∅ in DPF1

are a and a∆. This translates into the fact that a is a
model of F1. This is exactly the result that Nieuwenhuis et al. [20] stated for the graph
DPF :

Corollary 1. For any CNF formula F ,

(a) graph DPF is finite and acyclic,
(b) for any terminal state M of DPF other than ⊥, M is a model of F ,
(c) state⊥ is reachable from ∅ in DPF if and only if F is unsatisfiable (has no models).

We now introduce the graph ASΠ that extends the DPLL graph by Nieuwenhuis
et al. so that the result can be used to specify an algorithm for finding answer sets
of a program. The graph ASΠ can be used to form a sound module equivalent to a
program Π in the same way as we used DPF to form a sound module equivalent to a
CNF formula F .

We assume the reader to be familiar with the concept of unfounded sets [26, 10].
For a set M of literals and a program Π , by U(M,Π) we denote an unfounded set on
M w.r.t. Π . It is common to identify logic rules of a program with sets of clauses. By
Πcl we denote the set of clauses corresponding to the rules of Π . For instance, let Π
be (2), then Πcl consists of clauses a ∨ ¬a, a ∨ b.

The set of nodes of ASΠ consists of the states relative to the vocabulary of pro-
gram Π . The edges of the graph ASΠ are specified by the transition rules of the graph
DPΠcl and the rules presented in Figure 7.

For a program Π , by µ(ASΠ) we denote the graph (abstract module) constructed
from ASΠ by removing all nodes that contain decision literals.

150 Y. Lierler and M. Truszczynski

UnfoundedΠ : M −→ M ¬a if
{
a ∈ U(M,Π) and
¬a is unassigned by M

FailΠ : M −→ ⊥ if
{
a ∈ U(M,Π), a ∈M , and
M contains no decision literals

BacktrackΠ : P l∆ Q −→ P l if
{
a ∈ U(P l Q,Π), a ∈ P l Q, and
Q contains no decision literals

Fig. 7: Transition rules of the graph ASΠ .

Proposition 3. For every program Π , the graph µ(ASΠ) is a sound abstract module
equivalent to a program Π under the answer set semantics. Furthermore, the graphs
AMµ(ASΠ) and ASΠ are identical.

From Theorem 1 and the fact that µ(ASΠ) is an abstract module equivalent to an
answer-set program Π it follows that the graph ASΠ can be used for deciding whether
Π has an answer set. It is enough to find a path in ASΠ leading from the node ∅ to a
terminal node M . If M = ⊥ then Π has no answer sets; otherwise, M is an answer set
of Π .

Corollary 2. For any program Π ,

(a) graph ASΠ is finite and acyclic,
(b) for any terminal state M of ASΠ other than ⊥, M+ is an answer set of Π ,
(c) state ⊥ is reachable from ∅ in ASΠ if and only if Π has no answer sets.

Let Π be the program (2). Figure 3(b) presents the module µ(ASΠ). It is easy to
see that this module is equivalently contained in the saturated module for Π presented
in Figure 2. For program Π the inference rules of UnitPropagate and Unfounded are
capable to capture all but one inference due to the entailment (the missing inference
corresponds to the edge from b to ¬a b in Figure 2).

Let us now consider the graph AS−Π constructed from ASΠ by either dropping the
rules UnfoundedΠ , BacktrackΠ , FailΠ or the rules UnitPropagateΠcl , BacktrackΠcl ,
FailΠcl . In each case, the module µ(AS−Π) in general is not equivalent to a program Π .
This demonstrates the importance of two kinds of inferences for the case of logic pro-
grams: (i) those stemming from unit propagate and related to the fact that an answer set
of a program is also its classical model; as well as (ii) those based on the concept of
“unfoundedness” and related to the fact that every answer set of a program contains no
unfounded sets. We note that forward chaining mentioned in earlier section is subsumed
by unit propagate.

The graph ASΠ is inspired by the graph SMΠ introduced by Lierler [11] for specify-
ing an answer set solver SMODELS [19]. The graph SMΠ extends ASΠ by two additional
transition rules (inference rules or propagators): All Rules Cancelled and Backchain
True. We chose to start the presentation with the graph ASΠ for its simplicity. We now
recall the definition of SMΠ and illustrate how a similar result to Proposition 3 is appli-
cable to it.

Abstract Modular Systems and Solvers 151

IfB is a conjunction of literals then byB we understand the set of the complements
of literals occurring in B.

The set of nodes of SMΠ consists of the states relative to the vocabulary of pro-
gram Π . The edges of the graph SMΠ are specified by the transition rules of the graph
ASΠ and the following rules:

All Rules Cancelled : M −→ M ¬a if
{
B ∩M 6= ∅ for all B ∈ Bodies(Π, a)
¬a is unassigned by M

Fail ARC: M −→ ⊥ if
{
B ∩M 6= ∅ for all B ∈ Bodies(Π, a),
a ∈M , M contains no decision literals

Backtrack ARC: P l∆ Q −→ P l if
{
B ∩M 6= ∅ for all B ∈ Bodies(Π, a),
a ∈ P l Q, Q contains no decision literals

Backchain True : M −→ M l if




a← B ∈ Π , a ∈M , l ∈ B
B′ ∩M 6= ∅ for all B′ ∈ Bodies(Π, a) \B
l is unassigned by M

Fail BT: M −→ ⊥ if




a← B ∈ Π , a ∈M , l ∈ B
B′ ∩M 6= ∅ for all B′ ∈ Bodies(Π, a) \B
l ∈M , M contains no decision literals

Backtrack BT: P l∆ Q −→ P l if




a← B ∈ Π , a ∈ P l Q, l′ ∈ B
B′ ∩ P l Q 6= ∅ for all B′ ∈ Bodies(Π, a) \B
l′ ∈ P l Q, Q contains no decision literals

The graph SMΠ shares the important properties of the graph ASΠ . Indeed, Propo-
sition 3 and Corollary 2 hold if one replaces ASΠ with SMΠ . Corollary 2 in this form
was one of the main results stated in [11]4.

Let Π be the program (2). Figure 3(b) presents the module µ(ASΠ). The module
µ(SMΠ) coincides with the saturated module for Π presented in Figure 2. For pro-
gram Π , the inference rule Backchain True captures the inference that corresponds to
the edge from b to ¬a b, which the transition rules of the graph ASΠ are incapable to
capture.

The examples above show that the framework of abstract modules uniformly en-
compasses different logics. We illustrated this point by means of propositional logic and
answer-set programming. Furthermore, it uniformly models diverse reasoning mecha-
nisms (entailment and its proof theoretic specializations). The results also demonstrate
that transition systems proposed earlier to represent and analyze SAT and ASP solvers
are special cases of general transition systems for abstract modules introduced here.

4 In [11], Lierler presented the SMΠ graph in a slightly different from: the states of that graph
permitted inconsistent states of literals, which in turn allowed to unify the Fail and Backtrack
transition rules for different propagators.

152 Y. Lierler and M. Truszczynski

4 Abstract Modular System and Solver AMSA

By capturing diverse logics in a single framework, abstract modules are well suited
for studying modularity in declarative formalisms, and principles underlying solvers
for modular declarative formalisms. We now define an abstract modular declarative
framework that uses the concept of a module as its basic element. We then show how
abstract transition systems for modules generalize to the new formalism.

An abstract modular system (AMS) is a set of modules. The vocabulary of an
AMS A is the union of the vocabularies of modules of A (they do not have to have
the same vocabulary); we denote it by σ(A).

An interpretation I over σ(A) (that is, a subset of σ(A)) is a model of A, written
I |= A, if I is a model of every module S ∈ A. An AMS A entails a formula ϕ (over
the same vocabulary as A), written A |= ϕ, if for every model I of A we have I |= ϕ.
We say that an AMS A is sound if every module S ∈ A is sound.

Let S1 be a module presented in Figure 1(a) and S2 be a module in Figure 3(b). The
vocabulary of the AMS {S1, S2} consists of the atoms a and b. It is easy to see that the
interpretation {a,¬b} is its only model.

For a vocabulary σ and a set of literals M , by M |σ we denote the maximal subset
of M consisting of literals over σ. For example, {¬a,¬b}|{a} = {¬a}.

Each AMS A determines its transition system AMSA. The set of nodes of AMSA
consists of the states relative to σ(A). The transition rules of AMSA comprise the rule
Decide and the rules PropagateS , FailS , and BacktrackS , for all modules S ∈ A. The
latter three rules are modified to account for the vocabulary σ(A) and are presented in
Figure 8.

PropagateS : M −→ M l if S has an edge from M |σ(S) to M l|σ(S)

FailS : M −→ ⊥ if
{
S has an edge from M |σ(S) to ⊥,
M contains no decision literals

BacktrackS : P l∆ Q −→ P l if
{
S has an edge from P l Q|σ(S) to ⊥,
Q contains no decision literals

Fig. 8: The transition rules of the graph AMSA.

Theorem 2. For every sound AMS A,

(a) the graph AMSA is finite and acyclic,
(b) any terminal state of AMSA other than ⊥ is a model of A,
(c) the state ⊥ is reachable from ∅ in AMSA if and only if A is unsatisfiable.

This theorem demonstrates that to decide a satisfiability of a sound AMS A it is
sufficient to find a path leading from node ∅ to a terminal node. It provides a foundation
for the development and analysis of solvers for modular systems.

Abstract Modular Systems and Solvers 153

For instance, let A be the AMS {S1, S2}. Below is a valid path in the transition
graph AMSA with every edge annotated by the corresponding transition rule:

∅ Decide−→ ¬a∆
PropagateS2−→ ¬ a∆ b

BacktrackS1−→ a
Decide−→ a ¬b∆.

The state a ¬b∆ is terminal. Thus, Theorem 2 (b) asserts that {a,¬b} is a model of A.
Let us interpret this example. Earlier we demonstrated that module S1 can be regarded
as a representation of a propositional theory consisting of a single clause a whereas
S2 corresponds to the logic program (2) under the semantics of answer sets. We then
illustrated how modules S1 and S2 give rise to particular algorithms for implementing
search procedures. The graph AMSA represents the algorithm obtained by integrating
the algorithms supported by the modules S1 and S2 separately.

The results presented above imply, as special cases, earlier results on the logics
PC(ID) and SM(ASP), and their solvers [14].

5 Learning in Solvers for AMSs.

Nieuwenhuis et al. [20, Section 2.4] defined the DPLL System with Learning graph
to describe SAT solvers’ learning, one of the crucial features of current SAT solvers
responsible for rapid success in this area of automated reasoning. The approach of
Nieuwenhuis, Oliveras, and Tinelli extends to our abstract setting. Specifically, the
graph AMSA can be extended with “learning transitions” to represent solvers for AMSs
that incorporate learning.

The intuition behind learning in SAT is to allow new propagations by extending
the original clause database as computation proceeds. These “learned” clauses provide
new “immediate derivations” to a SAT solver by enabling additional applications of
UnitPropagate. In the framework of abstract modules, immediate derivations are repre-
sented by edges. Adding edges to modules captures the idea of learning by supporting
new propagations that the transition rule Propagate may take an advantage of. We now
state these intuitions formally for the case of abstract modular systems.

Let S be a module and E a set of edges between nodes of S. By SE we denote the
module constructed by adding to S the edges in E. A set E of edges is S-safe if the
module SE is sound and equivalent to S. For an AMS A and a set of edges E over the
vocabulary ofA, we defineAE = {SE|S : S ∈ A} (where E|S is the set of those edges
in E that connect nodes in S). We say that E isA-safe ifA andAE are equivalent, and
each module SE in AE is sound.

An (augmented) state relative to an AMS A = {S1, . . . , Sn} is either a distin-
guished state ⊥ or a pair of the form M ||Γ1, . . . , Γn where M is an ordered consistent
setM of literals over σ, some possibly annotated by∆; and Γ1, . . . , Γn are sets of edges
between nodes of modules S1, . . . , Sn, respectively. Sometimes we denote Γ1, . . . , Γn
by G. For any AMS A = {S1, . . . , Sn}, we define a graph AMSLA. Its nodes are the
augmented states relative to A. The rule Decide of the AMSA graph extends to AMSLA
as follows

Decide: M ||G −→ M l∆||G if l is unassigned by M .

Figure 9 presents the transition rules of AMSLA that are specific to each module Si
in A. We note that the set E of edges in the rule Learn LocalSi is required to consist of

154 Y. Lierler and M. Truszczynski

edges that run between the nodes of Si. The transition rule

Learn Global: M || . . . , Γj , . . . −→ M || . . . , Γj ∪ E|Si , . . . if E is A-safe

where E is a set of edges between nodes over the vocabulary σ(A), concludes the
definition of AMSLA.

PropagateSi : M ||G −→ M l||G if SΓii has an edge from M to M l

FailSi : M ||G −→ ⊥ if
{
SΓii has an edge from M to ⊥,
M contains no decision literals

BacktrackSi : P l∆ Q||G −→ P l||G if
{
SΓii has an edge from P l Q to ⊥,
Q contains no decision literals

Learn LocalSi : M || . . . , Γi, . . . −→ M || . . . , Γi ∪ E, . . . if E is Si-safe

Fig. 9: Transition rules of AMSLA for module Si ∈ S.

We refer to the transition rules Propagate, Backtrack, Decide, and Fail of the graph
AMSLA as basic. We say that a node in the graph is semi-terminal if no basic rule is
applicable to it. The graph AMSLA can be used for deciding whether an AMS A has an
answer set by constructing a path from ∅||∅, . . . , ∅ to a semi-terminal node.

Theorem 3. For any sound AMS A,

(a) there is an integer m such that every path in AMSLA contains at most m edges due
to basic transition rules,

(b) for any semi-terminal state M ||G of AMSLA reachable from ∅||∅, . . . , ∅, M is a
model of A,

(c) state ⊥ is reachable from ∅||∅, . . . , ∅ in AMSLA if and only if A has no models.

It follows that if we are constructing a path starting in ∅||∅, . . . , ∅ in a way that guar-
antees that every sequence of consecutive edges of the path labeled with Learn Local
and Learn Global eventually ends (is finite), then the path will reach some semi-terminal
state. As soon as a semi-terminal state is reached the problem of finding a model is
solved.

There is an important difference between Learn Local and Learn Global. The first
one allows new propagations within a module but does not change its semantics as the
models of the module stay the same (and it is local, other modules are unaffected by it).
The application of Learn Global while preserving the overall semantics of the system
may change the semantics of individual modules by eliminating some of their models
(and, being global, affects in principle all modules of the system). SAT researchers have
demonstrated that Learn Local is crucial for the success of SAT technology both in prac-
tice and theoretically. Our initial considerations suggest that under some circumstances,
Learn Global offers additional substantial performance benefits.

Abstract Modular Systems and Solvers 155

We stress that our discussion of learning does not aim at any specific algorith-
mic ways in which one could perform learning. Instead, we formulate conditions that
learned edges are to satisfy (S-safety for learning local to a module S, andA-safety for
the global learning rule), which ensure the correctness of solvers that implement learn-
ing so that to satisfy them. In this way, we provide a uniform framework for correctness
proofs of multi-logic solvers incorporating learning.

6 Related Work

In an important development, Brewka and Eiter [3] introduced an abstract notion of
a heterogeneous nonmonotonic multi-context system (MCS). One of the key aspects
of that proposal is its abstract representation of a logic and hence contexts that rely
on such abstract logics. The independence of contexts from syntax promoted focus on
semantic aspect of modularity exhibited by multi-context systems. Since their inception,
multi-context systems have received substantial attention and inspired implementations
of hybrid reasoning systems including DLVHEX [5] and DMCS [1]. Abstract modular
systems introduced here are similar to MCSs as they too do not rely on any particular
syntax for logics assumed in modules (a counterpart of a context). What distinguishes
them is that they encapsulate some semantic features stemming from inferences allowed
by the underlying logic. This feature of abstract modules is essential for our purposes
as we utilize them as a tool for studying algorithmic aspects of multi-logic systems.
Another difference between AMS and MCS is due to “bridge rules.” Bridge rules are
crucial for defining the semantics of an MCS. They are also responsible for “information
sharing” in MCSs. They are absent in our formalism altogether. In AMS information
sharing is implemented by a simple notion of a shared vocabulary between the modules.

Modularity is one of the key techniques in principled software development. This
has been a major trigger inspiring research on modularity in declarative programming
paradigms rooting in KR languages such as answer set programming, for instance.
Oikarinen and Janhunen [21] proposed a modular version of answer set programs called
lp-modules. In that work, the authors were primarily concerned with the decomposi-
tion of lp-modules into sets of simpler ones. They proved that under some assumptions
such decompositions are possible. Järvisalo, Oikarinen, Janhunen, and Niemelä [9], and
Tasharrofi and Ternovska [24] studied the generalizations of lp-modules. In their work
the main focus was to abstract lp-modules formalism away from any particular syntax
or semantics. They then study properties of the modules such as “joinability” and an-
alyze different ways to join modules together and the semantics of such a join. We are
interested in building simple modular systems using abstract modules – the only com-
position mechanism that we study is based on conjunction of modules. Also in contrast
to the work by Järvisalo et al. [9] and Tasharrofi and Ternovska [24], we define such
conjunction for any modules disregarding their internal structure and interdepencies
between each other.

Tasharrofi, Wu, and Ternovska [25] developed and studied an algorithm for pro-
cessing modular model expansion tasks in the abstract multi-logic system concept de-
veloped by Tasharrofi and Ternovska [24]. They use the traditional pseudocode method
to present the developed algorithm. In this work we adapt the graph-based framework

156 Y. Lierler and M. Truszczynski

for designing backtrack search algorithms for abstract modular systems. The benefits
of that approach for modeling families of backtrack search procedures employed in
SAT, ASP, and PC(ID) solvers were demonstrated by Nieuwenhuis et al. [20], Lier-
ler [11], and Lierler and Truszczynski [14]. Our work provides additional support for
the generality and flexibility of the graph-based framework as a finer abstraction of
backtrack search algorithms than direct pseudocode representations, allowing for con-
venient means to prove correctness and study relationships between the families of the
algorithms.

7 Conclusions

We introduced abstract modules and abstract modular systems and showed that they
provide a framework capable of capturing diverse logics and inference mechanisms in-
tegrated into modular knowledge representation systems. In particular, we showed that
transition graphs determined by modules and modular systems provide a unifying rep-
resentation of model-generating algorithms, or solvers, and simplify reasoning about
such issues as correctness or termination. We believe they can be useful in theoretical
comparisons of solver effectiveness and in the development of new solvers. Learning, a
fundamental technique in solver design, displays itself in two quite different flavors, lo-
cal and global. The former corresponds to learning studied before in SAT and SMT and
demonstrated both theoretically and practically to be essential for good performance.
Global learning is a new concept that we identified in the context of modular systems.
It concerns learning across modules and, as local learning, promises to lead to perfor-
mance gains. In the future work we will conduct a systematic study of global learning in
abstract modular systems and its impact on solvers for practical multi-logic formalisms.

References

1. Bairakdar, S.E.D., Dao-Tran, M., Eiter, T., Fink, M., Krennwallner, T.: The dmcs solver for
distributed nonmonotonic multi-context systems. In: 12th European Conference on Logics
in Artificial Intelligence (JELIA). pp. 352–355 (2010)

2. Barrett, C., Sebastiani, R., Seshia, S., Tinelli, C.: Satisfiability modulo theories. In: Biere,
A., Heule, M., van Maaren, H., Walsch, T. (eds.) Handbook of Satisfiability, pp. 737–797.
IOS Press (2008)

3. Brewka, G., Eiter, T.: Equilibria in heterogeneous nonmonotonic multi-context systems. In:
Proceedings of National conference on Artificial Intelligence (AAAI). pp. 385–390 (2007)

4. Denecker, M., Lierler, Y., Truszczynski, M., Vennekens, J.: A Tarskian informal semantics
for answer set programming. In: Dovier, A., Costa, V.S. (eds.) International Conference on
Logic Programming (ICLP). LIPIcs, vol. 17. Schloss Dagstuhl - Leibniz-Zentrum fuer Infor-
matik (2012)

5. Eiter, T., Ianni, G., Schindlauer, R., Tompits, H.: A uniform integration of higher-order rea-
soning and external evaluations in answer set programming. In: Proceedings of International
Joint Conference on Artificial Intelligence (IJCAI). pp. 90–96 (2005)

6. Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. In: Kowal-
ski, R., Bowen, K. (eds.) Proceedings of International Logic Programming Conference and
Symposium. pp. 1070–1080. MIT Press (1988)

Abstract Modular Systems and Solvers 157

7. Giunchiglia, F.: Contextual reasoning. Epistemologia XVI, 345–364 (1993)
8. Jaffar, J., Maher, M.: Constraint logic programming: A survey. Journal of Logic Program-

ming 19(20), 503–581 (1994)
9. Järvisalo, M., Oikarinen, E., Janhunen, T., Niemelä, I.: A module-based framework for multi-

language constraint modeling. In: Proceedings of the 10th International Conference on Logic
Programming and Nonmonotonic Reasoning. pp. 155–168. LPNMR ’09, Springer-Verlag,
Berlin, Heidelberg (2009), http://dx.doi.org/10.1007/978-3-642-04238-6 15

10. Lee, J.: A model-theoretic counterpart of loop formulas. In: Proceedings of International
Joint Conference on Artificial Intelligence (IJCAI). pp. 503–508. Professional Book Center
(2005)

11. Lierler, Y.: Abstract answer set solvers. In: Proceedings of International Conference on Logic
Programming (ICLP). pp. 377–391. Springer (2008)

12. Lierler, Y.: Abstract answer set solvers with backjumping and learning. Theory and Practice
of Logic Programming 11, 135–169 (2011)

13. Lierler, Y.: On the relation of constraint answer set programming languages and algorithms.
In: Proceedings of the AAAI Conference on Artificial Intelligence. MIT Press (2012)

14. Lierler, Y., Truszczynski, M.: Transition systems for model generators — a unifying ap-
proach. Theory and Practice of Logic Programming, 27th Int’l. Conference on Logic Pro-
gramming (ICLP’11) Special Issue 11, issue 4-5 (2011)

15. Marek, V., Truszczyński, M.: Stable models and an alternative logic programming paradigm.
In: The Logic Programming Paradigm: a 25-Year Perspective, pp. 375–398. Springer Verlag
(1999)

16. Mariën, M., Wittocx, J., Denecker, M., Bruynooghe, M.: SAT(ID): Satisfiability of proposi-
tional logic extended with inductive definitions. In: SAT. pp. 211–224 (2008)

17. McCarthy, J.: Generality in Artificial Intelligence. Communications of the ACM 30(12),
1030–1035 (1987), reproduced in [?]

18. Niemelä, I.: Logic programs with stable model semantics as a constraint programming
paradigm. Annals of Mathematics and Artificial Intelligence 25, 241–273 (1999)

19. Niemelä, I., Simons, P.: Extending the Smodels system with cardinality and weight con-
straints. In: Minker, J. (ed.) Logic-Based Artificial Intelligence, pp. 491–521. Kluwer (2000)

20. Nieuwenhuis, R., Oliveras, A., Tinelli, C.: Solving SAT and SAT modulo theories: From
an abstract Davis-Putnam-Logemann-Loveland procedure to DPLL(T). Journal of the ACM
53(6), 937–977 (2006)

21. Oikarinen, E., Janhunen, T.: Modular equivalence for normal logic programs. In: 17th Euro-
pean Conference on Artificial Intelligence(ECAI). pp. 412–416 (2006)

22. Rossi, F., van Beek, P., Walsh, T.: Constraint programming. In: van Harmelen, F., Lifschitz,
V., Porter, B. (eds.) Handbook of Knowledge Representation, pp. 181–212. Elsevier (2008)

23. Simons, P., Niemelä, I., Soininen, T.: Extending and implementing the stable model seman-
tics. Artificial Intelligence 138, 181–234 (2002)

24. Tasharrofi, S., Ternovska, E.: A semantic account for modularity in multi-language mod-
elling of search problems. In: Frontiers of Combining Systems, 8th International Symposium
(FroCoS). pp. 259–274 (2011)

25. Tasharrofi, S., Wu, X.N., Ternovska, E.: Solving modular model expansion tasks. CoRR
abs/1109.0583 (2011)

26. Van Gelder, A., Ross, K., Schlipf, J.: The well-founded semantics for general logic programs.
Journal of ACM 38(3), 620–650 (1991)

158 Y. Lierler and M. Truszczynski

Negation in the Head of CP-logic Rules

Joost Vennekens

joost.vennekens@cs.kuleuven.be

Dept. Computerscience — Campus De Nayer
KU Leuven

Abstract. CP-logic is a probabilistic extension of the logic FO(ID). Un-
like ASP, both of these logics adhere to a Tarskian informal semantics, in
which interpretations represent objective states-of-affairs. In other words,
these logics lack the epistemic component of ASP, in which interpreta-
tions represent the beliefs or knowledge of a rational agent. Consequently,
neither CP-logic nor FO(ID) have the need for two kinds of negations:
there is only one negation, and its meaning is that of objective false-
hood. Nevertheless, the formal semantics of this objective negation is
mathematically more similar to ASP’s negation-as-failure than to its
classical negation. The reason is that both CP-logic and FO(ID) have a
constructive semantics in which all atoms start out as false, and may only
become true as the result of a rule application. This paper investigates
the possibility of adding the well-known ASP feature of allowing negation
in the head of rules to CP-logic. Because CP-logic only has one kind of
negation, it is of necessity this “negation-as-failure like” negation that
will be allowed in the head. We investigate the intuitive meaning of such
a construct and the benefits that arise from it.

1 Introduction

This paper is part of a long-term research project that aims to develop a Tarskian
view on Answer Set Programming (ASP). Historically, the origins of ASP lie in the
seminal papers by Gelfond and Lifschitz on the stable semantics for normal (1988)
and extended logic programs (1991). These papers develop an epistemic view on
logic programs, in which an answer set is seen as an exhaustive enumeration of a
rational agent’s atomic beliefs. In this view, an atom A belonging to an answer
set X means that the agent believes A; A 6∈ X means that A is not believed; and
¬A ∈ X means that a is believed to be false. A rule such as:

A← B1, . . . , Bn, not C1, . . . , not Cm. (1)

tells the agent that if he believes all of the Bi and does not believe any of the Cj ,
he should believe A. In addition, the agent also obeys the rationality principle,
believing only what he has reason to believe. The stable model semantics then
computes what a perfectly rational agent would believe under all these rules.

While these epistemic intuitions have played a crucial role in the history of
ASP, current practice seems to have largely drifted away from them. In particular,

programs written according to the currently prevalent Generate-Define-Test-
methodology (GDT) (term coined by Lifschitz, 2002) are typically no longer
explicitly concerned with the beliefs of an agent. A typical example is the graph
colouring problem, in which we generate the search space of all assignments of
colours to nodes, we define that two nodes are in conflict if they share an edge and
have the same colour, and then test that there are no conflicts. Unlike early ASP
examples—such as, e.g., Gelfond’s example (1991) of interviewing all students
for which we do not know whether they are eligible for a grant—the statement
of the graph colouring problems is not concerned with anyone’s knowledge or
beliefs, but only with the objective colour of the nodes.

Suppose now that we have an ASP representation of a purely objective GDT
problem, such as graph coloring. How should we intuitively interpret this program?
Falling back on the papers by Gelfond and Lifschitz, every single statement in
the program will be interpreted as an epistemic statement about some agent’s
knowledge. Obviously, this is a poor match with the objective intuitions behind
the problem. Therefore, an alternative informal semantics is needed, which omits
this agent, and explains how rules of the program can be interpreted as statements
about the real world, in this same way as formulas in classical first-order logic
(FO) are. There are now two important and related questions:

– If we view a semantical object such as an answer set as a representation of
an objective state of the world, instead of some agent’s beliefs, how should
we then interpret a rule such as (1)?

– How does this objective interpretation of ASP compare to the classical way
of representing such objective information about the world, namely FO?

An extensive study of these two questions has been performed by Denecker and
several coauthors. Recent summaries of these results were published by Denecker
et al. (2010) and Denecker et al. (2012). A goal of this research program is to
reconstruct ASP as a series of conservative extensions of FO. One of its main
achievements has been the development of the language of FO(ID) (Denecker and
Ternovska, 2007), which extends FO with a construct for representing inductive
definitions. FO(ID) can be seen as a variant of ASP, which adheres to a strict
objective interpretation of its semantical constructs, i.e., a model of an FO(ID)
theory does not represent beliefs, but an objective state of the world.

The language of FO(ID) has been further extended in many ways. This paper
is concerned with one particular such extension, namely, CP-logic (Vennekens
et al., 2009), which extends the inductive definition construct of FO(ID) with a
means for expressing non-deterministic choice. One application is to represent
non-deterministic inductive definitions. For instance, an execution trace of a
non-deterministic Turing machine may be defined by means of a rule that states
that if the machine reads a character c in a state s at time α, it will be in a
state s′ at time α + 1, where s′ is one of the states that it may transition to
from (s, c). CP-logic represents such non-determinism by allowing disjunction
in the head of rules. This is similar in syntax to the kind of rules allowed by,
for instance, the DLV language. This is, therefore, another way in which one of
ASP’s features can be conservatively added to the classical framework. However,

160 J. Vennekens

to correctly formalise non-deterministic inductive definitions, not the minimal
model semantics must be used, but the possible world semantics of Sakama and
Inoue (1994).

A more important application of CP-logic, however, is to represent probabilistic
causal laws. Such relations have received a great deal of attention in the AI
community, especially since the influential work by Pearl (2000) on this topic. As
shown by Vennekens et al. (2010), CP-logic can actually be seen as a refinement
of Pearl’s theory, which allows for a more compact and modular representation of
certain phenomena. As an example, consider three gear wheels, each of which has
an attached crank that can be used to turn it. The first gear wheel is connected
to the second, which is in turn connected to the third, so that in 90% of the
cases, when one turns the other also turns; however, there is some damage to the
gear wheels’ teeth, which in 10% of the cases prevents this. In CP-logic, we can
represent this by means of seven independent probabilistic causal laws:

Turns(Gear1)← Crank1. (2)

Turns(Gear2)← Crank2. (3)

Turns(Gear3)← Crank3. (4)

(Turns(Gear1) : 0.9)← Turns(Gear2). (5)

(Turns(Gear2) : 0.9)← Turns(Gear1). (6)

(Turns(Gear2) : 0.9)← Turns(Gear3). (7)

(Turns(Gear3) : 0.9)← Turns(Gear2). (8)

By contrast, Pearl would represent it in a less modular way, by means of three
structural equations, each of which defines precisely when a particular gear wheel
will turn :

Turns(Gear1) := Crank1 ∨ (Crank2 ∧ Trans1,2) ∨ (Crank3 ∧ Trans3,2 ∧ Trans2,1)

Turns(Gear2) := Crank2 ∨ (Crank1 ∧ Trans1,2) ∨ (Crank3 ∧ Trans3,2)

Turns(Gear3) := Crank3 ∨ (Crank2 ∧ Trans2,3) ∨ (Crank1 ∧ Trans1,2 ∧ Trans2,3)

CP-logic has certain similarities to P-log, a probabilistic extension of ASP
(Baral et al., 2008). However, it differs by its focus on representing individual
probabilistic causal laws, as discussed by Vennekens et al. (2010, 2009).

As this example illustrates, a causal law in CP-logic may cause some atom(s)
to become true, and it may also fail to do so. What is currently not possible,
however, is that such a laws causes an atom to be false. For instance, suppose
that the first gear wheel may be locked, in order to prevent it from turning. The
current way to represent this would be to replace rules (2) and (5) by:

(Turns(Gear1) : 0.9)← Crank1 ∧ ¬Locked(1).

(Turns(Gear1) : 0.9)← Turns(Gear2) ∧ ¬Locked(1).

However, this goes against our desire for a modular representation of the individual
causal laws. Our goal in the current paper is to extend CP-logic to allow instead

Negation in the Head of CP-logic Rules 161

to keep rules (2) and (5) as they are, and instead add a rule:

¬Turns(Gear1)← Locked(1).

In other words, we will examine how CP-logic can be extended with the
familiar ASP feature of negation in the head Gelfond and Lifschitz (1991). Again,
the traditional ASP interpretation of a classical negation literal is rooted in the
epistemic tradition: whereas not A means that A is not believed to be true, a
classical negation literal ¬A means that A is believed to be false. Since FO(ID)
and CP-logic have no beliefs, the only thing that negation can mean in this
context is that A is objectively false. Nevertheless, as this paper will show, there is
still a place for negation-in-the-head in such a logic. Our two main contributions
are therefore as follows:

– By adding this additional feature to CP-logic, we extend its ability to represent
causal laws in a modular way, as illustrated by the above example.

– From the point of view of the larger research project, negation-in-the-head is
an ASP feature that, until now, could not yet be given a place within the
FO(ID)/CP-logic framework and its Tarskian semantics. This paper offers
one way in which this gap can be filled.

This paper is structured as follows. First, Section 2 recalls the definition of
CP-logic. Section 2.1 elaborates further on the role of negation in the current
version of CP-logic, before Section 3 then discusses our proposed extension with
negation in the head. Several uses of this new feature are then discussed in
Sections 4 to 6. Finally, Section 7 discusses the implementation of this new
language feature.

2 Preliminaries: CP-logic

A theory in CP-logic consists of a set of rules. These rules are called causal
probabilistic laws, or CP-laws for short, and they are statements of the form:

∀x (A1 : α1) ∨ · · · ∨ (An : αn)← φ. (9)

Here, φ is a first-order formula and the Ai are atoms, such that the tuple of
variables x contains all free variables in φ and the Ai. The αi are non-zero
probabilities with

∑
αi ≤ 1. Such a CP-law expresses that φ causes some

(implicit) non-deterministic event, of which each Ai is a possible outcome with
probability αi. If

∑
i αi = 1, then at least one of the possible effects Ai must

result if the event caused by φ happens; otherwise, it is also possible that the event
happens without any (visible) effect on the state of the world. For mathematical
uniformity, we introduce the notation r= to refer to r itself if the equality holds,
and otherwise to the CP-law:

∀x (A1 : α1) ∨ · · · ∨ (An : αn) ∨ (— : 1−
∑

i

αi)← φ.

162 J. Vennekens

Here, the dash is a new symbol that explicitly represents the possibility that
none of the effects Ai are caused. Whenever we add this dash to some set X, it
does not change X, i.e., X ∪ {—} = X.

The semantics of a theory in CP-logic is defined in terms of its grounding, so
from now on we will restrict attention to ground theories, i.e., we assume that
for each CP-law, the tuple of variables x is empty. For now, we also assume that
the rule bodies φ do not contain negation.

For a CP-law r, we refer to φ as the body of r, and to the sequence (Ai, αi)
n
i=1

as the head of r. We denote these objects as body(r) and head(r), respectively.
In CP-laws of form (9), the precondition φ may be omitted for events that

are vacuously caused. If a CP-law has a deterministic effect, i.e., it is of the form
(A : 1)← φ, then we also write it simply as A← φ.

Example 1. Suzy and Billy might each decide to throw a rock at a bottle. If Suzy
does so, her rock breaks the bottle with probability 0.8. Billy’s aim is slightly
worse and his rock only hits with probability 0.6. Assuming that Suzy decides to
throw with probability 0.5 and that Billy always throws, this domain corresponds
to the following set of causal laws:

(Throws(Suzy) : 0.5). (10)

Throws(Billy). (11)

(Broken : 0.8)← Throws(Suzy). (12)

(Broken : 0.6)← Throws(Billy). (13)

In causal modeling, a distinction is commonly made between endogenous
properties, whose values are completely determined by the causal mechanisms
described by the model, and exogenous properties, whose values are somehow
determined outside the scope of the model. Following this convention, the predi-
cates of a CP-theory are also divided into exogenous and endogenous predicates.
We define the semantics of a theory in the presence of a given, fixed interpretation
X for the exogenous predicates.

A second common assumption (see e.g. Hall, 2007) is that each of the endoge-
nous properties has some default value, which represents its “natural state”. In
other words, the default value of an endogenous property is the value that it has
whenever there are no causal mechanisms acting upon it. The effect of the causal
mechanisms in the model is then of course precisely to flip the value of some of
the properties from its default to a deviant value.

Theories in CP-logic have a straightforward execution semantics. We consider
probability trees, in which each node is labeled with an Herbrand interpretation
for the endogenous predicates. The root of the tree—i.e., the initial state of
our causal process—is labeled with the universally false interpretation {}. This
incorporates our second assumption: w.l.o.g. we force the user to choose his
vocabulary in such a way that the default value for each endogenous atom is
false. We then constructively extend the tree by applying the following operation
as long as possible:

1. Choose a pair (s, r) of a leaf s of the tree and a rule r of the theory, such that
(X ∪I(s)) |= body(r) and there exists no ancestor s′ of s such that (s′, r) has
already been chosen

Negation in the Head of CP-logic Rules 163

2. Extend s with children s0, . . . , sm, where each si corresponds to one of the
disjuncts (hi : αi) in head(r=), in the sense that I(si) = Is ∪ {hi} and the
edge from s to si is labeled by α.

We call a tree T constructed in this way an execution model of the CP-theory
under X. We define a probability distribution πT over the set of all Herbrand
interpretations as: πT (I) =

∑
I(l)=I πT (l), where the sum is taken over all leaves

l of T whose interpretation equals I and the probability πT (l) of such a leaf
consists of the product of all probability labels that are encountered on the path
to this leaf.

The following picture represents an execution model for the CP-theory of
Example 1. The states s in which the bottle is broken (i.e., for which Broken ∈
I(s)) are represented by an empty circle, and those in which it is still whole by a
full one. This pictures does not show the interpretations I(s); instead, we have
just written the effects of each event in natural language as labels on the edges.

•

0.5

Suzy throws

vv 0.5

doesn’t throw

((•

0.8

Bottle breaks

vv 0.2

doesn’t break

((

•
1

Billy throws

��◦
1

Billy throws

��

•
1

Billy throws

��

•
0.6

Bottle breaks

�� 0.4

doens’t break

((◦
0.6

Bottle breaks

�� 0.4

doesn’t break

((

•
0.6

Bottle breaks

�� 0.4

doesn’t break

((

◦ •

◦ ◦ ◦ •

The third branch of this execution model consists of five nodes (s0, . . . , s4). The
progression of the associated states of the world (I(s0), . . . , I(s4)) is as follows:

({}, {Throws(Suzy)}, {Throws(Suzy)},
{Throws(Suzy), Throws(Billy)},

{Throws(Suzy), Throws(Billy), Broken}).

Note that, in keeping with the Tarskian setting of CP-logic, each interpretation
represents an objective state of the world.

Even when starting from the same interpretation X for the exogenous predi-
cates, the same CP-theory may have many execution models, which differ in their
selection of a rule to apply in each node (step 1). It was shown by Vennekens
et al. (2009) that, because each applicable rule must eventually be applied, the
differences between these execution models are irrelevant, as long as we only care
about the final states that may be reached. In other words, all execution models
T of the same CP-theory T that start from the same interpretation X generate
the same distribution πT . We also denote this unique distribution as πXT .

164 J. Vennekens

An interesting special case is that in which each rule r is deterministic, i.e., it
causes a single atom with probability 1. In this case, each execution model is a
degenerate tree consisting of a single branch, in which all edges are labeled with
probability 1. The successive interpretations in this branch are constructed by
adding to the previous interpretation the head of a rule whose body is satisfied.
The single leaf of this tree is therefore precisely the least Herbrand model of
the set of rules. In this way, positive logic programs and monotone inductive
definitions in FO(ID) are embedded in CP-logic.

2.1 Negation in CP-logic

Consider again the role that the CP-law

(Broken : 0.9)← Throws(Suzy)

plays in the above execution model. Initially, when the atom Throws(Suzy) is
still at its default, this law is dormant. Once Throws(Suzy) has been caused,
this law becomes active and will (eventually) be executed, causing Broken with
probability 0.9. Now, suppose we had instead assumed that the default is for
Suzy to throw unless she decides to refuse:

(Broken : 0.9)← ¬RefusesThrow(Suzy).

(RefusesThrow(Suzy) : 0.5).

Under the semantics given so far, this first CP-law would be active in any state
where RefusesThrow(Suzy) has not deviated from its default. For instance, this
law would always be active in the initial state. This means that there would be
an execution model in which this law first causes the bottle to break and then,
afterwards, Suzy decides to refuse the throw. Such execution models are not very
meaningful, or useful.

For this reason, when allowing negation, an additional condition is imposed
on the execution models of a CP-theory. The basic idea is to read ¬A not simply
as “A is currently at its default vaue”, but instead as “A will not deviate from
its default”. Under this interpretation, the law will only become active once
our causal process is far enough along to be able to say with certainty that
no deviation will occur. For the above example, this would mean that the first
CP-law can only become active after the second one has taken place and has
failed to cause RefusesThrow(Suzy).

This idea is formalized by means of concepts from three-valued logic, where
atoms can be unknown (u) in addition to true (t) or false (f). Given a three-valued
interpretation ν, that assigns one of these three truth values to each atom, the
standard Kleene truth tables can be used to assign a corresponding truth value
ν(φ) to each formula φ. A two-valued interpretation I is said to be approximated
by a three-valued interpretation ν if it can be constructed from it by switching
atoms from u to t or f. If I is approximated by ν, then for each formula φ,
the truth value ν(φ) also approximates the truth of φ according to I; that is, if
ν(φ) = t then I |= φ and if ν(φ) = f then I 6|= φ.

Negation in the Head of CP-logic Rules 165

Now, for each state s of an execution model, we construct an overestimate
of the set of atoms that might still be caused in the part of the tree following
s. First, the set of events that could potentially happen in this state itself is
Pot(s) = {r ∈ R(s) | I(s) |= body(r)}, where R(s) denotes the set of all rules
that have not yet happened in the ancestors of s. For each child s′ of s, I(s′)
will therefore differ from I(s) by including at most one atom A 6∈ I(s) from the
head of one of the rules r ∈ Pot(s). Therefore, if we construct a three-valued
interpretation ν0 that labels all such atoms A as u and coincides with I(s) on all
other atoms, then we end up with an approximation of each I(s′) for which s′ is
a child of s. Now, if an event r is to happen in one of these children s′ of s, then
it must be the case that that I(s′) |= body(r), which implies that ν1(body(r)) 6= f.
We now derive a ν2 from ν1 by turning into u all atoms A for which ν1(A) = f
and A appears in the head of an r for which ν0(body(r)) 6= f. This ν2 is then an
approximation of all I(s′′) for which s′′ is a grandchild of s. We can now iterate
this principle and construct a sequence (ν1, ν2, . . .) of three-valued interpretations,
where each νi approximates all the I(t) for which t is a descendant of s, separated
from s by at most i− 1 intermediary nodes. This process will make more and
more atoms u, until eventually it reaches a fixpoint, which we denote as U(s).
This fixpoint approximates all the I(t) for which t is a descendant of s. Therefore,
if an atom is f in U(s), then it will not be caused anywhere below s.

To illustrate, consider the rightmost branch (s′0, s
′
1, . . . , s

′
3) of the execution

model shown in Section 2. The associated three-valued interpretations are as
follows, where we abbreviate Throws and Broken by T and B, and Billy and
Suzy by By and Sy.

Node s U(s)

t u f

s′0 {} {T (Sy), T (By), B} {}
s′1 {} {T (By), B} {T (Sy)}
s′2 {T (By)} {B} {T (Sy)}
s′3 {T (By)} {} {T (Sy), B}

The following additional condition is now imposed on the execution models
of a CP-theory:

For a rule r to be allowed to happen in a node s, it is not enough that
simply I(s) |= body(r); in addition, it must also be the case that the truth
value of body(r) according to U(s) is t instead of u.

Therefore, if the CP-theory of the above example contained an additional rule
with body ¬Throws(Suzy), this could be applied from state s′1 onwards in the
above branch, whereas a rule with body ¬Broken would have to wait until s′3.

With this additional condition, it now becomes possible for execution models
to become stuck, in that sense that, in some leaf l, there remain some rules r
such that I(l) |= body(r), yet r cannot happen because body(r) is u in U(s). This
can happen only when the CP-theory contains loops over negation. Such theories

166 J. Vennekens

are viewed as unsound, and no semantics is defined for them. An important class
of sound theories are those which are stratified, but there also exist useful sound
theories outside of this class (see Vennekens et al. (2009) for a discussion).

Again, an interesting special case is when all rules of the CP-theory are
deterministic. In this case, the CP-theory syntactically coincides with a normal
logic program, and all of its execution models end in a single leaf l, such that U(l)
is the well-founded model of this program. If the CP-theory is sound, U(l) = I(l)
is the two-valued well-founded model and therefore also the unique stable model
of the program. In this way, normal logic programs with a two-valued well-
founded model are embedded in CP-logic. While the limitation to two-valued
well-founded models may seem restrictive, in practice this is often mitigated by
the fact predicates may be declared as exogenous, which has the same effect as
“opening them up” with a loop over negation. Also in FO(ID), definitions whose
well-founded model is not two-valued are considered inconsistent, so CP-logic is
indeed a true generalization of FO(ID)’s inductive definition construct.

3 Negation in the head

A CP-theory represents a set of causal mechanisms, that are activated one after
the other, and together construct the final state of the domain. Each such causal
mechanism has the same kind of effect: for some set of atoms, it causes at most
one of these atoms to deviate from their default value f to the deviant value t. If
multiple causal mechanisms affect the same atom, the result is simple: there are
no additive effects and the outcome is simply that the atom is t if and only if
at least one mechanism causes it. If subsequent rules end up “causing” an effect
that is already t, then this changes absolutely nothing.

It is to this setting that we now want to add negation-in-the-head. We will
call such a negated literal in the head a negative effect literal. To be more precise,
from now on, we allow rules of the form:

∀x (L1 : α1) ∨ · · · ∨ (Ln : αn)← φ.

Here, φ is again a first-order logic formula with x as free variables and the
αi ∈ [0, 1] are again such that Σαi ≤ 1. Each of the Li is now either a positive
effect literal A (i.e., an atom) or a negative effect literal ¬A.

While the goal of this extension is of course to be able to represent such
phenomena as the locking of the gear wheel described in the introduction, let
us first take a step back and consider, in the abstract, which possible meanings
this construct could reasonably have. Clearly, if for some atom A only positive
effect literals are caused, the atom should end up being true, just as it always
has. Similarly, if only negative effect literals ¬A are caused, the atom A should
be false. However, this does not even depend on the negative effect literals being
present: because false is the default value in CP-logic, an atom will already be
false whenever there are no positive effect literals for it, even if there are no
negative effect literals either.

Negation in the Head of CP-logic Rules 167

The only question, therefore, is what should happen if, for some A, both a
positive and a negative effect literal are caused. One alternative could be that the
result would somehow depend on the relative strength of the negative and positive
effects, e.g., whether the power of aspirin to prevent a fever is “stronger” than
the power of flu to cause it. However, such a semantics would be a considerable
departure from the original version of CP-logic, in which cumulative effects
are strictly ignored. In other words, CP-logic currently makes no distinction
whatsoever between a headache that is simultaneously caused by five different
conditions and a headache that has just a single cause. This design decision was
made to avoid a logic that, in addition to probabilities, would also need to keep
track of the degree to which a property holds. A logic combining probabilities
with such fuzzy truth degrees would, in our opinion, become quite complex and
hard to understand.

In this paper, we want to preserve the relative simplicity of CP-logic, and we
will therefore again choose not to work with degrees of truth. Therefore, only two
options remain: when both effect literals A and ¬A are caused, the end result
must be that A is either true of false. This basically means that, in the presence
of both kinds of effect literals, we will have to choose to ignore one kind. It is
obvious what this choice should be: the negative effect literals already have no
impact on the semantics when there are only positive effect literals or when there
are no positive effect literals, so if they would also have no impact when positive
and negative effect literals are both present, then they would have never have any
impact at all and we would have introduced a completely superfluous language
construct. Therefore, the only reasonable choice is to give negative effect literals
precedence over positive ones, that is, an atom A will be true if and only if it is
caused at least once and no negative effect literal ¬A is caused.

This can be formally defined by a minor change to the existing semantics
of CP-logic. Recall that, in the current semantics, each node s of an execution
model has an associated interpretation I(s), representing the current state of
the world, and an associated three-valued interpretation U(s), representing an
overestimate of all that could still be caused in s. We now add to this a third
set, namely a set of atoms N (s), containing all atoms for which a negative effect
literal has already been caused. The sets I(s) and N (s) evolve throughout an
execution model as follows:

– In the root of the tree, I(s) = N (s) = {}
– When a negative effect literal ¬A is caused in a node s, the execution model

adds a child s′ to s such that:
• N (s′) = N (s) ∪ {A};
• I(s′) = I(s) \ {A}.

– When a positive effect literal A is caused in a node s, the execution model
adds a child s′ to s such that:
• N (s′) = N (s);
• if A ∈ N (s), then I(s′) = I(s), else I(s′) = I(s) ∪ {A}.

Note that, throughout the execution model, we maintain the property that
N (s) ∩ I(s) = {}.

168 J. Vennekens

The overestimate U(s) is again constructed as the limit of a sequence of three-
valued interpretations νi. To go from such a νi to νi+1, we make νi+1(A) = u for
all atoms A satisfying both of the following conditions:

– as before, νi(A) = f and the positive effect literal A appears in the head of a
rule r ∈ R(s) with νi(body(r)) 6= f;

– but now also A 6∈ N (s).

In this way, U(s) always assigns t to all atoms in I(s) and f to all those in N (s).

4 Encoding interventions

One of the interesting uses of negation-in-the-head is related to the concept of
interventions, introduced by Pearl (2000). Let us briefly recall this notion. Pearl
works in the context of structural models. Such a model is built from a number of
random variables. For simplicity, we only consider boolean variables, i.e., atoms.
These are again divided into exogenous and endogenous atoms. A structural
model now consists of one equation X := ϕ for each endogenous atom X, which
defines that X is true if and only if the boolean formula ϕ holds. This set of
equations should be acyclic (i.e., if we order the variables by defining that X < Y
if X appears in the equation defining Y , then this < should be a strict order), in
order to ensure that an assignment of values to the exogenous atoms induces a
unique assignment of values to the endogenous ones.

A crucial property of causal models is that they can not only be used to
predicts the normal behaviour of a system, but also to predict what would happen
if outside factors unexpectedly intervene with its normal operation. For instance,
consider the following simple model of which students must repeat a class:

Fail := ¬Smart ∧ ¬Effort. Repeat := Fail ∧Required.
Under the normal operation of this “system”, only students who are not smart
can fail classes and be forced to repeat them. Suppose now that we catch a
student cheating on an assignment and decide to fail him for the class. This
action was not foreseen by the causal model, so it does not follow from the normal
behaviour. In particular, failing the student may cause him to have to repeat
the class, but if the student is actually smart, then failing him will not make
him stupid. Pearl shows that we can model our action of failing the student
by means of an intervention, denoted do(Fail = t). This is a simple syntactic
transformation, which removes and replaces the original equation for Fail:

Fail := t. Repeat := Fail ∧Required.
According to this updates set of equations, the student fails and may have to
repeat the class, but he has not been made less smart.

In the context of CP-logic, let us consider the following simple medical theory:

(HighBloodPressure : 0.6)← BadLifeStyle. (14)

(HighBloodPressure : 0.9)← Genetics. (15)

(Fatigue : 0.3)← HighBloodPressure. (16)

Negation in the Head of CP-logic Rules 169

Here, BadLifeStyle and Genetics are two exogenous predicates, which are both
possible causes for HighBloodPressure. Suppose now that we observe a patient
who suffers from Fatigue. Given our limited theory, this patient must be suffering
from HighBloodPressure, caused by at least one of its two possible causes.

Now, suppose that a doctor is wondering whether it is a good idea to prescribe
this patient some pills that cure high blood pressure. Again, the proper way to
answer such a question is by means of an intervention, that first prevents the
causal mechanisms that normally determine someone’s blood pressure and then
substitutes a new “mechanism” that just makes HighBloodPressure false. This
can be achieved by simply removing the two rules (14) and (15) from the theory.
This is an instance of a general method, developed by Vennekens et al. (2010), of
performing Pearl-style interventions in CP-logic. The result is that probability of
Fatigue drops to zero, i.e., P (Fatigue | do(¬HighBloodPressure)) = 0.

In this way, we can evaluate the effect of prescribing the pills without actually
having these pills in our model. This is a substantial difference to the way
in which reasoning about actions is typically done in the field of knowledge
representation, where formalisms such as situation or event calculus require an
explicit enumeration of all available actions and their effects. Using an intervention,
by contrast, we can envisage the effects of actions that we never even considered
when writing our model.

Eventually, however, we may want to transform the above descriptive theory
into a prescriptive one that tells doctors how to best treat a patient, given his or
her symptoms. In this case, we would need rules such as this:

BPMedicine← Fatigue. (17)

Obviously, this requires us to introduce the action BPMedicine of prescribing
the medicine, which previously was implicit in our intervention, as an explicit
action in our vocabulary. Negation-in-the-head allows us to syntactically express
the effect of this new action: ¬HighBloodPressure← BPMedicine.

This transformation can be applied in general, as the following theorem shows.

Theorem 1. Let T be a CP-theory over a propositional vocabulary Σ. For an
atom A ∈ Σ, let T ′ be the theory T ∪ {r} with r the rule ¬A ← B and B an
exogenous atom not in Σ. For each interpretation X for the exogenous atoms of
T ′, if B ∈ X, then πXT ′ = πXdo(T,¬A) and if B 6∈ X, then πXT ′ = πXT .

This theorem shows that negation-in-the-head allows CP-theories to “in-
ternalize” the intervention of doing ¬A. The result is a theory T ′ in which
the intervention can be switched on or off by simply choosing the appropriate
interpretation for the exogenous predicate that now explicitly represents this
intervention. Once the intervention has been syntactically added to the theory in
this way, additional rules such as (17) may of course be added to turn it from an
exogenous to an endogenous property.

It is important to note that this is a fully modular and elaboration tolerant
encoding of the intervention, i.e., the original CP-theory is left untouched and the
rules that describe the effect of the intervention-turned-action are simply added
to it. This is something that we can only achieve using negation-in-the-head.

170 J. Vennekens

5 Representing defaults

An interesting test case for logic programs has always been the representation

of defaults. The typical example concerns the default δ =
Bird(x) : Flies(x)

Flies(x)
together with the background knowledge: ∀x Penguin(x) ⇒ ¬Flies(x). In an
extended logic program, the two kinds of negation can be exploited to represent
the default in an elegant way:

Flies(x)← Bird(x) ∧ not ¬Flies(x). ¬Flies(x)← Penguin(x).

In a normal logic program or deterministic CP-theory, defaults are typically
represented using an abnormality predicate.

Flies(x)← Bird(x) ∧ ¬Abδ(x). Abδ(x)← Penguin(x).

Using CP-logic’s new negation-in-the-head, the abnormality predicate can be
omitted.

Flies(x)← Bird(x). (18)

¬Flies(x)← Penguin(x). (19)

However, we do now lose the ability to distinguish between defeasible and non-
defeasible rules, since negative effect literals can always be added to block any
effect. In fact, this is necessary because of our desire to use negation-in-the-head
to syntactically represent interventions (Section 4). It is after all a key property
of Pearl’s interventions that any causal relation in the model should, in principle,
be open to intervention.

Even though, as this section shows, it is possible to use CP-logic to represent
certain defaults, it is important to remember that it is not intended as a default
logic. In particular, rule (18) should not actually be read as saying that birds
normally fly. Instead, it says that, for each x, x being a bird causes it to be able
to fly. Similarly, rule (19) says that being a penguin is a cause for being unable to
fly. Note also that this is not a generally applicable methodology for representing
defaults. For instance, if we wanted to state that penguins with jetpacks are an
exception to rule (19), we would still have to introduce an abnormality predicate.

6 Probabilities and defaults

An interesting consequence of adding negation-in-the-head to CP-logic is that we
can combine the encoding of defaults as in the previous section with uncertainty.
For instance, let us suppose that there is, in general, a 5% change with which
being a bird does not cause one to be able to fly. This may be the result, for
instance, of a birth defect or some accident. This could be represented as follows:

(Flies(x) : 0.95)← Bird(x). (20)

¬Flies(x)← Penguin(x). (21)

Negation in the Head of CP-logic Rules 171

The first rule describes the normal situation for birds, whereas the second rule
still serves to give an exception to the general rule. Note that, even for penguins,
the causal mechanism underlying the first rule still happens, i.e., the rule is still
fired, but it just fails to produce the outcomes of flying. Intuitively, we can think
of this as the penguins still being born and being raised by their parents—i.e.,
they go through the same process of growing up that any bird goes through. It is
just that, whereas this process causes the ability to fly for 95% of the normal
birds, it never has this outcome for penguins. Of course, since learning to fly is
actually the only possible effect of the first rule, the fact that this rule is still
fired for penguins has no effect on anything.

The following example shows that this is not always the case.

(Wound(x) : 0.7) ∨ (HoleInWall : 0.3)← Shoot(x). (22)

¬Wound(x)← Superhero(x). (23)

Here, this first rule states that shooting a gun at someone might produce two
possible effects: either the person ends up being wounded or the shot misses and
causes instead a hole in the wall. The second rule adds an exception: if x happens
to be a superhero, then x cannot be wounded. So, firing a gun at a superhero
never causes Wound(x), but with probability 0.3 still causes a hole in the wall.

This example also reveals a further way in which CP-logic is at heart a causal
logic and not a logic of defaults. While we have so far been getting away with
reading a rule such as (23) as expressing an exception to a default, this is not
what it actually says: what this rule states is that being a superhero causes one
to become “unwoundable”. This does not only apply to wounds that would be
caused by rule (22), but to all wounds. Therefore, if the CP-theory were to contain
other causes for wounds, such as (Wound(x) : 0.9) ← FallFromBuilding(x),
then superheroes are automatically also protected against these.

7 Implementation

To implement the feature of negation-in-the-head, a simple transformation to
regular CP-logic may be used. This transformation is based on the way in which
Denecker and Ternovska (2007) encode causal ramifications in their inductive
definition modelling of the situation calculus.

For a CP-theory T in vocabulary Σ, let Σ¬ consist of all atoms A for which a
negative effect literal ¬A appears in T . For each atom A ∈ Σ¬, we introduce two
new atoms, CA and C¬A. Intuitively, CA means that there is a cause for A, and
C¬A means that there is a cause for ¬A. Let τA be the following transformation:

– Replace all positive effect literals A in the heads of rules by CA
– Replace all negative effect literals ¬A in the heads of rules by C¬A
– Add this rule: A← CA ∧ ¬C¬A

Let τ¬(T) denote the result of applying to T , in any order, all the transformations
τA for which A ∈ Σ¬. It is clear that τ¬(T) is a regular CP-theory, i.e., one

172 J. Vennekens

without negation-in-the-head. As the following theorem shows, this reduction
preserves the semantics of the theory.

Theorem 2. For each interpretation X for the exogenous predicates, the projec-
tion of πXτ¬(T) onto the original vocabulary Σ of T is equal to πXT .

When comparing the transformed theory πτ¬(T) to the original theory T , we
see that the main benefit of having negation-in-the-head lies in its elaboration
tolerance: there is no need to know before-hand for which atoms we later might
wish to add negative effect literals, since we can always add these later, without
having to change to original rules. Both in the example of syntactically represent-
ing an intervention (Section 4) and that of representing exceptions to defaults
(Section 5), this feature may be useful.

8 Conclusion

This paper is part of a long-term research project which aims to develop a Tarskian
alternative to ASP: instead of relying on ASP’s original epistemic intuitions,
our goal is to have a language in which every expression can be interpreted as
an objective statement about the real world. The first motivation for this is
simplicity: many problems that are solved using present-day ASP systems and the
GDT-methodology do not have an inherent epistemic component, so it would just
be simpler if we could understand such programs in terms of what they say about
the real world directly, instead of having to make a detour through the beliefs
of some (irrelevant) rational agent. A second motivation is the unity of science:
a huge effort has gone into both theoretical and practical research on classical
logic. Its roots in Non-monotonic Reasoning have made ASP an antithesis to
the classical approach, in which the desire to express objective knowledge is
abandoned in favor of epistemic knowledge. Even though applications of ASP-
solvers and SAT-solvers are often quite similar in practice, the “official” reading
of ASP programs and classical theories is therefore radically different. The second
goal is to bridge this gap.

An important part of this research project was the development of the
language FO(ID), which showed how normal logic programs could be interpreted
as inductive definitions and added in a meaningful way to classical logic. An
extension of this work was the development of the language CP-logic, which
allows non-deterministic and probabilistic causal processes to be expressed. In
this paper, we have investigated the useful ASP feature of negation-in-the-head.
We presented a meaningful interpretation of this feature in the context of CP-logic
and discussed possibles uses of it. Finally, we also showed a simple transformation
that reduces it to regular CP-logic.

Negation in the Head of CP-logic Rules 173

References

C. Baral, M. Gelfond, and N. Rushton. Probabilistic reasoning with answer sets.
Theory and Practice of Logic Programming 9(1):57-144, 2008.

M. Denecker and E. Ternovska. Inductive situation calculus. Artificial Intelligence,
171(5-6):332–360, 2007.

M. Denecker and J. Vennekens. Well-founded semantics and the algebraic theory
of non-monotone inductive definitions. In LPNMR, volume 4483 of LNCS,
pages 84–96. Springer, 2007.

M. Denecker, J. Vennekens, H. Vlaeminck, J. Wittocx, and M. Bruynooghe.
Answer set programming’s contributions to classical logic. An analysis of
ASP methodology. In MG-65: Symposium on Constructive Mathematics in
Computer Science, 2010.

M. Denecker, Y. Lierler, M. Truszczynski, and J. Vennekens. A tarskian informal
semantics for asp. In Technical Communications of the 28th International
Conference on Logic Programming, 2012.

M. Gelfond. Strong introspection. In AAAI, pages 386–391, 1991.
M. Gelfond and V. Lifschitz. Classical negation in logic programs and disjunctive

databases. New Generation Computing, 9(3/4):365–386, 1991.
M. Gelfond and V. Lifschitz. The stable model semantics for logic programming.

In ICLP/SLP, pages 1070–1080. MIT Press, 1988.
N. Hall. Structural equations and causation. Philosophical Studies, 132(1):

109–136, 2007.
V. Lifschitz. Answer set programming and plan generation. Artificial Intelligence,

138(1-2):39–54, 2002.
J. Pearl. Causality: Models, Reasoning, and Inference. Cambridge University

Press, 2000.
C. Sakama and K. Inoue. An alternative approach to the semantics of disjunctive

logic programs and deductive databases. Journal of Automated Reasoning, 13
(1):145–172, 1994.

J. Vennekens, M. Denecker, and M. Bruynooghe. CP-logic: A language of causal
probabilistic events and its relation to logic programming. Theory and Practice
of Logic Programming, 9(3):245–308, 2009.

J. Vennekens, M. Denecker, and M. Bruynooghe. Embracing events in causal
modelling: Interventions and counterfactuals in CP-logic. In JELIA, pages
313–325, 2010.

174 J. Vennekens

Author Index

Alviano, Mario, 3

Balduccini, Marcello, 17
Banbara, Mutsunori, 33
Bartholomew, Michael, 49

Cabalar, Pedro, 65
Chaudhri, Vinay K., 81

Ellmauthaler, Stefan, 97
Erdem, Esra, 117

Faber, Wolfgang, 3
Fandiño, Jorge, 65

Güniçen, Canan, 117
Gebser, Martin, 33, 109

Harrison, Amelia, 129
Heymans, Stijn, 81

Inoue, Katsumi, 33

Lee, Joohyung, 49
Lierler, Yuliya, 17, 143
Lifschitz, Vladimir, 129

Obermeier, Philipp, 109

Schaub, Torsten, 33, 109
Soh, Takehide, 33
Son, Tran Cao, 81
Straß, Hannes, 97

Tamura, Naoyuki, 33
Truszczynski, Miroslaw, 143

Vennekens, Joost, 159

Weise, Matthias, 33
Wessel, Michael, 81

Yang, Fangkai, 129
Yenigün, Hüsnü, 117

