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Abstract. In recent years, Answer Set Programming (ASP), logic programming
under the stable model or answer set semantics, has seen several extensions by
generalizing the notion of an atom in these programs: be it aggregate atoms,
HEX atoms, generalized quantifiers, or abstract constraints, the idea is to have
more complicated satisfaction patterns in the lattice of Herbrand interpretations
than traditional, simple atoms. In this paper we refer to any of these constructs
as generalized atoms. Several semantics with differing characteristics have been
proposed for these extensions, rendering the big picture somewhat blurry. In this
paper, we analyze the class of programs that have convex generalized atoms (orig-
inally proposed by Liu and Truszczyński in [10]) in rule bodies and show that for
this class many of the proposed semantics coincide. This is an interesting result,
since recently it has been shown that this class is the precise complexity boundary
for the FLP semantics. We investigate whether similar results also hold for other
semantics, and discuss the implications of our findings.

1 Introduction

Various extensions of the basic Answer Set Programming language have been proposed
by allowing more general atoms in rule bodies, for example aggregate atoms, HEX
atoms, dl-atoms, generalized quantifiers, or abstract constraints. A number of semantics
have been proposed for such programs, most notably the FLP semantics [7] and a num-
ber of coinciding semantics that we will collectively refer to as PSP semantics (from
Pelov, Son, and Pontelli) [13, 17]. All of these semantics coincide with traditional ASP
semantics when no generalized atoms are present. Moreover, they coincide on programs
that have atomic rule heads and contain only monotonic generalized atoms. In [9] it is
furthermore hinted that the semantics also coincide on programs that have atomic rule
heads and contain only convex generalized atoms. However, no formal proof is avail-
able for this claim, and the informal explanation given in [9] is not as general as it could
be, as we will show.

In this paper, we undertake a deeper investigation on the similarities and differences
between the FLP and PSP semantics. In order to do this, we consider a simplified, yet
expressive propositional language: sets of rules with atomic heads and bodies that are
formed of a single “structure,” which are functions mapping interpretations to Boolean
values1. Clearly, structures encompass atoms, literals, and conjunctions thereof, but can

1 Note that (apart from the name) there is no connection to structures in first-order logic.



represent any propositional formula, generalized atom, or conjunctions of generalized
atoms. Each structure has an associated domain, which is the set of propositional atoms
on which the structure’s truth valuation depends. We can then classify the structures by
their semantic properties, in particular, we will focus on the class of convex structures,
which have single contiguous areas of truth in the lattice of interpretations. Convex
structures include atoms and literals, and they are closed under conjunction (but not
under negation or disjunction).

We first formally prove the claim that the FLP and PSP semantics coincide on pro-
grams with convex structures, as originally reported in [9]. We will then move on to
the main focus of this paper, trying to understand whether there is any larger class for
which the semantics coincide. It is known that for programs with general structures all
PSP answer sets are FLP answer sets, but not all FLP answer sets are PSP answer sets.
The precise boundary for exhibiting the semantic difference is instead unknown.

We will approach this question using complexity arguments. Recently, we could
show that convex structures form the precise boundary for a complexity jump in the
polynomial hierarchy on cautious reasoning (but most other decision problems as well)
for the FLP semantics. Cautious reasoning isΠP

2 -complete for the FLP semantics when
allowing any non-convex structure and its variants (renaming atoms) in the input pro-
gram, but it is coNP -complete for convex structures. When considering the PSP se-
mantics, cautious reasoning is also ΠP

2 -complete when allowing any kind of structures
in the input. This follows from a result in [13], and we provide an alternative proof
in this paper. Analyzing this proof, it becomes clear that there is a different source of
complexity for PSP than for FLP.

We then show that this different source of complexity also yields a different shape
of the boundary for the complexity jump in PSP. Indeed, we first show that for a simple
non-convex structure, cautious reasoning is still in coNP for the PSP semantics, while
the problem is ΠP

2 -hard in the presence of this structure for the FLP semantics. It turns
out that the same argument works for many non-convex structures, in particular, for all
structures with a domain size bounded by a constant. The domain size therefore serves
as a parameter that simplifies the complexity of the problem for the PSP semantics
(unless the polynomial hierarchy collapses to its first level). This also means that the
complexity boundary for PSP has a non-uniform shape, in the sense that an infinite
number of different non-convex structures must be available for obtainingΠP

2 -hardness
for cautious reasoning. This is in contrast to the FLP semantics, where the presence of
a single non-convex structure is sufficient.

2 Syntax and Semantics

In this section we first introduce the syntax used in the paper. This is mainly based on the
notion of structures, i.e., functions mapping interpretations into Boolean truth values.
Then, we introduce few semantic notions and in particular we characterize structures
in terms of monotonicity. Finally, we define the two semantics analyzed in this paper,
namely FLP and PSP.



2.1 Syntax

Let U be a fixed, countable set of propositional atoms. An interpretation I is a subset of
U . A structure S on U is a mapping of interpretations into Boolean truth values. Each
structure S has an associated, finite domain DS ⊂ U , indicating those atoms that are
relevant to the structure.

Example 1. A structure S1 modeling a conjunction a1, . . . , an (n ≥ 0) of propositional
atoms is such that DS1

= {a1, . . . , an} and, for every interpretation I , S1 maps I to
true if and only if DS1

⊆ I .
A structure S2 modeling a conjunction a1, . . . , am, not am+1, . . . , not an (n ≥

m ≥ 0) of literals, where a1, . . . , an are propositional atoms and not denotes negation
as failure, is such that DS2 = {a1, . . . , an} and, for every interpretation I , S2 maps I
to true if and only if {a1, . . . , am} ⊆ I and {am+1, . . . , an} ∩ I = ∅.

A structure S3 modeling an aggregate COUNT ({a1, . . . , an}) 6= k (n ≥ k ≥ 0),
where a1, . . . , an are propositional atoms, is such that DS3

= {a1, . . . , an} and, for
every interpretation I , S3 maps I to true if and only if |DS3

∩ I| 6= k.

A general rule r is of the following form:

H(r)← B(r) (1)

where H(r) is a propositional atom in U referred as the head of r, and B(r) is a struc-
ture on U called the body of r. A general program P is a set of general rules.

Example 2. Let S4 map to true any interpretation I such that I ∩ {a, b} 6= {b}, and
let S5 map to true any interpretation I such that I ∩ {a, b} 6= {a}. Hence, program
P1 = {a← S4; b← S5} is equivalent to the following program with aggregates:

a← SUM ({a = 1, b = −1}) ≥ 0

b← SUM ({a = −1, b = 1}) ≥ 0

Note that no particular assumption is made on the syntax of rule bodies; in the case
of normal propositional logic programs these structures are conjunctions of literals. We
assume that structures are closed under propositional variants, that is, if S is a structure,
for any bijection σ : U → U , also Sσ is a structure, and the associated domain is
DSσ = {σ(a) | a ∈ DS}.

Example 3. Consider S4 and S5 from Example 2, and a bijection σ1 such that σ1(a) =
b. Hence, S5 = S4σ1, that is, S5 is a variant of S4.

Given a set of structures S, by datalogS we refer to the class of programs that
may contain only the following rule bodies: structures corresponding to conjunctions
of atoms, any structure S ∈ S, or any of its variants Sσ.

Example 4. For every n ≥ m ≥ 0, let Sm,n denote the structure S2 from Example 1.
The class of normal datalog programs is datalog{S

m,n|n≥m≥0}.

Note that this syntax does not explicitly allow for negated structures. One can, how-
ever, choose the complementary structure for simulating negation. This would be akin
to the “negation as complement” interpretation of negated aggregates that is prevalent
in the literature.



2.2 Semantics

Let I ⊆ U be an interpretation. I is a model for a structure S, denoted I |= S, if S
maps I to true. Otherwise, if S maps I to false, I is not a model of S, denoted I 6|= S.
We require that atoms outside the domain of S are irrelevant for modelhood, that is, for
any interpretation I and X ⊆ U \ DS it holds that I |= S if and only if I ∪ X |= S.
Moreover, for any bijection σ : U → U , let Iσ = {σ(a) | a ∈ I}, and we require that
Iσ |= Sσ if and only if I |= S. I is a model of a rule r of the form (1), denoted I |= r,
if H(r) ∈ I whenever I |= B(r). I is a model of a program P , denoted I |= P , if
I |= r for every rule r ∈ P .

Example 5. Consider program P1 from Example 2. It can be observed that ∅ 6|= P1

and {a, b} 6|= P1 (both rules have true bodies but false heads), while {a} |= P1 and
{b} |= P1.

Structures can be characterized in terms of monotonicity as follows.

Definition 1 (Monotone Structures). A structure S is monotonic if for all pairs X,Y
of interpretations such that X ⊂ Y , X |= S implies Y |= S.

Definition 2 (Antimonotone Structures). A structure S is antimonotonic if for all
pairs Y, Z of interpretations such that Y ⊂ Z, Z |= S implies Y |= S.

Definition 3 (Convex Structures). A structure S is convex if for all triples X,Y, Z of
interpretations such that X ⊂ Y ⊂ Z, X |= S and Z |= S implies Y |= S.

Note that monotonic and antimonotonic structures are convex. Moreover, note that con-
vex structures are closed under conjunction (but not under disjunction or negation).

Example 6. Structure Sm,n from Example 4 is convex in general; it is monotonic if
m = n, and antimonotonic if m = 0. Structure S3 from Example 1, instead, is non-
convex if n > k > 0; it is monotonic if k = 0, and antimonotonic if n = k.

We first describe a reduct-based semantics, usually referred to as FLP, which has
been described and analyzed in [6, 7].

Definition 4 (FLP Reduct). The FLP reduct P I of a program P with respect to I is
defined as the set {r ∈ P | I |= B(r)}.

Definition 5 (FLP Answer Sets). I is an FLP answer set of P if I |= P I and for each
J ⊂ I it holds that J 6|= P I .

Example 7. Consider program P1 from Example 2 and the interpretation {a}. The
reduct P {a}1 is {a ← S4}. Since {a} is a minimal model of the reduct, {a} is an
FLP answer set of P1. Similarly, it can be observed that {b} is another FLP answer set.
Actually, these are the only FLP answer sets of the program.



We will next describe a different semantics, using the definition of [17], called “fix-
point answer set” in that paper. Theorem 3 in [17] shows that it is actually equivalent
to the two-valued fix-point of ultimate approximations of generalized atoms in [13]2,
and therefore with stable models for ultimate approximations of aggregates as defined
in [14]. We will refer to it as PSP to abbreviate Pelov/Son/Pontelli, the names most
frequently associated with this semantics.

Definition 6 (Conditional Satisfaction). A structure S on U is conditionally satisfied
by a pair of interpretations (I,M), denoted (I,M) |= S, if J |= S for each J such that
I ⊆ J ⊆M .

Definition 7 (PSP Answer Sets). An interpretation M is a PSP answer set if M is the
least fixpoint of the following operator:

KP
M (I) = {H(r) | r ∈ P ∧ (I,M) |= B(r)}. (2)

Example 8. Consider program P1 from Example 2 and the interpretation {a}. The least
fixpoint of KP1

{a} is {a}. In fact, ∅ |= S4 and {a} |= S4, hence (∅, {a}) |= S4, while
{a} 6|= S5 and thus (∅, {a}) 6|= S5 and ({a}, {a}) 6|= S5. Therefore, {a} is a PSP
answer set. Also {b} is a PSP answer set.

On programs considered in this paper, PSP answer sets also coincide with “answer
sets” defined in [18] (by virtue of Proposition 10 in [18]) and “well-justified FLP answer
sets” of [15] (by virtue of Theorem 5 in [15]). The latter is particularly interesting, as it
is defined by first forming the FLP reduct. Indeed, as shown in [15], the operator KP

M

can be equivalently defined as follows:

KP
M (I) = {H(r) | r ∈ PM ∧ (I,M) |= B(r)}. (3)

There are several other semantic definitions on programs that have some restrictions
on the admissible structures, which also coincide with the PSP semantics on programs
as defined in this paper with the respective structure restriction. Examples are [12] for
monotonic structures (that are also allowed to occur in rule heads in that paper), or
[16] that allows for structures corresponding to cardinality and weight constraints and
largely coincide with the PSP semantics (see [13] for a discussion on structures on
which the semantics coincides).

In this paper we are mainly interested in cautious reasoning, defined next.

Definition 8 (Cautious Reasoning). A propositional atom a is a cautious consequence
of a program P under FLP (resp. PSP) semantics, denoted P |=FLP

c a (resp. P |=PSP
c

a), if a belongs to all FLP (resp. PSP) answer set of P .

Example 9. Consider program P1 from Example 2. We have P1 6|=FLP
c a and P1 6|=FLP

c

b, and similar for PSP semantics. If we add a← b and b← a to the program, then there
is only one FLP answer set, namely {a, b}, and no PSP answer sets. In this case a and
b are cautious consequences of the program (under both semantics).

2 There is an even closer relationship, as the operator KP
M (I) of [17] coincides with

φaggr,1
P (I,M) defined in [13], as shown in the appendix of [17]



3 Exploring the Relationship between the FLP and PSP Semantics

In this section, we examine in detail how the FLP and PSP semantics relate. We shall
proceed in three steps. First, we formally prove that FLP and PSP semantics coincide
on programs with convex structures in Section 3.1. Next, we turn towards complexity
as a tool to understand whether there can be any larger class of coinciding programs.
We start in Section 3.2 with a result that shows that programs without restrictions ex-
hibit the same complexity under both FLP and PSP semantics. However, it is known
that the semantics do not coincide for programs without restrictions, and we examine
the complexity proofs to highlight the different complexity sources. These findings are
then applied in Section 3.3 in order to identify programs with bounded non-convex
structures, on which the complexities for FLP and PSP semantics differ. Under usual
complexity assumptions, this also implies that programs with convex aggregates is the
largest class of programs on which FLP and PSP coincide.

3.1 Unison: Convex Structures

In this section we show that for programs with convex aggregates the FLP and PSP
semantics coincide. In [9] it is stated that many semantics (and in particular, FLP and
PSP) “agree on [...] programs with convex aggregates” because “they can be regarded
as special programs with monotone constraints.” However, the comment on regarding
convex aggregates as monotone constraints relies on a transformation described in [10]
that transforms convex structures into conjunctions of positive and negated monotone
constraints. Since our language does not explicitly allow negation, and in particular
since convex structures are not closed under negation, we next prove in a more direct
manner that the FLP and PSP semantics coincide on convex structures.

One direction of the proof relies on the well-known more general fact that each PSP
answer set is also an FLP answer set. This has been stated as Theorem 2 in [17] and
Proposition 8.1 in [14].

Theorem 1. Let P be program whose body structures are convex, and let M be an
interpretation. M is an FLP answer set of P if and only if M is an PSP answer set of
P .

Proof. The left implication follows from Theorem 2 in [17]. For the right implication,
let M be an FLP answer set of P . Let K0 := ∅, Ki+1 := KP

M (Ki) for i ≥ 0, and let
K be the fixpoint of this sequence. Since M is a minimal model of PM by definition
of FLP answer set, we can prove the claim by showing (i) K |= PM and (ii) K ⊆M .

(i) Consider a rule r ∈ PM such that K |= B(r). We have to show H(r) ∈ K.
Since r ∈ PM , M |= B(r) holds. Thus, (K,M) |= B(r) and therefore H(r) ∈ K.

(ii) We prove Ki ⊆ M for each i ≥ 0. We use induction on i. The base case is
trivially true as K0 = ∅ ⊆ M . Suppose Ki ⊆ M for some i ≥ 0 in order to prove
Ki+1 ⊆ M . By definition of KP

M , for each a ∈ Ki+1 there is r ∈ PM such that
H(r) = a and (Ki,M) |= B(r). Thus, M |= B(r), which implies a ∈M . ut

Therefore, programs with convex structures form a class of programs for which the
FLP and PSP semantics coincide. In the following, we will show that it is likely also
the largest class for which this holds.



3.2 Consonance: Complexity of Unrestricted Structures

In this section we will examine the computational impact of allowing non-convex struc-
tures. We will limit ourselves to structures for which the truth value with respect to an
interpretation can be determined in polynomial time. Moreover, we will focus on cau-
tious reasoning, but similar considerations apply also to related problems such as brave
reasoning, answer set existence, or answer set checking.

It is known that cautious reasoning over programs with arbitrary structures under
the FLP semantics is ΠP

2 -complete in general, as shown in [7]. Pelov has shown ΣP
2 -

completeness for deciding the existence of PSP answer sets in [13], from which ΠP
2 -

completeness for cautious reasoning under the PSP semantics can be derived. We for-
mally state this result now and provide a different proof than Pelov’s that will more
directly lead to the subsequent considerations.

Theorem 2. Cautious reasoning under PSP semantics is ΠP
2 -complete.

Proof. Membership follows by Corollary 1 of [17]. For the hardness, we provide a
reduction from 2-QBF∀. Let Ψ = ∀x1 · · · ∀xm∃y1 · · · ∃yn E, where E is in 3CNF.
Formula Ψ is equivalent to ¬Ψ ′, where Ψ ′ = ∃x1 · · · ∃xm∀y1 · · · ∀yn E′, and E′ is
a 3DNF equivalent to ¬E and obtained by applying De Morgan’s laws. To prove the
claim we construct a program PΨ such that PΨ |=PSP

c w (w a fresh atom) if and only if
Ψ is valid, i.e., iff Ψ ′ is invalid.

Let E′ = (l1,1 ∧ l1,2 ∧ l1,3)∨ · · · ∨ (lk,1 ∧ lk,2 ∧ lk,3), for some k ≥ 1. Program PΨ
is the following:

xTi ← not xFi xFi ← not xTi i ∈ {1, . . . ,m} (4)
yTi ← not yFi yFi ← not yTi i ∈ {1, . . . , n} (5)
yTi ← sat yFi ← sat i ∈ {1, . . . , n} (6)
sat ← µ(E′) (7)
w ← not sat (8)

where µ is defined recursively as follows:

– µ(E′) := (µ(l1,1) ∧ µ(l1,2) ∧ µ(l1,3)) ∨ · · · ∨ (µ(lk,1) ∧ µ(lk,2) ∧ µ(lk,3));
– µ(xi) := xTi and µ(¬ xi) := xFi for all i = 1, . . . ,m;
– µ(yi) := yTi and µ(¬ yi) := yFi for all i = 1, . . . , n.

Note that structure µ(E′) can also be encoded by means of a sum aggregate as shown
in [1].

Rules (4)–(5) force each PSP answer set of PΨ to contain at least one of xTi , xFi
(i ∈ {1, . . . ,m}), and one of yTj , yFj (j ∈ {1, . . . ,m}), respectively, encoding an as-
signment of the propositional variables in Ψ ′. Rules (6) are used to simulate universality
of the y variables, as described later. Having an assignment, rule (7) derives sat if the
assignment satisfies some disjunct of E′ (and hence also E′ itself). Finally, rule (8)
derives w if sat is false.

We first show that Ψ not valid implies PΨ 6|=PSP
c w. If Ψ is not valid, Ψ ′ is valid.

Hence, there is an assignment ν for x1, . . . , xm such that no extension to y1, . . . , yn sat-
isfiesE, i.e., all these extensions satisfyE′. Let us consider the following interpretation



(which is also a model of PΨ ):

M = {xTi | ν(xi) = 1, i = 1, . . . ,m} ∪ {xFi | ν(xi) = 0, i = 1, . . . ,m}
∪ {yTi , yFi | i = 1, . . . , n} ∪ {sat}

We claim that M is a PSP answer set of PΨ . In fact, KPΨ
M (∅) ⊇ {xTi | ν(xi) = 1, i =

1, . . . ,m} ∪ {xFi | ν(xi) = 0, i = 1, . . . ,m} because of rules (4) in PMΨ . Since any
assignment for the ys satisfies at least a disjunct of E′, from rule (7) we derive sat ∈
KPΨ
M (KPΨ

M (∅)). Hence, rules (6) force all y atoms to belong to KPΨ
M (KPΨ

M (KPΨ
M (∅))),

which is thus the least fixpoint of KPΨ
M and coincides with M .

Now we show that PΨ 6|=PSP
c w implies that Ψ is not valid. To this end, let M be

a PSP answer set of PΨ such that w /∈ M . Hence, by rule (8) we have that M |= sat .
From sat ∈ M and rules (6), we have yTi , y

F
i ∈ M for all i = 1, . . . , n. And M

contains either xTi or xFi for i = 1, . . . ,m because of rules (4). Suppose by contra-
diction that Ψ is valid. Thus, for all assignments of x1, . . . , xm, there is an assignment
for y1, . . . , yn such that E is true, i.e., E′ is false. We can show that the least fixpoint
of KPΨ

M is KPΨ
M (∅) = {xTi | ν(xi) = 1, i = 1, . . . ,m} ∪ {xFi | ν(xi) = 0, i =

1, . . . ,m}. In fact, sat cannot be derived because KPΨ
M (∅) 6|= µ(E′). We thus have a

contradiction with the assumption that M is a PSP answer set of PΨ . ut

It is also known that the complexity drops to coNP if structures in body rules are
constrained to be convex. This appears to be “folklore” knowledge and can be argued to
follow from results in [10]. An easy way to see membership in coNP is that all convex
structures can be decomposed into a conjunction of a monotonic and an antimonotonic
structure, for which membership in coNP has been shown in [7].

It is instructive to note a crucial difference between the ΠP
2 -hardness proofs in [7]

(and a similar one in [8]) and the proofs for Theorem 2 and the ΣP
2 result for PSP in

[13].
The fundamental tool in the FLP hardness proofs is the availability of structures

S1, S2 that allow for encoding “need to have either atom xT or xF , or both of them,
but the latter only upon forcing the truth of both atoms.” S1, S2 have domains DS1

=
DS2

= {xT , xF } and the following satisfaction patterns:

∅ |= S1 {xT } |= S1 {xF } 6|= S1 {xT , xF } |= S1

∅ |= S2 {xT } 6|= S2 {xF } |= S2 {xT , xF } |= S2

The reductions then use these structures in a similar way than disjunction is used in
the classic ΣP

2 -hardness proofs in [3]. In particular, the same structures are used for all
instances to be reduced.

On the other hand, in the PSP hardness proofs, one dedicated structure is used
for each instance of the problem reduced from (2QBF in Theorem 2). Indeed, a con-
struction using structures S1, S2 as described earlier is not feasible for PSP, because
(∅, {xT , xF }) 6|= S1 and (∅, {xT , xF }) 6|= S2. This is because there is one satisfaction
“hole” between ∅ and {xT , xF } for both S1 and S2. In the next section, we will exploit
this difference.



3.3 Dissonance: Complexity of Non-convex Structures with Bounded Domains

In this section, we look more carefully at programs with non-convex structures and
identify computational differences between the FLP and PSP semantics. In [2] it has
been shown that any non-convex structure (plus all of its variants) can be used in order
to implement S1 and S2. This result makes it clear that the presence of any non-convex
structure that is closed under variants causes a complexity increase for the FLP seman-
tics (unless the polynomial hierarchy collapses). From the above considerations, it is
immediately clear that the same construction is not feasible for PSP. It turns out that
also no alternative way exists to obtain a similar result, and that the difference in the
ΠP

2 -hardness proofs for FLP and PSP is intrinsic.
We start by considering a simple non-convex structure Å with DÅ = {x, y} and

I |= Å if and only if |I ∩ DÅ| 6= 1. Therefore, Å behaves like a cardinality constraint
COUNT ({x, y}) 6= 1.

Proposition 1. Deciding whether an interpretationM is a PSP answer set of a datalog{Å}

program P is feasible in polynomial time, in particular DTIME(m2), where m is the
number of rules in P .

Proof. For any interpretation, testing whether (I,M) |= Åσ (for a variant Åσ of Å) can
be done by examining |I ∩DÅσ| = i and |M ∩DÅσ| = j and returning false if either
one of i, j is 1, or if i = 0 and j = 2. Alternatively, in a less syntax dependent way, one
can test whether M |= Åσ and (I ∪ J) |= Åσ for each J ⊆ (M ∩DÅσ) \ (I ∩DÅσ).
Since there are at most 4 different J for each I , either method is feasible in constant
time.

For determining whether M is a PSP answer set of P , we can check whether it is
the least fixpoint of KP

M . Computing the least fixpoint takes at most m applications of
KP
M (where m is the number of rules in P ). Each application of KP

M involves in turn at
most m tests for (I,M) |= Åσ. ut

Given Proposition 1 it follows that cautious reasoning is still in coNP for datalog{Å}

programs under the PSP semantics.

Proposition 2. Given a datalog{Å} program P and an atom a, deciding P |=PSP
c a is

in coNP .

Proof. The complement has an immediate nondeterministic polynomial time algorithm:
guess an interpretation M and verify in polynomial time that a 6∈ M and that M is a
PSP answer set of P (by virtue of Proposition 1). ut

It follows that for datalog{Å} cautious reasoning (and also answer set existence and
brave reasoning) is more complex for the FLP semantics than for the PSP semantics
(unless the polynomial hierarchy collapses to its first level).

Examining this result and its proof carefully, we can see that it depends on the
fact that each DÅσ contains 2 elements and therefore at most 4 satisfaction tests are
needed to determine (I,M) |= Åσ. Indeed, we can apply similar reasoning whenever
the domains of involved structures are smaller than a given bound.



Theorem 3. Let P be a program. If k is an upper bound for the domain size of any
structure occurring in P , then checking whether a given interpretation M is a PSP an-
swer set of P is decidable in DTIME(2km2p(n)), where m is the number of rules in
P and p(n) is the polynomial function (in terms of the input size n) bounding determin-
ing satisfaction of any aggregate in P .

Proof. We show that the least fixpoint of KP
M can be computed in time O(2km2p(n)).

In the worst case, each application of the operator derives at most one new atom, and
thus the fixpoint is reached after at mostm applications of the operator. Each application
requires at most the evaluation of all rules of P , and thus at most m2 rule evaluations
are sufficient. To evaluate a rule, the truth of the body has to be checked w.r.t. at most
2k interpretations (similar to Proposition 1, in which k = 2), each requiring p(n) time.
We thus obtain the bound O(2km2p(n)). ut

This means that actually most languages with non-convex structures exhibit a com-
plexity gap between the FLP and PSP semantics. There is a uniformity issue here, which
we informally noted earlier when examining the ΠP

2 -hardness proof for cautious rea-
soning under PSP. We can now formalize this, as it follows from Theorem 3 that we
need an infinite number of inherently different non-convex structures in order to obtain
ΠP

2 hardness.

Corollary 1. Let S be any finite set of structures, possibly including non-convex struc-
tures. Cautious reasoning over datalogS is in coNP under the PSP semantics.

This means that there is also a clear difference in uniformity between the complexity
boundary of the FLP and the PSP semantics, respectively. It also means that it is im-
possible to simulate the FLP semantics in a compact way using the PSP semantics on
the class of programs with bounded domain structures, unless the polynomial hierarchy
collapses to its first level. The general picture of our complexity results is shown in Fig-
ure 1. We can see that the complexity transition from coNP to ΠP

2 is different for the
FLP and PSP semantics, respectively. The solid line between convex and non-convex
structures denotes a crisp transition for FLP, while the dashed line between bounded
non-convex and unbounded non-convex structures is a rougher transition.

4 Discussion

Looking at Figure 1, the transition from coNP to ΠP
2 appears somewhat irregular for

PSP, as the availability of single non-convex structures does not cause the transition, but
only their union. However, in practice the availability of an infinite number of different
structures is not unusual: indeed, if aggregates are considered, the presence of one ag-
gregate function and suitable comparison relations usually gives rise to such an infinite
repertoire of structures.

Example 10. Consider the availability of COUNT over any set of atoms and the com-
parison relation 6=. The structures generated by aggregates of the form COUNT (S) 6= i
do not have a bound on the domains of non-convex aggregates. Indeed, for any structure
COUNT ({a1, . . . , ak}) 6= 1, which is non-convex and for which the domain size is k,
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Fig. 1. Complexity of cautious reasoning

one can formulate also COUNT ({a1, . . . , ak+1}) 6= 1, which is also non-convex and
has a larger domain.

However, as noted earlier, for expressing ΠP
2 -hard problems, one needs a non-

uniform approach for PSP, in the sense that a dedicated aggregate has to be formulated
for each problem instance, whereas for FLP one can re-use the same aggregates for all
problem instances.

In practical terms, our results imply that for programs containing only convex struc-
tures, techniques as those presented in [1] for FLP can be used for computing answer
sets also for PSP, and techniques presented for PSP can be used for FLP in turn. It also
means that this is the largest class for which this can be done with currently available
methods in an efficient way. There are several examples for convex structures that are
easy to identify syntactically: count aggregates with equality guards, sum aggregates
with positive summands and equality guards, dl-atoms that do not involve ∩− and rely
on a tractable Description Logic [4]. However many others are in general not convex,
for example sum aggregates that involve both positive and negative summands, times
aggregates that involve the factor 0, average aggregates, dl-atoms with∩−, and so on. It
is still possible to find special cases of such structures that are convex, but that requires
deeper analyses.

The results also immediately imply impossibility and possibility results for rewritabil-
ity: unless the polynomial hierarchy collapses to its first level, it is not possible in the
FLP semantics to rewrite a program with non-convex structures into one containing only
convex structures (for example, a program not containing any generalized atoms), un-
less disjunction or similar constructs are allowed in rule heads. On the other hand, such
rewritings are possible for the PSP semantics if the non-convex structures are guaran-
teed to have bounded domains. This seems to be most important for dl-programs, where
such rewritings are sought after.

The semantics considered in this paper encompass several approaches suggested for
programs that couple answer set programming with description logics. The approaches
presented in [5] and [11] directly employ the FLP semantics, while the approach of [15]



is shown to be equivalent to the PSP semantics. There are other proposals, such as [4],
which appears to be different from both FLP and PSP already on convex structure. In
future work we plan to relate also these other semantics with FLP and PSP and attempt
to identify the largest coinciding classes of programs.
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