
An Algebra of Causal Chains?

Pedro Cabalar and Jorge Fandinno

Department of Computer Science
University of Corunna, SPAIN

{cabalar, jorge.fandino}@udc.es

Abstract. In this work we propose a multi-valued extension of logic programs
under the stable models semantics where each true atom in a model is associ-
ated with a set of justifications, in a similar spirit than a set of proof trees. The
main contribution of this paper is that we capture justifications into an algebra
of truth values with three internal operations: an addition ‘+’ representing alter-
native justifications for a formula, a commutative product ‘∗’ representing joint
interaction of causes and a non-commutative product ‘·’ acting as a concatenation
or proof constructor. Using this multi-valued semantics, we obtain a one-to-one
correspondence between the syntactic proof tree of a standard (non-causal) logic
program and the interpretation of each true atom in a model. Furthermore, thanks
to this algebraic characterization we can detect semantic properties like redun-
dancy and relevance of the obtained justifications. We also identify a lattice-based
characterization of this algebra, defining a direct consequences operator, proving
its continuity and that its least fix point can be computed after a finite number of
iterations. Finally, we define the concept of causal stable model by introducing
an analogous transformation to Gelfond and Lifschitz’s program reduct.

1 Introduction

A frequent informal way of explaining the effect of default negation in an introductory
class on semantics in logic programming (LP) is that a literal of the form ‘not p’ should
be read as “there is no way to derive p.” Although this idea seems quite intuitive, it
is actually using a concept outside the discourse of any of the existing LP semantics:
the ways to derive p. To explore this idea, [1] introduced the so-called causal logic
programs. The semantics was an extension of stable models [2] relying on the idea of
“justification” or “proof”. Any true atom, in a standard (non-causal) stable model needs
to be justified. In a causal stable model, the truth value of each true atom captures these
possible justifications, called causes. Let us see an example to illustrate this.

Example 1. Suppose we have a row boat with two rowers, one at each side of the boat,
port and starboard. The boat moves forward fwd if both rowers strike at a time. On the
other hand, if we have a following wind, the boat moves forward anyway. �

? This research was partially supported by Spanish MEC project TIN2009-14562-C05-04 and
Xunta program INCITE 2011.

Suppose now that we have indeed that both rowers stroke at a time when we addi-
tionally had a following wind. A possible encoding for this example could be the set of
rules Π1:

p : port s : starb w : fwind

fwd← port ∧ starb fwd← fwind

In the only causal stable model of this program, atom fwd was justified by two al-
ternative and independent causes. On the one hand, cause {p, s} representing the joint
interaction of port and starb. On the other hand, cause {w} inherited from fwind. We
label rules (in the above program only atoms) that we want to be reflected in causes.
Unlabelled fwd rules are just ignored when reflecting causal information. For instance,
if we decide to keep track of the application of these rules, we would handle instead a
program Π2 obtained just by labelling these two rules in Π1 as follows:

a : fwd← port ∧ starb (1)
b : fwd← fwind (2)

The two alternative justifications for atom fwd become the pair of causes {p, s} · a and
{w} · b. The informal reading of {p, s} · a is that “the joint interaction of {p} and {s},
the cause {p, s}, is necessary to apply rule a.” From a graphical point of view, we can
represent causes as proof trees.

p : port

**

s : starb

tt

a : fwd← port ∧ starb

w : fwind

��

b : fwd← fwind

Fig. 1. Proof trees justifying atom fwd in the program Π2

In this paper, we show that causes can be embedded in an algebra with three internal
operations: an addition ‘+’ representing alternative justifications for a formula, a com-
mutative product ‘∗’ representing joint interaction of causes (in a similar spirit to the
‘+’ in [3]) and a non-commutative product ‘·’ acting as a concatenation or rule appli-
cation. Using these operations, we can see that justification for fwd would correspond
now to the value ((p ∗ s) · a) + (w · b) which means that fwd is justified by the two
alternative causes, (p ∗ s) · a and (w · b). The former refers to the application of rule a
to the join interaction of p and s. Similarly, the later refers to the application of rule b to
w. From a graphical point of view, each cause corresponds to one of proof trees in the
Figure 1, the right hand side operator of application corresponds to the head whereas
the left hand side operator corresponds to the product of its children.

The rest of the paper is organised as follows. Section 2 describes the algebra with
these three operations and a quite natural ordering relation on causes. The next sec-
tion studies the semantics for positive logic programs and shows the correspondence
between the syntactic proof tree of a standard (non-causal) logic program and the in-
terpretation of each atom in a causal model. Section 4 introduces default negation and
stable models. Finally, Section 5 concludes the paper.

2 Algebra of causal values

As we have introduced, our set of causal values will constitute an algebra with three in-
ternal operations: addition ‘+’ representing alternative causes, product ‘∗’ representing
joint interaction between causes and rule application ‘·’. We define now causal terms,
the syntactic counterpart of (causal) values, just as combinations of these three opera-
tions over labels (events).

Definition 1 (Causal term). A causal term, t, over a set of labels Lb is recursively
defined as one of the following expressions:

t ::= l |
∏
ti∈S

ti |
∑
ti∈S

ti | t1 · t2

where l is a label l ∈ Lb, t1, t2 are in their turn causal terms and S is a (possibly empty
or possibly infinite) set of causal terms. The set of causal terms over Lb is denoted by
TLb. �

As we can see, infinite products and sums are allowed whereas a term may only con-
tain a finite number of concatenation applications. Constants 0 and 1 will be shorthands
for the empty sum

∑
t∈∅ t and the empty product

∏
t∈∅ t, respectively.

We adopt the following notation. To avoid an excessive use of parentheses, we as-
sume that ‘·’ has the highest priority, followed by ‘∗’ and ‘+’ as usual, and we further
note that the three operations will be associative. When clear from the context, we will
sometimes remove ‘·’ so that, for instance, the term l1l2 stands for l1 · l2. As we will
see, two (syntactically) different causal terms may correspond to the same causal value.
However, we will impose Unique Names Assumption (UNA) for labels, that is, l 6= l′

for any two (syntactically) different labels l, l′ ∈ Lb, and similarly l 6= 0 and l 6= 1 for
any label l.

To fix properties of our algebra we recall that addition ‘+’ represents a set of al-
ternative causes and product ‘∗’ a set of causes that are jointly used. Thus, since both
represent sets, they are associative, commutative and idempotent. Contrary, although
associative, application ‘·’ is not commutative. Note that the right hand side operator
represents the applied rule and left hand one represents a cause that is necessary to ap-
ply it, therefore they are clearly not interchangeable. We can note another interesting
property: application ‘·’ distributes over both addition ‘+’ and product ‘∗’. To illustrate
this idea, consider the following variation of our example. Suppose now that the boat
also leaves a wake behind when it moves forward. Let Π3 be the set of rules Π1 plus
the rule k : wake ← fwd reflecting this new assumption. As we saw, fwd is justified
by p ∗ s + w and thus wake will be justified by applying rule k : wake ← fwd to
it, i.e.the value (p ∗ s + w) · k. We can also see that there are two alternative causes
justifying wake, graphically represented in the Figure 2. The term that corresponds
which this graphical representation is (p ∗ s) · k + w · k = (p ∗ s + w) · k. Moreover,
application ‘·’ also distributes over product ‘∗’ and (p ∗ s) · k + w · k is equivalent to
(p ·k) ∗ (s ·k)+ (w ·k). Intuitively, if the joint iteration of p and s is necessary to apply
k then both p and s are also necessary to apply it, and conversely. Note that each chain
of applications , (p · k), (s · k) and (w · k) corresponds to a path in one of the trees in
the Figure 2. Causes can be seen as sets (products) of paths (causal chains).

p : port

**

s : starb

tt

fwd← port ∧ starb
��

k : wake← fwd

w : fwind

��

fwd← fwind

��

k : wake← fwd

Fig. 2. Proof trees pontificating atom fwd in the program Π3

Definition 2 (Causal Chain). A causal chain x over a set of labels Lb is a sequence
x = l1 · l2 · . . . · ln, or simply l1l2 . . . ln, with length |x| = n > 0 and li ∈ Lb. �

We denote XLb to stand for the set of causal chains over Lb and will use letters
x, y, z to denote elements from that set. It suffices to have a non-empty set of labels, say
Lb = {a}, to get an infinite set of chains XLb = {a, aa, aaa, . . . }, although all of them
have a finite length. It is easy to see that, by an exhaustive application of distributivity,
we can “shift” inside all occurrences of the application operator so that it only occurs in
the scope of other application operators. A causal term obtained in this way is a normal
causal term.

Definition 3 (Normal causal term). A causal term, t, over a set of labels Lb is recur-
sively defined as one of the following expressions:

t ::= x |
∏
ti∈S

ti |
∑
ti∈S

ti

where x ∈ XLb is a causal chain over Lb and S is a (possibly empty or possibly infinite)
set of normal causal terms. The set of causal terms over Lb is denoted by ULb. �

Proposition 1. Every causal term t can be normalized, i.e. written as an equivalent
normal causal term u. �

In the same way as application ‘·’ distributes over addition ‘+’ and product ‘∗’, the
latter, in their turn, also distributes over addition ‘+’. Consider a new variation of our
example to illustrate this fact. Suppose that we have now two port rowers that can strike,
encoded as the set of rules Π4:

p1 : port1 p2 : port2 s : starb

port← port1 port← port2 fwd← port ∧ starb

We can see that, in the only causal stable model of this program, atom portwas justified
by two alternative, and independent causes, p1 and p2, and after applying unlabelled
rules to them, the resulting value assigned to fwd is (p1 + p2) ∗ s. It is also clear that
there are two alternative causes justifying fwd: the result from combining the starboard
rower strike with each of the port rower strikes, p1 ∗ s and p2 ∗ s. That is, causal terms
(p1 + p2) ∗ s and p1 ∗ s+ p2 ∗ s are equivalent.

Furthermore, as we introduce above, causes can be ordered by a notion of “strength”
of justification. For instance, in our example, fwd is justified by two independent

causes, p ∗ s + w while fwind is only justified by w. If we consider the program
Π5 obtained by removing the fact w : fwind from Π1 then fwd keeps being justi-
fied by p ∗ s but fwind becomes false. That is, fwd is “more strongly justified” than
fwind in Π1, written w ≤ p ∗ s + w. Similarly, p ∗ s ≤ p ∗ s + w. Note also that,
in this program Π5, fwd needs the joint interaction of p and s to be justified but port
and starb only need p and s, respectively. That is, p is “more strongly justified” than
p ∗ s, written p ∗ s ≤ p. Similarly, p ∗ s ≤ s. We can also see that in program Π2

which labels rules for fwd, one of the alternative causes for fwd is w · b and this is
“less strongly justified” than w, i.e. w · b ≤ w since, from a similar reasoning, w · b
needs the application of b to w when w only requires itself. In general, we will see that
a ·b ≤ a∗b ≤ X ≤ a+b whereX can be either a or b. We formalize this order relation
starting for causal chains. Notice that a causal chain x = l1l2 . . . ln can be alternatively
characterized as a partial function from naturals to labels x : N −→ Lb where x(i) = li
for all i ≤ n and undefined for i > n. Using this characterisation, we can define the
following partial order among causal chains:

Definition 4 (Chain subsumption). Given two causal chains x and y ∈ XLb, we say
that y subsumes x, written x ≤ y, if and only if there exists a strictly increasing function
δ : N −→ N such that for each i ∈ N with y(i) defined, x

(
δ(i)

)
= y(i). �

Proposition 2. Given two finite causal chains x, y ∈ XLb, they are equivalent (i.e. both
x ≤ y and y ≤ x) if and only if they are syntactically identical. �

Informally speaking, y subsumes x, when we can embed y into x, or alternatively when
we can form y by removing (or skipping) some labels from x. For instance, take the
causal chains x = abcde and y = ac. Clearly we can form y = ac = a · �b · c · �d · �e
by removing b, d and e from x. Formally, x ≤ y because we can take some strictly
increasing function with δ(1) = 1 and δ(2) = 3 so that y(1) = x(δ(1)) = x(1) = a
and y(2) = x(δ(2)) = x(3) = c.

Although, at a first sight, it may seem counterintuitive the fact that x ≤ y implies
|x| ≥ |y|, as we mentioned, a fact or formula is “more strongly justified” when we need
to apply less rules to derive it (and so, causal chains contain less labels) respecting their
ordering. In this way, chain ac is a “more strongly justification” than abcde.

As we saw above, a cause can be seen as a product of causal chains, that from a
graphical point of view correspond to the set of paths in a proof tree. We notice now
an interesting property relating causes and the “more strongly justified” order relation:
a joint interaction of comparable causal chains should collapse to the weakest among
them. Take, for instance, a set of rules Π6:

a : p b : q ← p r ← p ∧ q

where, in the unique causal stable model, r corresponds to the value a∗a · b. Informally
we can read this as “we need a and apply rule b to rule a to prove r”. Clearly, we are
repeating that we need a. Term a is redundant and then a∗a·b is simply equivalent to a·b.
This idea is quite related to the definition of order filter in order theory. An order filter F
of a poset P is a special subset F ⊆ P satisfying1 that for any x ∈ F and y ∈ P , x ≤ y

1 Order filter is a weaker notion than filter which further satisfies that any pair x, y ∈ F has a
lower bound in F too.

implies y ∈ F . An order filter F is furthermore generated by an element x ∈ P iff
x ≤ y for all elements y ∈ F , the order filter generated by x is written ||x||. Considering
causes as the union of filters generated by their causal chains, the join interaction of
causes just correspond to their union. For instance, if we consider the set of labels
Lb = {a, b} and its corresponding set of causal chains XLb = {a, b, ab, ba, . . . }, then
||ab|| and ||a|| respectively correspond to the set of all chains grater than ab and a in the
poset P = 〈XLb,≤〉. Those are, ||ab|| = {ab, a, b} and ||a|| = {a}. The term a ∗ ab
corresponds just to the union of both sets ||a|| ∪ ||ab|| = ||ab||. We define a cause as
follows:

Definition 5 (Cause). A cause for a set of labels Lb is any order filter for the poset of
chains 〈XLb,≤〉. We will write CLb (or simply C when there is no ambiguity) to denote
the set of all causes for Lb. �

This definition captures the notion of cause, or syntactically a product of causal
chains. To capture possible alternative causes, that is, additions of products of causal
chains, we notice that addition obeys a similar behaviour with respect to redundant
causes. Take, for instance, a set of rules Π7:

a : p b : p← p

It is clear, that the cause a is sufficient to justify p, but there are also infinitely many
other alternative and redundant causes a · b, a · b · b, . . . that justify p, that is a+ a · b+
a · b · b+ To capture a set of alternative causes we define the idea of causal value,
in its turn, as a filter of causes.

Definition 6 (Causal Value). Given a set of labels Lb, a causal value is any order filter
for the poset 〈CLb,⊆〉. �

The causal value ||||a||||, the filter generated by the cause ||a||, is the set containing ||a|| =
{a, a+b} and all its supersets. That is, ||||a|||| = {||a||, ||a∗b||, ||a ·b||, . . . }. Futhermore,
as we will se later, addition can be interpreted as the union of causal values for its
respective operands. Thus, a+ a · b+ a · b · b+ . . . just corresponds to the union of the
causal values generated by their addend causes, ||||a||||∪||||a · b||||∪||||a · b · b||||+. . . = ||||a||||.

The set of possible causal values formed with labels Lb is denoted as VLb. An ele-
ment from VLb has the form of a set of sets of causal chains that, intuitively, corresponds
to a set of alternative causes (sum of products of chains). From a graphical point of view,
it corresponds to a set of alternative proof trees represented as their respective sets of
paths. We define now the correspondence between syntactical causal terms and their
semantic counterpart, causal values.

Definition 7 (Valuation of normal terms). The valuation of a normal term is a map-
ping ε : ULb −→ VLb defined as:

ε(x)
def
= |||x||| with x ∈ XLb, ε

(∑
t∈S

t
)

def
=

⋃
t∈S

ε(t), ε
(∏
t∈S

t
)

def
=

⋂
t∈S

ε(t) �

Note that any causal term can be normalized and then this definition trivially extends to
any causal term. Furthermore, a causal chain x is mapped just to the causal value gen-
erated by the cause, in their turn, generated by x, i.e. the set containing all causes which
contain x. The aggregate union of an empty set of sets (causal values) corresponds to
∅. Therefore ε(0) =

⋃
t∈∅ ε(t) = ∅, i.e. 0 just corresponds to the absence of justifica-

tion. Similarly, as causal values range over parts of C, the aggregate intersection of an
empty set of causal values corresponds to C, and thus ε(1) =

⋂
t∈∅ ε(t) = C, i.e. 1 just

corresponds to the “maximal” justification.

Theorem 1 (From [4]). 〈VLb,∪,∩〉 is the free completely distributive lattice gener-
ated by 〈XLb,≤〉, and the restriction of ε to XLb is an injective homomorphism (or
embedding). �

The above theorem means that causal terms form a complete lattice. The order rela-
tion≤ between causal terms just corresponds to set inclusion between their correspond-
ing causal values, i.e. x ≤ y iff ε(x) ⊆ ε(y). Furthermore, addition ‘+’ and product ‘∗’
just respectively correspond to the least upper bound and the greater lower bound of the
associated lattice 〈TLb,≤〉 or 〈TLb,+, ∗〉 where:

t ≤ u def
= ε(t) ⊆ ε(u) (⇔ t ∗ u = t ⇔ t+ u = u)

for any normal term t and u. For instance, in our example Π2, fwd was associated with
the causal term p · a ∗ s · a+w · b. Thus, the causal value associated with it corresponds
to

ε(p · a ∗ s · a+ w · b) = ||||p · a|||| ∩ ||||s · a|||| ∪ ||||w · b||||

Causal values are, in general, infinite sets. For instance, as we saw before, simply
with Lb = {a} we have the chains XLb = {a, aa, aaa, . . . } and ε(a) contains all possi-
ble causes in C that are supersets of {a}, that is, ε(a) = {{a}, {aa, a}, {aaa, aa, a}, . . . }.
Obviously, writing causal values in this way is infeasible – it is more convenient to use
a representative causal term instead. For this purpose, we define a function γ that acts as
a right inverse morphism for ε selecting minimal causes, i.e., given a causal value V , it
defines a normal term γ(V) = t such that ε(t) = V and γ(V) does not have redundant
subterms. The function γ is defined as a mapping γ : VLb −→ ULb such that for any

causal value V ∈ VLb, γ(V)
def
=
∑
C∈V

∏
x∈C x where V = {C ∈ V |6 ∃D ∈ V,D ⊂

C} and C = {x ∈ C |6 ∃y ∈ C, y < x} respectively stand for ⊆-minimal causes of V
and ≤-minimal chains of C. We will use γ(V) to represent V .

Proposition 3. The mapping γ is a right inverse morphism of ε. �

Given a term t we define its canonical form as γ(ε(t)). Canonical terms are of the
form of sums of products of causal chains. As it can be imagined, not any term in
that form is a canonical term. For instance, going back, we easily can check that terms
a ∗ ab = ab and a+ ab+ abb+ · · · = a respectively correspond to the canonical terms
γ(ε(ab ∗ a)) = γ(ε(ab)) = ab and γ(ε(a+ ab+ abb+ . . .)) = γ(ε(a)) = a. Figure 3
summarizes addition and product properties while Figure 4 is analogous for application
properties.

Associativity
t + (u+w) = (t+u) + w
t ∗ (u∗w) = (t∗u) ∗ w

Commutativity
t + u = u + t
t ∗ u = u ∗ t

Absorption
t = t + (t∗u)
t = t ∗ (t+u)

Distributive
t + (u∗w) = (t+u) ∗ (t+w)
t ∗ (u+w) = (t∗u) + (t∗w)

Identity

t = t + 0
t = t ∗ 1

Idempotence
t = t + t
t = t ∗ t

Annihilator
1 = 1 + t
0 = 0 ∗ t

Fig. 3. Sum and product satisfy the properties of a completely distributive lattice.

Associativity
t · (u·w) = (t·u) · w

Absorption
t = t + u · t · w

u · t · w = t ∗ u · t · w

Identity
t = 1 · t
t = t · 1

Addition distributivity
t · (u+w) = (t·u) + (t·w)
(t + u) · w = (t·w) + (u·w)

Product distributivity
c · (d ∗ e) = (c · d) ∗ (c · e)
(c ∗ d) · e = (c · e) ∗ (c · e)

Annihilator
0 = t · 0
0 = 0 · t

Fig. 4. Properties of the application ‘·’ operator. Note: c, d and e denote a causes instead of
arbitrary causal terms.

For practical purposes, simplification of causal terms can be done by applying the
algebraic properties shown in Figures 3 and 4. For instance, the examples from Π6 and
Π7 containing redundant information can now be derived as follows:

a ∗ a · b = (a ∗ 1 · a · b) identity for ‘·’
= 1 · a · b absorption for ‘·’
= a · b identity for ‘·’

a+ a · b+ a · b · b+ . . . = a+ 1 · a · b+ a · b · b+ . . . identity for ‘·’
= a+ a · b · b+ . . . absorption for ‘·’
= a+ 1 · a · b · b+ . . . identity for ‘·’
.
= a absorption for ‘·’

Let us see another example involving distributivity. The term ab ∗ c+ a can be derived
as follows:

a · b ∗ c+ a = (a · b+ a) ∗ (c+ a) distributivity
= (1 · a · b+ a) ∗ (c+ a) identity for ‘·’
= (a+ 1 · a · b) ∗ (c+ a) commutativity for ‘+’
= a ∗ (c+ a) absorption for ‘·’
= a absorption for ‘∗’

3 Positive programs and minimal models

Let us describe now how to use the causal algebra to evaluate causal logic programs.
A signature is a pair 〈At, Lb〉 of sets that respectively represent the set of atoms (or
propositions) and the set of labels. As usual, a literal is defined as an atom p (positive
literal) or its negation ¬p (negative literal). In this paper, we will concentrate on pro-
grams without disjunction in the head, leaving the treatment of disjunction for a future
study.

Definition 8 (Causal logic program). Given a signature 〈At, Lb〉 a (causal) logic pro-
gram Π is a set of rules of the form:

t : L0 ← L1 ∧ . . . ∧ Lm ∧ not Lm+1 ∧ . . . ∧ not Ln

where t is a causal term over Lb, L0 is a literal or ⊥ (the head of the rule) and L1 ∧
. . .∧Lm ∧ not Lm+1 ∧ . . . not Ln is a conjunction of literals (the body of the rule). An
empty body is represented as >. �

For any rule φ of the form t : L0 ← L1∧. . .∧Lm∧not Lm+1∧. . . not Ln we define
label(φ) = t. Most of the following definitions are standard in logic programming. We
denote head(φ) = L0, B+ (resp. B−) to represent the conjunction of all positive (resp.
negative) literals L1 ∧ . . . ∧ Ln (resp. not Lm+1 ∧ . . . ∧ not Ln) that occur in B. A
logic program is positive if B− is empty for all rules (n = m), that is, if it contains
no negations. Unlabelled rules are assumed to be labelled with the element 1 which, as
we saw, is the identity for application ‘·’. > (resp. ⊥) represent truth (resp. falsity). If
n = m = 0 then← can be dropped.

Given a signature 〈At, Lb〉 a causal interpretation is a mapping I : At −→ VLb
assigning a causal value to each atom. Partial order ≤ is extended over interpretations
so that given two interpretations I, J we define I ≤ J

def
= I(p) ≤ J(p) for each atom

p ∈ At. There is a≤-bottom interpretation 0 (resp. a≤-top interpretation 1) that stands
for the interpretation mapping each atom p to 0 (resp. 1). The set of interpretations I
with the partial order ≤ forms a poset 〈I,≤〉 with supremum ‘+’ and infimum ‘∗’ that
are respectively the sum and product of atom interpretations. As a result, 〈I,+, ∗〉 also
forms a complete lattice.

Observation 1 When Lb = ∅ the set of causal values becomes VLb = {0, 1} and
interpretations collapse to classical propositional logic interpretations. �

Definition 9 (Causal model). Given a positive causal logic program Π and a causal
interpretation I over the signature 〈At, Lb〉, I is a causal model, written I |= Π , if and
only if (

I(L1) ∗ . . . ∗ I(Lm)
)
· t ≤ I(L0)

for each rule ϕ ∈ Π of the form ϕ = L0 ← L1, . . . , Lm.

For instance, take rule (1) from Example 1 and let I be an interpretation such that
I(port) = p and I(starb) = s. Then I will be a model of (1) when (p ∗ s) · a ≤

I(fwd). In particular, this holds when I(fwd) = (p ∗ s) ·a+w · b which was the value
we expected for program Π2. But it would also hold when, for instance, I(fwd) =
a + b or I(fwd) = 1. Note that this is important if we had to accommodate other
possible additional facts (a : fwd) or even (1 : fwd) in the program. The fact that
any I(fwd) greater than (p ∗ s) · a + w · b is also a model clearly points out the need
for selecting minimal models. In fact, as happens in the case of non-causal programs,
positive programs have a least model (this time, with respect to≤ relation among causal
interpretations) that can be computed by iterating an extension of the well-known direct
consequences operator defined by [5].

Definition 10 (Direct consequences). Given a positive logic program Π for signature
〈At, Lb〉 and a causal interpretation I , the operator of direct consequences is a function
TΠ : I −→ I such that, for any atom p ∈ At:

TΠ(I)(L0)
def
=
∑{ (

I(L1) ∗ . . . ∗ I(Lm)
)
· t | (t : L0 ← L1 ∧ . . . ∧ Lm) ∈ Π

}
In order to prove some properties of this operator, an important observation should

be made: since the set of causal values forms now a lattice, causal logic programs can
be translated to Generalized Annotated Logic Programming (GAP). GAP is a general
a framework for multivalued logic programming where the set of truth values must to
form an upper semilattice and rules (annotated clauses) have the following form:

L0 : ρ← L1 : µ1 & . . . & Lm : µm (3)

where L0, . . . , Lm are literals, ρ is an annotation (may be just a truth value, an an-
notation variable or a complex annotation) and µ1, . . . , µm are values or annotation
variables. A complex annotation is the result to apply a total continuous function to a
tuple of annotations. For instance ρ can be a complex annotation f(µ1, . . . , µm) that
applies the function f to a m-tuple (µ1, . . . , µm) of annotation variables in the body of
(3). Given a positive program Π , each rule ϕ ∈ Π of the form

t : L0 ← L1 ∧ . . . ∧ Lm (4)

is translated to an annotated clause GAP (ϕ) of the form of (3) where µ1, . . . , µm are
annotation variables that capture the causal values of each body literal. The head com-
plex annotation corresponds to the function ρ def

= (µ1 ∗ . . . ∗µm) · t that forces the head
to inherit the causal value obtained by applying the rule label t to the product of the
interpretation of body literals µ1 ∗ . . . ∗ µm. The translation of a program Π is simply
defined as:

GAP (Π)
def
= {GAP (ϕ) | ϕ ∈ Π}

A complete description of GAP restricted semantics, denoted as |=r, is out of the scope
of this paper (the reader is referred to [6]). For our purposes, it suffices to observe that
the following important property is satisfied.

Theorem 2. A positive causal logic program Π can be translated to a general an-
notated logic program GAP (Π) s.t. a causal interpretation I |= Π if and only if
I |=r GAP (Π). Furthermore, TΠ(I) = RGAP (Π)(I) for any interpretation I .

Corollary 1. Given a positive logic program Π the following properties hold:

1. Operator TΠ is monotonic.
2. Operator TΠ is continuous.
3. TΠ ↑ ω (0) = lfp(TΠ) is the least model of Π .
4. The iterative computation TΠ ↑ k (0) reaches the least fixpoint in n steps for some

positive integer n.

Proof. Directly follows from Theorem 2 and Theorems 1, 2 and 3 in [6].

The existence of a least model for a positive program and its computation using TΠ
is an interesting result, but it does not provide any information on the relation between
the causal value it assigns to each atom with respect to its role in the program. As we
will see, we can establish a direct relation between this causal value and the idea of
proof in the positive program. Let us formalise next the idea of proof tree.

Definition 11 (Proof tree). Given a causal logic program Π , a proof tree is a directed
acyclic graph T = 〈V,E〉, where vertices V ⊆ Π are rules from the program, and
E ⊆ V × V satisfying:

(i) There is at exactly one vertex without outgoing edges denoted as sink(T).
(ii) For each rule ϕ = (t : L0 ← B) ∈ V and for each atom Li ∈ B+ there is exactly

one ϕ′ with (ϕ′, ϕ) ∈ E and this rule satisfies head(ϕ′) = Li. �

Notice that condition (ii) forces us to include an incoming edge for each atom in the
positive body of a vertex rule. As a result, source vertices must be rules with empty
positive body, or just facts in the case of positive programs. Another interesting obser-
vation is that, proof tree do not require an unique parent for each vertex. For instance, in
Example 1, if both port and starb were obtained as a consequence of some command
made by the captain, we could get instead a proof tree, call it T1, of the form:

c : command

rr ,,

p : port← command

++

s : starb← command

ss

a : fwd← port ∧ starb

Definition 12 (Proof path). Given a proof tree T = 〈V,E〉 we define a proof path for
T as a concatenation of terms t1 . . . tn satisfying:

1. There exists a rule ϕ ∈ V with label(r) = t1 such that ϕ is a source, that is, there
is no ϕ′ s.t. (ϕ′, ϕ) ∈ E.

2. For each pair of consecutive terms ti, ti+1 in the sequence, there is some edge
(ϕi, ϕi+1) ∈ E s.t. label(ϕi) = ti and label(ϕi+1) = ti+1.

3. label(sink(T)) = tn. �

Let us write Paths(T) to stand for the set of all proof paths for a given proof
tree T . We define the cause associated to any tree T = 〈V,E〉 as the causal term
cause(T)

def
=
∏
t∈Paths(T) t. As an example, cause(T1) = (c · p · a) ∗ (c · s · a). Also

(p · a) ∗ (s · a) and w · b correspond to each tree in Figure 1.

Theorem 3. Let Π be a positive program and I be the least model of Π , then for each
atom p:

I(p) =
∑

T∈PTp

cause(T)

where PTp = {T = 〈V,E〉 | head(sink(T)) = p} is a set of proof trees with nodes
V ⊆ Π .

From this result, it may seem that our semantics is just a direct translation of the syntac-
tic idea of proof trees. However, the semantics is actually a more powerful notion that
allows detecting redundancies, tautologies and inconsistencies. In fact, the expression∑
T∈PTp

cause(T) may contain redundancies and is not, in the general case, in normal
form. As an example, recall the program Π6:

a : p b : q ← p r ← p ∧ q

that has only one proof tree for p whose cause would correspond to I(r) = a ∗ a · b.
But, by absorption, this is equivalent to I(r) = a · b pointing out that the presence of p
in rule r ← p ∧ q is redundant.

A corollary of Theorem 3 is that we can replace a rule label by a different one, or
by 1 (the identity for application ‘·’) and we get the same least model, modulo the same
replacement in the causal values for all atoms.

Corollary 2. Let Π be a positive program, I the least model of Π , l ∈ Lb be a label,
m ∈ Lb ∪ {1} and Π l

m (resp. I lm) be the program (resp. interpretation) obtained after
replacing each occurrence of l by m in Π (resp. in the interpretation of each atom in
I). Then I lm is the least model of Π l

m. �

In particular, replacing a label bym = 1 has the effect of removing it from the signature.
Suppose we make this replacement for all atoms in Lb and call the resulting program
and least model ΠLb

1 and ILb1 respectively. Then ΠLb
1 is just the non-causal program

resulting from Π after removing all labels and it is easy to see (Observation 1) that ILb1

coincides with the least classical model of this program2. Moreover, this means that for
any positive program Π , if I is its least model, then the classical interpretation:

I ′(p)
def
=

{
1 if I(p) 6= 0

0 otherwise

is the least classical model of Π ignoring its labels.

4 Default negation and stable models

Consider now the addition of negation, so that we deal with arbitrary programs. To
illustrate this, we introduce a variation in Example 1 introducing the qualification prob-
lem from [7]: actions for moving the boat forward can be disqualified if an abnormal

2 Note that ILb is Boolean: if assigns either 0 or 1 to any atom in the signature.

situation occurs (for instance, that the boat is anchored, any of the oars are broken, the
sail is full of holes, etc.) . As usual this can be represented using default negation as
shown in the set of rules Π8:

p : port s : starb

a : fwd← port ∧ starb ∧ not ab a

ab a← anchored

ab a← broken oar1

ab a← broken oar2

w : fwind

b : fwd← fwind ∧ not ab b

ab b← anchored

ab b← holed sail

. . .

The causes that justify an atom should not be a list of not occurred abnormal situ-
ations. For instance, in program Π8 where no abnormal situation occurs, the causal
value that justify atom fwd should be (p · a ∗ s · a) + (w · b) as in the program Π2

where abnormal situations are not included. References to the not occurred abnormal
situations (not anchored, not broken oar1. . .) are not mentioned. Default negation
does not affect the causes justifying an atom when the default holds. Of course, when
the default does not hold, for instance adding the fact anchored to the above program,
fwd becomes false. Thus, we introduce the following straightforward rephrasing of the
traditional program reduct [2].

Definition 13 (Program reduct). The reduct of a program Π with respect to an inter-
pretation I , written ΠI is the result of the following transformations on Π:

1. Removing all rules s.t. I(B−) = 0
2. Removing all negative literals from the rest of rules. �

A causal interpretation I is a causal stable model of a causal program Π if I is the
least model of ΠI . This definition allows us to extend Theorem 3 to normal programs
in a direct way:

Theorem 4 (Main theorem). LetΠ be a causal program and I be causal stable model
of Π , then for each atom p:

I(p) =
∑

T∈PTp

cause(T) where

PTp = {T = 〈V,E〉 | head(sink(T)) = p and V ⊆ {(t : q ← B) ∈ Π | I(B−) 6=
0}}. �

That is, the only difference now is that the set of proof trees PTp is formed with rules
whose negative body is not false I(B−) 6= 0 (that is, they would generate rules in the
reduct).

Corollary 3. Let Π be a normal program, I a causal stable model of Π , l ∈ Lb be a
label, m ∈ Lb∪ {1} and Π l

m (resp. I lm) be the program (resp. interpretation) obtained
after replacing every occurrence of l bym inΠ (resp. in the interpretation of each atom
in I). Then I lm is a causal stable model of Π l

m. �

As in the case of positive programs, replacing a label by m = 1 has the effect of
removing it from the signature. Then, for any normal program Π , if I is a causal stable
model, then the classical interpretation:

I ′(p)
def
=

{
1 if I(p) 6= 0

0 otherwise

is a classical stable model of Π ignoring its labels. It is easy to see that not only the
above program Π8 has an unique causal stable model that corresponds to:

I(port) = p
I(starb) = s
I(fwind) = w
I(fwd) = (p · a ∗ s · a) + (w · b)

I(ab f) = 0
I(anchored) = 0
I(broken oar1) = 0

. . . = 0

but also the program obtained from it ignoring the labels has an unique standard stable
model {port, starb, fwind, fwd} that corresponds to the atoms whose interpretations
differ from 0 in the former.

5 Conclusions

In this paper we have provided a multi-valued semantics for normal logic programs
whose truth values form a lattice of causal chains. A causal chain is nothing else but a
concatenation of rule labels that reflects some sequence of rule applications. In this way,
a model assigns to each true atom a value that contains justifications for its derivation
from existing rules. We have further provided three basic operations on the lattice: an
addition, that stands for alternative, independent justifications; a product, that represents
joint interaction of causes; and a concatenation that acts as a chain constructor. We have
shown that this lattice is completely distributive and provided a detailed description of
the algebraic properties of its three operations.

A first important result is that, for positive programs, there exists a least model that
coincides with the least fixpoint of a direct consequences operator, analogous to [5].
With this, we are able to prove a direct correspondence between the semantic values we
obtain and the syntactic idea of proof tree. The main result of the paper generalises this
correspondence for the case of stable models for normal programs.

Many open topics remain for future study. For instance, ongoing work is currently
focused on implementation, complexity assessment, extension to disjunctive programs
or introduction of strong negation. Regarding expressivity, an interesting topic is the
introduction of new syntactic operators for inspecting causal information like check-
ing the influence of a particular event or label in a conclusion, expressing necessary or
sufficient causes, or even dealing with counterfactuals. Another interesting topic is re-
moving the syntactic reduct definition in favour of some full logical treatment of default
negation, as happens for (non-causal) stable models and their characterisation in terms
of Equilibrium Logic [8]. This would surely simplify the quest for a necessary and
sufficient condition for strong equivalence, following similar steps to [9]. It may also
allow extending the definition of causal stable models to an arbitrary syntax and to the

first order case, where the use of variables in labels may also introduce new interesting
features.

There are also other areas whose relations deserve to be formally studied. For in-
stance, the introduction of a strong negation operator will immediate lead to a connec-
tion to Paraconsistency approaches. In particular, one of the main problems in the area
of Paraconsistency is deciding which parts of the theory do not propagate or depend on
an inconsistency. This decision, we hope, will be easier in the presence of causal justifi-
cations for each derived conclusion. A related area for which similar connections can be
exploited is Belief Revision. In this case, causal information can help to decide which
relevant part of a revised theory must be withdrawn in the presence of new information
that would lead to an inconsistency if no changes are made. A third obvious related
area is Debugging in Answer Set Programming, where we try to explain discrepancies
between an expected result and the obtained stable models. In this field, there exists
a pair of relevant approaches [10, 11] to whom we plan to compare. Finally, as poten-
tial applications, our main concern is designing a high level action language on top of
causal logic programs with the purpose of modelling some typical scenarios from the
literature on causality in Artificial Intelligence.

References

1. Cabalar, P.: Causal logic programming. In Erdem, E., Lee, J., Lierler, Y., Pearce, D., eds.:
Correct Reasoning. Volume 7265 of Lecture Notes in Computer Science., Springer (2012)
102–116

2. Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. In Kowalski,
R.A., Bowen, K.A., eds.: Logic Programming: Proc. of the Fifth International Conference
and Symposium (Volume 2). MIT Press, Cambridge, MA (1988) 1070–1080

3. Artëmov, S.N.: Explicit provability and constructive semantics. Bulletin of Symbolic Logic
7(1) (2001) 1–36

4. Stumme, G.: Free distributive completions of partial complete lattices. Order 14 (1997)
179–189

5. van Emden, M.H., Kowalski, R.A.: The semantics of predicate logic as a programming
language. J. ACM 23(4) (1976) 733–742

6. Kifer, M., Subrahmanian, V.S.: Theory of generalized annotated logic programming and its
applications. Journal of Logic Programming 12 (1992)

7. McCarthy, J.: Epistemological problems of artificial intelligence. In Reddy, R., ed.: IJCAI,
William Kaufmann (1977) 1038–1044

8. Pearce, D.: Equilibrium logic. Ann. Math. Artif. Intell. 47(1-2) (2006) 3–41
9. Lifschitz, V., Pearce, D., Valverde, A.: Strongly equivalent logic programs. ACM Trans.

Comput. Log. 2(4) (2001) 526–541
10. Gebser, M., Pührer, J., Schaub, T., Tompits, H.: A meta-programming technique for de-

bugging answer-set programs. In Fox, D., Gomes, C.P., eds.: AAAI, AAAI Press (2008)
448–453

11. Pontelli, E., Son, T.C., El-Khatib, O.: Justifications for logic programs under answer set
semantics. TPLP 9(1) (2009) 1–56

