
On the Semantics of Gringo

Amelia Harrison, Vladimir Lifschitz, and Fangkai Yang

University of Texas, Austin, Texas, USA
{ameliaj, vl, fkyang}@cs.utexas.edu

Abstract. Input languages of answer set solvers are based on the math-
ematically simple concept of a stable model. But many useful constructs
available in these languages, including local variables, conditional liter-
als, and aggregates, cannot be easily explained in terms of stable models
in the sense of the original definition of this concept and its straightfor-
ward generalizations. Manuals written by designers of answer set solvers
usually explain such constructs using examples and informal comments
that appeal to the user’s intuition, without references to any precise se-
mantics. We propose to approach the problem of defining the semantics
of gringo programs by translating them into the language of infini-
tary propositional formulas. This semantics allows us to study equiv-
alent transformations of gringo programs using natural deduction in
infinitary propositional logic.

1 Introduction

In this note, Gringo is the name of the input language of the grounder gringo,1

which is used as the front end in many answer set programming (ASP) systems.
Several releases of gringo have been made public, and more may be coming
in the future; accordingly, we can distinguish between several “dialects” of the
language Gringo. We concentrate here on Version 4, released in March of 2013.
(It differs from Version 3, described in the User’s Guide dated October 4, 2010,2

in several ways, including the approach to aggregates—it is modified as proposed
by the ASP Standardization Working Group.3)

The basis of Gringo is the language of logic programs with negation as fail-
ure, with the syntax and semantics defined in [6]. Our goal here is to extend
that semantics to a larger subset of Gringo. Specifically, we would like to cover
arithmetical functions and comparisons, conditions, and aggregates.4

1 http://potassco.sourceforge.net/.
2 The User’s Guide can be downloaded from the Potassco website (Footnote 1).

It is posted also at http://www.cs.utexas.edu/users/vl/teaching/lbai/clingo

guide.pdf.
3 https://www.mat.unical.it/aspcomp2013/ASPStandardization.
4 The subset of Gringo discussed in this note includes also constraints, disjunctive

rules, and choice rules, treated along the lines of [7] and [3]. The first of these papers
introduces also “classical” (or “strong”) negation—a useful feature that we do not
include. (Extending our semantics of Gringo to programs with classical negation

Our proposal is based on the informal and sometimes incomplete description
of the language in the User’s Guide, on the discussion of ASP programming
constructs in [4], on experiments with gringo, and on the clarifications provided
in response to our questions by its designers.

The proposed semantics uses a translation from Gringo into the language
of infinitary propositional formulas—propositional formulas with infinitely long
conjunctions and disjunctions. Including infinitary formulas is essential, as we
will see, when conditions or aggregates use variables ranging over infinite sets
(for instance, over integers).

Alternatively, the semantics of Gringo can be approached using quantified
equilibrium logic [12] or its syntactic counterpart defined in [2]. This method
involves translating rules into the language of first-order logic. For instance, the
rule

p(Y)← count{X,Y : q(X,Y)} ≥ 1 (1)

can be represented by the sentence

∀y(∃xQ(x, y)→ P (y)).

However, this translation is not sufficiently general. For instance, it is not clear
how to represent the rule

total hours(N)← sum{H,C : enroll(C), hours(H,C)} = N (2)

from Section 3.1.10 of the Gringo 3 User’s Guide with a first-order formula.
One reason is that the aggregate sum is used here instead of count . The second
difficulty is that the variable N is used rather than a constant.

General aggregate expressions, as used in Gringo, can be represented by
first-order formulas with generalized quantifiers.5 The advantage of infinitary
propositional formulas as the target language is that properties of these formulas,
and of their stable models, are better understood. We may be able to prove, for
instance, that two Gringo programs have the same stable models by observing
that the corresponding infinitary formulas are equivalent in one of the natural
deduction systems discussed in [8]. We give here several examples of reasoning
about Gringo programs based on this idea.

The process of converting Gringo programs into infinitary propositional for-
mulas defined in this note uses substitutions to eliminate variables. This form
of grounding is quite different, of course, from the process of intelligent instanti-
ation implemented in gringo and other grounders. Mathematically, it is much
simpler than intelligent instantiation; as a computational procedure, it is much
less efficient, not to mention the fact that sometimes it produces infinite objects.
Like grounding in the original definition of a stable model [6], it is modular, in
the sense that it applies to the program rule by rule, and it is applicable even if

is straightforward, using the process of eliminating classical negation in favor of
additional atoms described in [7, Section 4].)

5 Stable models of formulas with generalized quantifiers are defined by Lee and Meng
[9][10][11].

the program is not safe. From this perspective, gringo’s safety requirement is
an implementation restriction.

Our description of the syntax of Gringo disregards some of the features re-
lated to representing programs as strings of ASCII characters, such as using :-
to separate the head from the body, using semicolons, rather than parentheses,
to indicate the boundaries of a conditional literal, and representing falsity (which
we denote here by ⊥) as #false. Since the subset of Gringo discussed in this
note does not include assignments, we can disregard also the requirement that
equality be represented by two characters ==.

2 Syntax

We begin with a signature σ in the sense of first-order logic that includes, among
others,

(i) numerals—object constants representing all integers,
(ii) arithmetical functions—binary function constants +, −, ×,
(iii) comparisons—binary predicate constants <, >, ≤, ≥.

We will identify numerals with the corresponding elements of the set Z of inte-
gers. Object, function, and predicate symbols not listed under (i)–(iii) will be
called symbolic. A term over σ is arithmetical if it does not contain symbolic ob-
ject or function constants. A ground term is precomputed if it does not contain
arithmetical functions.

We assume that in addition to the signature, a set of symbols called aggregate
names is specified, and that for each aggregate name α, the function denoted by
α, α̂, maps every tuple of precomputed terms to an element of Z ∪ {∞,−∞}.

Examples. The functions denoted by the aggregate names count , max , and
sum are defined as follows. For any set T of tuples of precomputed terms,

– ĉount(T) is the cardinality of T if T is finite, and ∞ otherwise;
– m̂ax (T) is the least upper bound of the set of the integers t1 over all tuples

(t1, . . . , tm) from T in which t1 is an integer;
– ŝum(T) is the sum of the integers t1 over all tuples (t1, . . . , tm) from T in

which t1 is a positive integer; it is∞ if there are infinitely many such tuples.6

A literal is an expression of one of the forms

p(t1, . . . , tk), t1 = t2, not p(t1, . . . , tk), not (t1 = t2)

where p is a symbolic predicate constant of arity k, and each ti is a term over σ,
or

t1 ≺ t2, not (t1 ≺ t2)
6 To allow negative numbers in this example, we would have to define summation for a

set that contains both infinitely many positive numbers and infinitely many negative
numbers. It is unclear how to do this in a natural way.

where ≺ is a comparison, and t1, t2 are arithmetical terms. A conditional literal
is an expression of the form H : L, where H is a literal or the symbol ⊥, and L
is a list of literals, possibly empty. The members of L will be called conditions.
If L is empty then we will drop the colon after H, so that every literal can be
viewed as a conditional literal.

Example. If available and person are unary predicate symbols then

available(X) : person(X)

and
⊥ : (person(X),not available(X))

are conditional literals.

An aggregate expression is an expression of the form

α{t : L} ≺ s

where α is an aggregate name, t is a list of terms, L is a list of literals, ≺ is a
comparison or the symbol =, and s is an arithmetical term.

Example. If enroll is a unary predicate symbol and hours is a binary predicate
symbol then

sum{H,C : enroll(C), hours(H,C)} = N

is an aggregate expression.

A rule is an expression of the form

H1 | · · · |Hm ← B1, . . . , Bn (3)

(m,n ≥ 0), where each Hi is a conditional literal, and each Bi is a conditional
literal or an aggregate expression. A program is a set of rules.

If p is a symbolic predicate constant of arity k, and t is a k-tuple of terms,
then

{p(t)} ← B1, . . . , Bn

is shorthand for
p(t) | not p(t)← B1, . . . , Bn.

Example. For any positive integer n,

{p(i)}← (i = 1, . . . , n),
← p(X), p(Y), p(X+Y) (4)

is a program.

3 Semantics

We will define the semantics of Gringo using a syntactic transformation τ . It con-
verts Gringo rules into infinitary propositional combinations of atoms of the form
p(t), where p is a symbolic predicate constant, and t is a tuple of precomputed
terms. Then the stable models of a program will be defined as stable models,
in the sense of [13], of the set consisting of the translations of all rules of the
program. Truszczynski’s definition of stable models for infinitary propositional
formulas is reviewed below.

Prior to defining the translation τ for rules, we will define it for ground
literals, conditional literals, and aggregate expressions.

3.1 Review: Stable Models of Infinitary Formulas

Let σ be a propositional signature, that is, a set of propositional atoms. The sets
Fσ0 , Fσ1 , . . . are defined as follows:

– Fσ0 = σ ∪ {⊥},
– Fσi+1 is obtained from Fσi by adding expressions H∧ and H∨ for all subsets
H of Fσi , and expressions F → G for all F,G ∈ Fσi .

The elements of
⋃∞
i=0 Fσi are called (infinitary) formulas over σ. Negation and

equivalence are abbreviations.
Subsets of a signature σ will be also called its interpretations. The satisfaction

relation between an interpretation and a formula is defined in a natural way.
The reduct F I of a formula F w.r.t. an interpretation I is defined as follows:

– ⊥I = ⊥.
– For p ∈ σ, pI = ⊥ if I 6|= p; otherwise pI = p.
– (H∧)I = {GI | G ∈ H}∧.
– (H∨)I = {GI | G ∈ H}∨.
– (G→ H)I = ⊥ if I 6|= G→ H; otherwise (G→ H)I = GI → HI .

An interpretation I is a stable model of a set H of formulas if it is minimal w.r.t.
set inclusion among the interpretations satisfying the reducts of all formulas
from H.

3.2 Semantics of Well-Formed Ground Literals

A term t is well-formed if it contains neither symbolic object constants nor
symbolic function constants in the scope of arithmetical functions. For instance,
all arithmetical terms and all precomputed terms are well-formed; c+2 is not
well-formed. The definition of “well-formed” for literals, aggregate expressions,
and so forth is the same.

For every well-formed ground term t, by [t] we denote the precomputed term
obtained from t by evaluating all arithmetical functions, and similarly for tuples
of terms. For instance, [f(2+2)] is f(4).

The translation τL of a well-formed ground literal L is defined as follows:

– τ(p(t)) is p([t]);
– τ(t1 ≺ t2), where ≺ is the symbol = or a comparison, is > if the relation ≺

holds between [t1] and [t2], and ⊥ otherwise;
– τ(not A) is ¬τA.

For instance, τ(not p(f(2+2))) is ¬p(f(4)), and τ(2+2= 4) is >.
Furthermore, τ⊥ stands for ⊥, and, for any list L of ground literals, τL is

the conjunction of the formulas τL for all members L of L.

3.3 Global Variables

About a variable we say that it is global

– in a conditional literal H : L, if it occurs in H but does not occur in L;
– in an aggregate expression α{t : L} ≺ s, if it occurs in the term s;
– in a rule (3), if it is global in at least one of the expressions Hi, Bi.

For instance, the head of the rule (2) is a literal with the global variable N , and
its body is an aggregate expression with the global variable N . Consequently N
is global in the rule as well.

A conditional literal, an aggregate expression, or a rule is closed if it has no
global variables. An instance of a rule R is any well-formed closed rule that can
be obtained from R by substituting precomputed terms for global variables. For
instance,

total hours(6)← sum{H,C : enroll(C), hours(H,C)} = 6

is an instance of rule (2). It is clear that if a rule is not well-formed then it has
no instances.

3.4 Semantics of Closed Conditional Literals

If t is a term, x is a tuple of distinct variables, and r is a tuple of terms of the
same length as x, then the term obtained from t by substituting r for x will be
denoted by txr . Similar notation will be used for the result of substituting r for x
in expressions of other kinds, such as literals and lists of literals.

The result of applying τ to a closed conditional literalH : L is the conjunction
of the formulas

τ(Lx
r)→ τ(Hx

r)

where x is the list of variables occurring inH : L, over all tuples r of precomputed
terms of the same length as x such that both Lx

r and Hx
r are well-formed. For

instance,
τ(available(X) : person(X))

is the conjunction of the formulas person(r)→ available(r) over all precomputed
terms r;

τ(⊥ : p(2×X))

is the conjunction of the formulas ¬p(2× i) over all numerals i. When a condi-
tional literal occurs in the head of a rule, we will translate it in a different way.
By τh(H : L) we denote the disjunction of the formulas

τ(Lx
r) ∧ τ(Hx

r)

where x and r are as above. For instance,

τh(available(X) : person(X))

is the disjunction of the formulas person(r) ∧ available(r) over all precomputed
terms r.

3.5 Semantics of Closed Aggregate Expressions

In this section, the semantics of ground aggregates proposed in [1, Section 4.1]
is adapted to closed aggregate expressions. Let E be a closed aggregate expres-
sion α{t : L} ≺ s, and let x be the list of variables occurring in E. A tuple r
of precomputed terms of the same length as x is admissible (w.r.t. E) if both
txr and Lx

r are well-formed. About a set ∆ of admissible tuples we say that it
justifies E if the relation ≺ holds between α̂({[txr] : r ∈ ∆}) and [s]. For instance,
consider the aggregate expression

sum{H,C : enroll(C), hours(H,C)} = 6. (5)

In this case, admissible tuples are arbitrary pairs of precomputed terms. The set
{(3, cs101), (3, cs102)} justifies (5), because

ŝum({(H,C)H,C3,cs101 , (H,C)H,C3,cs102}) = ŝum({(3, cs101), (3, cs102)}) = 3+3 = 6.

More generally, a set ∆ of pairs of precomputed terms justifies (5) whenever ∆
contains finitely many pairs (h, c) in which h is a positive integer, and the sum
of the integers h over all these pairs is 6.

We define τE as the conjunction of the implications∧
r∈∆

τ(Lx
r)→

∨
r∈A\∆

τ(Lx
r) (6)

over all sets ∆ of admissible tuples that do not justify E, where A is the set of
all admissible tuples. For instance, if E is (5) then the conjunctive terms of τE
are the formulas∧

(h,c)∈∆

(enroll(c) ∧ hours(h, c))→
∨

(h,c) 6∈∆

(enroll(c) ∧ hours(h, c)).

The conjunctive term corresponding to {(3, cs101)} as ∆ says: if I am enrolled
in CS101 for 3 hours then I am enrolled in at least one other course.

3.6 Semantics of Rules and Programs

For any rule R, τR stands for the conjunction of the formulas

τB1 ∧ · · · ∧ τBn → τhH1 ∨ · · · ∨ τhHm

for all instances (3) of R. A stable model of a program Π is a stable model, in
the sense of [13], of the set consisting of the formulas τR for all rules R of Π.

Consider, for instance, the rules of program (4). If R is the rule {p(i)} then
τR is

p(i) ∨ ¬p(i) (7)

(i = 1, . . . , n). If R is the rule

← p(X), p(Y), p(X+Y)

then the instances of R are rules of the form

← p(i), p(j), p(i+j)

for all numerals i, j. (Substituting precomputed ground terms other than nu-
merals would produce a rule that is not well-formed.) Consequently τR is in this
case the infinite conjunction∧

i,j,k∈Z
i+j=k

¬(p(i) ∧ p(j) ∧ p(k)). (8)

The stable models of program (4) are the stable models of formulas (7), (8), that
is, sets of the form {p(i) : i ∈ S} for all sum-free subsets S of {1, . . . , n}.

4 Reasoning about Gringo Programs

In this section we give examples of reasoning about Gringo programs on the
basis of the semantics defined above. These examples use the results of [8], and
we assume here that the reader is familiar with that paper.

4.1 Simplifying a Rule from Example 3.7 of User’s Guide

Consider the rule7

weekdays ← day(X) : (day(X),not weekend(X)). (9)

Replacing this rule with the fact weekdays within any program will not affect
the set of stable models. Indeed, the result of applying translation τ to (9) is the
formula ∧

r

(day(r) ∧ ¬weekend(r)→ day(r)) → weekdays, (10)

7 This rule is similar to a rule from Example 3.7 of the Gringo 3 User’s Guide (see
Footnote 2).

where the conjunction extends over all precomputed terms r. The formula

day(r) ∧ ¬weekend(r)→ day(r)

is intuitionistically provable. By the replacement property of the basic system
of natural deduction from [8], it follows that (10) is equivalent to weekdays in
the basic system. By the main theorem of [8], it follows that replacing (10) with
the atom weekdays within any set of formulas does not affect the set of stable
models.

4.2 Simplifying the Sorting Rule

The rule

order(X,Y)← p(X), p(Y), X < Y, not p(Z) : (p(Z), X < Z,Z < Y) (11)

can be used for sorting.8 It can be replaced by either of the following two shorter
rules within any program without changing that program’s stable models.

order(X,Y)← p(X), p(Y), X < Y, ⊥ : (p(Z), X < Z,Z < Y) (12)

order(X,Y)← p(X), p(Y), X < Y, not p(Z) : (X < Z,Z < Y) (13)

Let’s prove this claim for rule (12). By the main theorem of [8] it is sufficient
to show that the result of applying τ to (11) is equivalent in the basic system to
the result of applying τ to (12). The instances of (11) are the rules

order(i, j)← p(i), p(j), i < j, not p(Z) : (p(Z), i < Z,Z < j),

and the instances of (12) are the rules

order(i, j)← p(i), p(j), i < j, ⊥ : (p(Z), i < Z,Z < j)

where i and j are arbitrary numerals. The result of applying τ to (11) is the
conjunction of the formulas

p(i) ∧ p(j) ∧ i < j ∧
∧
k

(¬p(k) ∧ i < k ∧ k < j → p(k))→ order(i, j) (14)

for all numerals i, j. The result of applying τ to (12) is the conjunction of the
formulas

p(i) ∧ p(j) ∧ i < j ∧
∧
k

(¬p(k) ∧ i < k ∧ k < j → ⊥)→ order(i, j). (15)

By the replacement property of the basic system, it is sufficient to observe that

p(k) ∧ i < k ∧ k < j → ¬p(k)

is intuitionistically equivalent to

p(k) ∧ i < k ∧ k < j → ⊥.

The proof for rule (13) is similar. Rule (12), like rule (11), is safe; rule (13)
is not.
8 This rule was communicated to us by Roland Kaminski on October 21, 2012.

4.3 Eliminating Choice in Favor of a Conditional Literal

Replacing the rule
{p(X)} ← q(X) (16)

with
p(X)← q(X),⊥ : not p(X) (17)

within any program will not affect the set of stable models. Indeed, the result of
applying translation τ to (16) is∧

r

(q(r)→ p(r) ∨ ¬p(r)) (18)

where the conjunction extends over all precomputed terms r, and the result of
applying τ to (17) is ∧

r

(q(r) ∧ ¬¬p(r)→ p(r)). (19)

The implication from (18) is equivalent to the implication from (19) in the ex-
tension of intuitionistic logic obtained by adding the axiom schema

¬F ∨ ¬¬F,

and consequently in the extended system presented in [8, Section 7]. By the
replacement property of the extended system, it follows that (18) is equivalent
to (19) in the extended system as well.

4.4 Eliminating a Trivial Aggregate Expression

The rule (1) says, informally speaking, that we can conclude p(Y) once we es-
tablished that there exists at least one X such that q(X,Y). Replacing this rule
with

p(Y)← q(X,Y) (20)

within any program will not affect the set of stable models.
To prove this claim, we need to calculate the result of applying τ to rule (1).

The instances of (1) are the rules

p(t)← count{X, t : q(X, t)} ≥ 1 (21)

for all precomputed terms t. Consider the aggregate expression E in the body
of (21). Any precomputed term r is admissible w.r.t. E. A set ∆ of precomputed
terms justifies E if

ĉount({(r, t) : r ∈ ∆}) ≥ 1,

that is to say, if ∆ is non-empty. Consequently τE consists of only one impli-
cation (6), with the empty ∆. The antecedent of this implication is the empty

conjunction >, and its consequent is the disjunction
∨
u q(u, t) over all precom-

puted terms u. Then the result of applying τ to (1) is

∧
t

(∨
u

q(u, t) → p(t)

)
. (22)

On the other hand, the result of applying τ to (20) is∧
t,u

(q(u, t)→ p(t)).

This formula is equivalent to (22) in the basic system [8, Example 2].

4.5 Replacing an Aggregate Expression with a Conditional Literal

Informally speaking, the rule

q ← count{X : p(X)} = 0 (23)

says that we can conclude q once we have established that the cardinality of the
set {X : p(X)} is 0; the rule

q ← ⊥ : p(X) (24)

says that we can conclude q once we have established that p(X) does not hold
for any X. We’ll prove that replacing (23) with (24) within any program will
not affect the set of stable models. To this end, we’ll show that the results of
applying τ to (23) and (24) are equivalent to each other in the extended system
from [8, Section 7].

First, we’ll need to calculate the result of applying τ to rule (23). Consider
the aggregate expression E in the body of (23). Any precomputed term r is
admissible w.r.t. E. A set ∆ of precomputed terms justifies E if

ĉount({r : r ∈ ∆}) = 0,

that is to say, if ∆ is empty. Consequently τE is the conjunction of the implica-
tions ∧

r∈∆
p(r)→

∨
r∈A\∆

p(r) (25)

for all non-empty subsets ∆ of the set A of precomputed terms. The result of
applying τ to (23) is ∧

∆⊆A
∆6=∅

∧
r∈∆

p(r)→
∨

r∈A\∆

p(r)

→ q. (26)

The result of applying τ to (24), on the other hand, is(∧
r∈A
¬p(r)

)
→ q. (27)

The fact that the antecedents of (26) and (27) are equivalent to each other in
the extended system can be established by essentially the same argument as in
[8, Example 7]. By the replacement property of the extended system, it follows
that (26) is equivalent to (27) in the extended system as well.

4.6 Eliminating Summation over the Empty Set

Informally speaking, the rule

q ← sum{X : p(X)} = 0 (28)

says that we can conclude q once we have established that the sum of the elements
of the set {X : p(X)} is 0. In the presence of the constraint

← p(X), (29)

replacing (28) with the fact q will not affect the stable models.
To see this, first we calculate the result of applying τ to rule (28). Consider

the aggregate expression E in the body of (28). Any precomputed term r is
admissible w.r.t. E. A set ∆ of precomputed terms justifies E if

ŝum({r : r ∈ ∆}) = 0,

that is to say, if ∆ contains no positive integers. Consequently τE is the con-
junction of the implications ∧

r∈∆
p(r)→

∨
r∈A\∆

p(r) (30)

for subsets ∆ of the set A of precomputed terms that contain at least one positive
integer. The result of applying τ to (28) is ∧

∆⊆A
∆∩Z 6=∅

∧
r∈∆

p(r)→
∨

r∈A\∆

p(r)

→ q. (31)

The result of applying τ to (29), on the other hand, is∧
r∈A
¬p(r). (32)

For every nonempty ∆, the antecedent of (30) contradicts (32). Consequently,
the antecedent of (31) can be derived from (32) in the basic system. It follows
that the equivalence between (31) and the atom q can be derived in the basic
system under assumption (32).

5 Conclusion

In this note we approached the problem of defining the semantics of Gringo by
reducing Gringo programs to infinitary propositional formulas. We argued that
this approach to semantics may allow us to study equivalent transformations of
programs using natural deduction in infinitary propositional logic.

In the absence of a precise semantics, it is impossible to put the study of some
important issues on a firm foundation. This includes the correctness of ASP pro-
grams, grounders, solvers, and optimization methods, and also the relationship
between input languages of different solvers (for instance, the equivalence of the
semantics of aggregate expressions in Gringo to their semantics in the ASP Core
language and in the language proposed in [5] under the assumption that aggre-
gates are used nonrecursively). As future work, we are interested in addressing
some of these tasks on the basis of the semantics proposed in this note. Prov-
ing the correctness of the intelligent instantiation algorithms implemented in
gringo will provide justification for our informal claim that for a safe program,
the semantics proposed here correctly describes the output produced by gringo.

Acknowledgements

Many thanks to Roland Kaminski and Torsten Schaub for helping us under-
stand the input language of gringo. Roland, Michael Gelfond, Yuliya Lierler,
Joohyung Lee, and anonymous referees provided valuable comments on drafts
of this note.

References

1. Ferraris, P.: Answer sets for propositional theories. In: Proceedings of International
Conference on Logic Programming and Nonmonotonic Reasoning (LPNMR). pp.
119–131 (2005)

2. Ferraris, P., Lee, J., Lifschitz, V.: Stable models and circumscription. Artificial
Intelligence 175, 236–263 (2011)

3. Ferraris, P., Lifschitz, V.: Weight constraints as nested expressions. Theory and
Practice of Logic Programming 5, 45–74 (2005)

4. Gebser, M., Kaminski, R., Kaufmann, B., Schaub, T.: Answer Set Solving in Prac-
tice. Synthesis Lectures on Artificial Intelligence and Machine Learning, Morgan
and Claypool Publishers (2012)

5. Gelfond, M.: Representing knowledge in A-Prolog. Lecture Notes in Computer
Science 2408, 413–451 (2002)

6. Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. In:
Kowalski, R., Bowen, K. (eds.) Proceedings of International Logic Programming
Conference and Symposium. pp. 1070–1080. MIT Press (1988)

7. Gelfond, M., Lifschitz, V.: Classical negation in logic programs and disjunctive
databases. New Generation Computing 9, 365–385 (1991)

8. Harrison, A., Lifschitz, V., Truszczynski, M.: On equivalent transformations of
infinitary formulas under the stable model semantics (preliminary report)9. In:
Proceedings of International Conference on Logic Programming and Nonmonotonic
Reasoning (LPNMR) (2013), to appear

9. Lee, J., Meng, Y.: Stable models of formulas with generalized quantifiers. In: Work-
ing Notes of the 14th International Workshop on Non-Monotonic Reasoning (NMR)
(2012)

10. Lee, J., Meng, Y.: Stable models of formulas with generalized quantifiers (prelim-
inary report). In: Technical Communications of the 28th International Conference
on Logic Programming (ICLP). pp. 61–71 (2012)

11. Lee, J., Meng, Y.: Two new definitions of stable models of logic programs with
generalized quantifiers. In: Working Notes of the 5th Workshop of Answer Set
Programming and Other Computing Paradigms (ASPOCP) (2012)

12. Pearce, D., Valverde, A.: Towards a first order equilibrium logic for nonmonotonic
reasoning. In: Proceedings of European Conference on Logics in Artificial Intelli-
gence (JELIA). pp. 147–160 (2004)

13. Truszczynski, M.: Connecting first-order ASP and the logic FO(ID) through
reducts. In: Correct Reasoning: Essays on Logic-Based AI in Honor of Vladimir
Lifschitz. Springer (2012)

9 http://www.cs.utexas.edu/users/vl/papers/etinf.pdf

