
Negation in the Head of CP-logic Rules

Joost Vennekens

joost.vennekens@cs.kuleuven.be

Dept. Computerscience — Campus De Nayer
KU Leuven

Abstract. CP-logic is a probabilistic extension of the logic FO(ID). Un-
like ASP, both of these logics adhere to a Tarskian informal semantics, in
which interpretations represent objective states-of-affairs. In other words,
these logics lack the epistemic component of ASP, in which interpreta-
tions represent the beliefs or knowledge of a rational agent. Consequently,
neither CP-logic nor FO(ID) have the need for two kinds of negations:
there is only one negation, and its meaning is that of objective false-
hood. Nevertheless, the formal semantics of this objective negation is
mathematically more similar to ASP’s negation-as-failure than to its
classical negation. The reason is that both CP-logic and FO(ID) have a
constructive semantics in which all atoms start out as false, and may only
become true as the result of a rule application. This paper investigates
the possibility of adding the well-known ASP feature of allowing negation
in the head of rules to CP-logic. Because CP-logic only has one kind of
negation, it is of necessity this “negation-as-failure like” negation that
will be allowed in the head. We investigate the intuitive meaning of such
a construct and the benefits that arise from it.

1 Introduction

This paper is part of a long-term research project that aims to develop a Tarskian
view on Answer Set Programming (ASP). Historically, the origins of ASP lie in the
seminal papers by Gelfond and Lifschitz on the stable semantics for normal (1988)
and extended logic programs (1991). These papers develop an epistemic view on
logic programs, in which an answer set is seen as an exhaustive enumeration of a
rational agent’s atomic beliefs. In this view, an atom A belonging to an answer
set X means that the agent believes A; A 6∈ X means that A is not believed; and
¬A ∈ X means that a is believed to be false. A rule such as:

A← B1, . . . , Bn, not C1, . . . , not Cm. (1)

tells the agent that if he believes all of the Bi and does not believe any of the Cj ,
he should believe A. In addition, the agent also obeys the rationality principle,
believing only what he has reason to believe. The stable model semantics then
computes what a perfectly rational agent would believe under all these rules.

While these epistemic intuitions have played a crucial role in the history of
ASP, current practice seems to have largely drifted away from them. In particular,

programs written according to the currently prevalent Generate-Define-Test-
methodology (GDT) (term coined by Lifschitz, 2002) are typically no longer
explicitly concerned with the beliefs of an agent. A typical example is the graph
colouring problem, in which we generate the search space of all assignments of
colours to nodes, we define that two nodes are in conflict if they share an edge and
have the same colour, and then test that there are no conflicts. Unlike early ASP
examples—such as, e.g., Gelfond’s example (1991) of interviewing all students
for which we do not know whether they are eligible for a grant—the statement
of the graph colouring problems is not concerned with anyone’s knowledge or
beliefs, but only with the objective colour of the nodes.

Suppose now that we have an ASP representation of a purely objective GDT
problem, such as graph coloring. How should we intuitively interpret this program?
Falling back on the papers by Gelfond and Lifschitz, every single statement in
the program will be interpreted as an epistemic statement about some agent’s
knowledge. Obviously, this is a poor match with the objective intuitions behind
the problem. Therefore, an alternative informal semantics is needed, which omits
this agent, and explains how rules of the program can be interpreted as statements
about the real world, in this same way as formulas in classical first-order logic
(FO) are. There are now two important and related questions:

– If we view a semantical object such as an answer set as a representation of
an objective state of the world, instead of some agent’s beliefs, how should
we then interpret a rule such as (1)?

– How does this objective interpretation of ASP compare to the classical way
of representing such objective information about the world, namely FO?

An extensive study of these two questions has been performed by Denecker and
several coauthors. Recent summaries of these results were published by Denecker
et al. (2010) and Denecker et al. (2012). A goal of this research program is to
reconstruct ASP as a series of conservative extensions of FO. One of its main
achievements has been the development of the language of FO(ID) (Denecker and
Ternovska, 2007), which extends FO with a construct for representing inductive
definitions. FO(ID) can be seen as a variant of ASP, which adheres to a strict
objective interpretation of its semantical constructs, i.e., a model of an FO(ID)
theory does not represent beliefs, but an objective state of the world.

The language of FO(ID) has been further extended in many ways. This paper
is concerned with one particular such extension, namely, CP-logic (Vennekens
et al., 2009), which extends the inductive definition construct of FO(ID) with a
means for expressing non-deterministic choice. One application is to represent
non-deterministic inductive definitions. For instance, an execution trace of a
non-deterministic Turing machine may be defined by means of a rule that states
that if the machine reads a character c in a state s at time α, it will be in a
state s′ at time α + 1, where s′ is one of the states that it may transition to
from (s, c). CP-logic represents such non-determinism by allowing disjunction
in the head of rules. This is similar in syntax to the kind of rules allowed by,
for instance, the DLV language. This is, therefore, another way in which one of
ASP’s features can be conservatively added to the classical framework. However,

to correctly formalise non-deterministic inductive definitions, not the minimal
model semantics must be used, but the possible world semantics of Sakama and
Inoue (1994).

A more important application of CP-logic, however, is to represent probabilistic
causal laws. Such relations have received a great deal of attention in the AI
community, especially since the influential work by Pearl (2000) on this topic. As
shown by Vennekens et al. (2010), CP-logic can actually be seen as a refinement
of Pearl’s theory, which allows for a more compact and modular representation of
certain phenomena. As an example, consider three gear wheels, each of which has
an attached crank that can be used to turn it. The first gear wheel is connected
to the second, which is in turn connected to the third, so that in 90% of the
cases, when one turns the other also turns; however, there is some damage to the
gear wheels’ teeth, which in 10% of the cases prevents this. In CP-logic, we can
represent this by means of seven independent probabilistic causal laws:

Turns(Gear1)← Crank1. (2)

Turns(Gear2)← Crank2. (3)

Turns(Gear3)← Crank3. (4)

(Turns(Gear1) : 0.9)← Turns(Gear2). (5)

(Turns(Gear2) : 0.9)← Turns(Gear1). (6)

(Turns(Gear2) : 0.9)← Turns(Gear3). (7)

(Turns(Gear3) : 0.9)← Turns(Gear2). (8)

By contrast, Pearl would represent it in a less modular way, by means of three
structural equations, each of which defines precisely when a particular gear wheel
will turn :

Turns(Gear1) := Crank1 ∨ (Crank2 ∧ Trans1,2) ∨ (Crank3 ∧ Trans3,2 ∧ Trans2,1)

Turns(Gear2) := Crank2 ∨ (Crank1 ∧ Trans1,2) ∨ (Crank3 ∧ Trans3,2)

Turns(Gear3) := Crank3 ∨ (Crank2 ∧ Trans2,3) ∨ (Crank1 ∧ Trans1,2 ∧ Trans2,3)

CP-logic has certain similarities to P-log, a probabilistic extension of ASP
(Baral et al., 2008). However, it differs by its focus on representing individual
probabilistic causal laws, as discussed by Vennekens et al. (2010, 2009).

As this example illustrates, a causal law in CP-logic may cause some atom(s)
to become true, and it may also fail to do so. What is currently not possible,
however, is that such a laws causes an atom to be false. For instance, suppose
that the first gear wheel may be locked, in order to prevent it from turning. The
current way to represent this would be to replace rules (2) and (5) by:

(Turns(Gear1) : 0.9)← Crank1 ∧ ¬Locked(1).

(Turns(Gear1) : 0.9)← Turns(Gear2) ∧ ¬Locked(1).

However, this goes against our desire for a modular representation of the individual
causal laws. Our goal in the current paper is to extend CP-logic to allow instead

to keep rules (2) and (5) as they are, and instead add a rule:

¬Turns(Gear1)← Locked(1).

In other words, we will examine how CP-logic can be extended with the
familiar ASP feature of negation in the head Gelfond and Lifschitz (1991). Again,
the traditional ASP interpretation of a classical negation literal is rooted in the
epistemic tradition: whereas not A means that A is not believed to be true, a
classical negation literal ¬A means that A is believed to be false. Since FO(ID)
and CP-logic have no beliefs, the only thing that negation can mean in this
context is that A is objectively false. Nevertheless, as this paper will show, there is
still a place for negation-in-the-head in such a logic. Our two main contributions
are therefore as follows:

– By adding this additional feature to CP-logic, we extend its ability to represent
causal laws in a modular way, as illustrated by the above example.

– From the point of view of the larger research project, negation-in-the-head is
an ASP feature that, until now, could not yet be given a place within the
FO(ID)/CP-logic framework and its Tarskian semantics. This paper offers
one way in which this gap can be filled.

This paper is structured as follows. First, Section 2 recalls the definition of
CP-logic. Section 2.1 elaborates further on the role of negation in the current
version of CP-logic, before Section 3 then discusses our proposed extension with
negation in the head. Several uses of this new feature are then discussed in
Sections 4 to 6. Finally, Section 7 discusses the implementation of this new
language feature.

2 Preliminaries: CP-logic

A theory in CP-logic consists of a set of rules. These rules are called causal
probabilistic laws, or CP-laws for short, and they are statements of the form:

∀x (A1 : α1) ∨ · · · ∨ (An : αn)← φ. (9)

Here, φ is a first-order formula and the Ai are atoms, such that the tuple of
variables x contains all free variables in φ and the Ai. The αi are non-zero
probabilities with

∑
αi ≤ 1. Such a CP-law expresses that φ causes some

(implicit) non-deterministic event, of which each Ai is a possible outcome with
probability αi. If

∑
i αi = 1, then at least one of the possible effects Ai must

result if the event caused by φ happens; otherwise, it is also possible that the event
happens without any (visible) effect on the state of the world. For mathematical
uniformity, we introduce the notation r= to refer to r itself if the equality holds,
and otherwise to the CP-law:

∀x (A1 : α1) ∨ · · · ∨ (An : αn) ∨ (— : 1−
∑
i

αi)← φ.

Here, the dash is a new symbol that explicitly represents the possibility that
none of the effects Ai are caused. Whenever we add this dash to some set X, it
does not change X, i.e., X ∪ {—} = X.

The semantics of a theory in CP-logic is defined in terms of its grounding, so
from now on we will restrict attention to ground theories, i.e., we assume that
for each CP-law, the tuple of variables x is empty. For now, we also assume that
the rule bodies φ do not contain negation.

For a CP-law r, we refer to φ as the body of r, and to the sequence (Ai, αi)
n
i=1

as the head of r. We denote these objects as body(r) and head(r), respectively.
In CP-laws of form (9), the precondition φ may be omitted for events that

are vacuously caused. If a CP-law has a deterministic effect, i.e., it is of the form
(A : 1)← φ, then we also write it simply as A← φ.

Example 1. Suzy and Billy might each decide to throw a rock at a bottle. If Suzy
does so, her rock breaks the bottle with probability 0.8. Billy’s aim is slightly
worse and his rock only hits with probability 0.6. Assuming that Suzy decides to
throw with probability 0.5 and that Billy always throws, this domain corresponds
to the following set of causal laws:

(Throws(Suzy) : 0.5). (10)

Throws(Billy). (11)

(Broken : 0.8)← Throws(Suzy). (12)

(Broken : 0.6)← Throws(Billy). (13)

In causal modeling, a distinction is commonly made between endogenous
properties, whose values are completely determined by the causal mechanisms
described by the model, and exogenous properties, whose values are somehow
determined outside the scope of the model. Following this convention, the predi-
cates of a CP-theory are also divided into exogenous and endogenous predicates.
We define the semantics of a theory in the presence of a given, fixed interpretation
X for the exogenous predicates.

A second common assumption (see e.g. Hall, 2007) is that each of the endoge-
nous properties has some default value, which represents its “natural state”. In
other words, the default value of an endogenous property is the value that it has
whenever there are no causal mechanisms acting upon it. The effect of the causal
mechanisms in the model is then of course precisely to flip the value of some of
the properties from its default to a deviant value.

Theories in CP-logic have a straightforward execution semantics. We consider
probability trees, in which each node is labeled with an Herbrand interpretation
for the endogenous predicates. The root of the tree—i.e., the initial state of
our causal process—is labeled with the universally false interpretation {}. This
incorporates our second assumption: w.l.o.g. we force the user to choose his
vocabulary in such a way that the default value for each endogenous atom is
false. We then constructively extend the tree by applying the following operation
as long as possible:

1. Choose a pair (s, r) of a leaf s of the tree and a rule r of the theory, such that
(X ∪I(s)) |= body(r) and there exists no ancestor s′ of s such that (s′, r) has
already been chosen

2. Extend s with children s0, . . . , sm, where each si corresponds to one of the
disjuncts (hi : αi) in head(r=), in the sense that I(si) = Is ∪ {hi} and the
edge from s to si is labeled by α.

We call a tree T constructed in this way an execution model of the CP-theory
under X. We define a probability distribution πT over the set of all Herbrand
interpretations as: πT (I) =

∑
I(l)=I πT (l), where the sum is taken over all leaves

l of T whose interpretation equals I and the probability πT (l) of such a leaf
consists of the product of all probability labels that are encountered on the path
to this leaf.

The following picture represents an execution model for the CP-theory of
Example 1. The states s in which the bottle is broken (i.e., for which Broken ∈
I(s)) are represented by an empty circle, and those in which it is still whole by a
full one. This pictures does not show the interpretations I(s); instead, we have
just written the effects of each event in natural language as labels on the edges.

•

0.5

Suzy throws

vv 0.5

doesn’t throw

((
•

0.8

Bottle breaks

vv 0.2

doesn’t break

((

•
1

Billy throws

��
◦

1
Billy throws

��

•
1

Billy throws

��

•
0.6

Bottle breaks

�� 0.4

doens’t break

((
◦

0.6
Bottle breaks

�� 0.4

doesn’t break

((

•
0.6

Bottle breaks

�� 0.4

doesn’t break

((

◦ •

◦ ◦ ◦ •

The third branch of this execution model consists of five nodes (s0, . . . , s4). The
progression of the associated states of the world (I(s0), . . . , I(s4)) is as follows:

({}, {Throws(Suzy)}, {Throws(Suzy)},
{Throws(Suzy), Throws(Billy)},

{Throws(Suzy), Throws(Billy), Broken}).

Note that, in keeping with the Tarskian setting of CP-logic, each interpretation
represents an objective state of the world.

Even when starting from the same interpretation X for the exogenous predi-
cates, the same CP-theory may have many execution models, which differ in their
selection of a rule to apply in each node (step 1). It was shown by Vennekens
et al. (2009) that, because each applicable rule must eventually be applied, the
differences between these execution models are irrelevant, as long as we only care
about the final states that may be reached. In other words, all execution models
T of the same CP-theory T that start from the same interpretation X generate
the same distribution πT . We also denote this unique distribution as πXT .

An interesting special case is that in which each rule r is deterministic, i.e., it
causes a single atom with probability 1. In this case, each execution model is a
degenerate tree consisting of a single branch, in which all edges are labeled with
probability 1. The successive interpretations in this branch are constructed by
adding to the previous interpretation the head of a rule whose body is satisfied.
The single leaf of this tree is therefore precisely the least Herbrand model of
the set of rules. In this way, positive logic programs and monotone inductive
definitions in FO(ID) are embedded in CP-logic.

2.1 Negation in CP-logic

Consider again the role that the CP-law

(Broken : 0.9)← Throws(Suzy)

plays in the above execution model. Initially, when the atom Throws(Suzy) is
still at its default, this law is dormant. Once Throws(Suzy) has been caused,
this law becomes active and will (eventually) be executed, causing Broken with
probability 0.9. Now, suppose we had instead assumed that the default is for
Suzy to throw unless she decides to refuse:

(Broken : 0.9)← ¬RefusesThrow(Suzy).

(RefusesThrow(Suzy) : 0.5).

Under the semantics given so far, this first CP-law would be active in any state
where RefusesThrow(Suzy) has not deviated from its default. For instance, this
law would always be active in the initial state. This means that there would be
an execution model in which this law first causes the bottle to break and then,
afterwards, Suzy decides to refuse the throw. Such execution models are not very
meaningful, or useful.

For this reason, when allowing negation, an additional condition is imposed
on the execution models of a CP-theory. The basic idea is to read ¬A not simply
as “A is currently at its default vaue”, but instead as “A will not deviate from
its default”. Under this interpretation, the law will only become active once
our causal process is far enough along to be able to say with certainty that
no deviation will occur. For the above example, this would mean that the first
CP-law can only become active after the second one has taken place and has
failed to cause RefusesThrow(Suzy).

This idea is formalized by means of concepts from three-valued logic, where
atoms can be unknown (u) in addition to true (t) or false (f). Given a three-valued
interpretation ν, that assigns one of these three truth values to each atom, the
standard Kleene truth tables can be used to assign a corresponding truth value
ν(φ) to each formula φ. A two-valued interpretation I is said to be approximated
by a three-valued interpretation ν if it can be constructed from it by switching
atoms from u to t or f. If I is approximated by ν, then for each formula φ,
the truth value ν(φ) also approximates the truth of φ according to I; that is, if
ν(φ) = t then I |= φ and if ν(φ) = f then I 6|= φ.

Now, for each state s of an execution model, we construct an overestimate
of the set of atoms that might still be caused in the part of the tree following
s. First, the set of events that could potentially happen in this state itself is
Pot(s) = {r ∈ R(s) | I(s) |= body(r)}, where R(s) denotes the set of all rules
that have not yet happened in the ancestors of s. For each child s′ of s, I(s′)
will therefore differ from I(s) by including at most one atom A 6∈ I(s) from the
head of one of the rules r ∈ Pot(s). Therefore, if we construct a three-valued
interpretation ν0 that labels all such atoms A as u and coincides with I(s) on all
other atoms, then we end up with an approximation of each I(s′) for which s′ is
a child of s. Now, if an event r is to happen in one of these children s′ of s, then
it must be the case that that I(s′) |= body(r), which implies that ν1(body(r)) 6= f.
We now derive a ν2 from ν1 by turning into u all atoms A for which ν1(A) = f
and A appears in the head of an r for which ν0(body(r)) 6= f. This ν2 is then an
approximation of all I(s′′) for which s′′ is a grandchild of s. We can now iterate
this principle and construct a sequence (ν1, ν2, . . .) of three-valued interpretations,
where each νi approximates all the I(t) for which t is a descendant of s, separated
from s by at most i− 1 intermediary nodes. This process will make more and
more atoms u, until eventually it reaches a fixpoint, which we denote as U(s).
This fixpoint approximates all the I(t) for which t is a descendant of s. Therefore,
if an atom is f in U(s), then it will not be caused anywhere below s.

To illustrate, consider the rightmost branch (s′0, s
′
1, . . . , s

′
3) of the execution

model shown in Section 2. The associated three-valued interpretations are as
follows, where we abbreviate Throws and Broken by T and B, and Billy and
Suzy by By and Sy.

Node s U(s)

t u f

s′0 {} {T (Sy), T (By), B} {}
s′1 {} {T (By), B} {T (Sy)}
s′2 {T (By)} {B} {T (Sy)}
s′3 {T (By)} {} {T (Sy), B}

The following additional condition is now imposed on the execution models
of a CP-theory:

For a rule r to be allowed to happen in a node s, it is not enough that
simply I(s) |= body(r); in addition, it must also be the case that the truth
value of body(r) according to U(s) is t instead of u.

Therefore, if the CP-theory of the above example contained an additional rule
with body ¬Throws(Suzy), this could be applied from state s′1 onwards in the
above branch, whereas a rule with body ¬Broken would have to wait until s′3.

With this additional condition, it now becomes possible for execution models
to become stuck, in that sense that, in some leaf l, there remain some rules r
such that I(l) |= body(r), yet r cannot happen because body(r) is u in U(s). This
can happen only when the CP-theory contains loops over negation. Such theories

are viewed as unsound, and no semantics is defined for them. An important class
of sound theories are those which are stratified, but there also exist useful sound
theories outside of this class (see Vennekens et al. (2009) for a discussion).

Again, an interesting special case is when all rules of the CP-theory are
deterministic. In this case, the CP-theory syntactically coincides with a normal
logic program, and all of its execution models end in a single leaf l, such that U(l)
is the well-founded model of this program. If the CP-theory is sound, U(l) = I(l)
is the two-valued well-founded model and therefore also the unique stable model
of the program. In this way, normal logic programs with a two-valued well-
founded model are embedded in CP-logic. While the limitation to two-valued
well-founded models may seem restrictive, in practice this is often mitigated by
the fact predicates may be declared as exogenous, which has the same effect as
“opening them up” with a loop over negation. Also in FO(ID), definitions whose
well-founded model is not two-valued are considered inconsistent, so CP-logic is
indeed a true generalization of FO(ID)’s inductive definition construct.

3 Negation in the head

A CP-theory represents a set of causal mechanisms, that are activated one after
the other, and together construct the final state of the domain. Each such causal
mechanism has the same kind of effect: for some set of atoms, it causes at most
one of these atoms to deviate from their default value f to the deviant value t. If
multiple causal mechanisms affect the same atom, the result is simple: there are
no additive effects and the outcome is simply that the atom is t if and only if
at least one mechanism causes it. If subsequent rules end up “causing” an effect
that is already t, then this changes absolutely nothing.

It is to this setting that we now want to add negation-in-the-head. We will
call such a negated literal in the head a negative effect literal. To be more precise,
from now on, we allow rules of the form:

∀x (L1 : α1) ∨ · · · ∨ (Ln : αn)← φ.

Here, φ is again a first-order logic formula with x as free variables and the
αi ∈ [0, 1] are again such that Σαi ≤ 1. Each of the Li is now either a positive
effect literal A (i.e., an atom) or a negative effect literal ¬A.

While the goal of this extension is of course to be able to represent such
phenomena as the locking of the gear wheel described in the introduction, let
us first take a step back and consider, in the abstract, which possible meanings
this construct could reasonably have. Clearly, if for some atom A only positive
effect literals are caused, the atom should end up being true, just as it always
has. Similarly, if only negative effect literals ¬A are caused, the atom A should
be false. However, this does not even depend on the negative effect literals being
present: because false is the default value in CP-logic, an atom will already be
false whenever there are no positive effect literals for it, even if there are no
negative effect literals either.

The only question, therefore, is what should happen if, for some A, both a
positive and a negative effect literal are caused. One alternative could be that the
result would somehow depend on the relative strength of the negative and positive
effects, e.g., whether the power of aspirin to prevent a fever is “stronger” than
the power of flu to cause it. However, such a semantics would be a considerable
departure from the original version of CP-logic, in which cumulative effects
are strictly ignored. In other words, CP-logic currently makes no distinction
whatsoever between a headache that is simultaneously caused by five different
conditions and a headache that has just a single cause. This design decision was
made to avoid a logic that, in addition to probabilities, would also need to keep
track of the degree to which a property holds. A logic combining probabilities
with such fuzzy truth degrees would, in our opinion, become quite complex and
hard to understand.

In this paper, we want to preserve the relative simplicity of CP-logic, and we
will therefore again choose not to work with degrees of truth. Therefore, only two
options remain: when both effect literals A and ¬A are caused, the end result
must be that A is either true of false. This basically means that, in the presence
of both kinds of effect literals, we will have to choose to ignore one kind. It is
obvious what this choice should be: the negative effect literals already have no
impact on the semantics when there are only positive effect literals or when there
are no positive effect literals, so if they would also have no impact when positive
and negative effect literals are both present, then they would have never have any
impact at all and we would have introduced a completely superfluous language
construct. Therefore, the only reasonable choice is to give negative effect literals
precedence over positive ones, that is, an atom A will be true if and only if it is
caused at least once and no negative effect literal ¬A is caused.

This can be formally defined by a minor change to the existing semantics
of CP-logic. Recall that, in the current semantics, each node s of an execution
model has an associated interpretation I(s), representing the current state of
the world, and an associated three-valued interpretation U(s), representing an
overestimate of all that could still be caused in s. We now add to this a third
set, namely a set of atoms N (s), containing all atoms for which a negative effect
literal has already been caused. The sets I(s) and N (s) evolve throughout an
execution model as follows:

– In the root of the tree, I(s) = N (s) = {}
– When a negative effect literal ¬A is caused in a node s, the execution model

adds a child s′ to s such that:
• N (s′) = N (s) ∪ {A};
• I(s′) = I(s) \ {A}.

– When a positive effect literal A is caused in a node s, the execution model
adds a child s′ to s such that:
• N (s′) = N (s);
• if A ∈ N (s), then I(s′) = I(s), else I(s′) = I(s) ∪ {A}.

Note that, throughout the execution model, we maintain the property that
N (s) ∩ I(s) = {}.

The overestimate U(s) is again constructed as the limit of a sequence of three-
valued interpretations νi. To go from such a νi to νi+1, we make νi+1(A) = u for
all atoms A satisfying both of the following conditions:

– as before, νi(A) = f and the positive effect literal A appears in the head of a
rule r ∈ R(s) with νi(body(r)) 6= f;

– but now also A 6∈ N (s).

In this way, U(s) always assigns t to all atoms in I(s) and f to all those in N (s).

4 Encoding interventions

One of the interesting uses of negation-in-the-head is related to the concept of
interventions, introduced by Pearl (2000). Let us briefly recall this notion. Pearl
works in the context of structural models. Such a model is built from a number of
random variables. For simplicity, we only consider boolean variables, i.e., atoms.
These are again divided into exogenous and endogenous atoms. A structural
model now consists of one equation X := ϕ for each endogenous atom X, which
defines that X is true if and only if the boolean formula ϕ holds. This set of
equations should be acyclic (i.e., if we order the variables by defining that X < Y
if X appears in the equation defining Y , then this < should be a strict order), in
order to ensure that an assignment of values to the exogenous atoms induces a
unique assignment of values to the endogenous ones.

A crucial property of causal models is that they can not only be used to
predicts the normal behaviour of a system, but also to predict what would happen
if outside factors unexpectedly intervene with its normal operation. For instance,
consider the following simple model of which students must repeat a class:

Fail := ¬Smart ∧ ¬Effort. Repeat := Fail ∧Required.

Under the normal operation of this “system”, only students who are not smart
can fail classes and be forced to repeat them. Suppose now that we catch a
student cheating on an assignment and decide to fail him for the class. This
action was not foreseen by the causal model, so it does not follow from the normal
behaviour. In particular, failing the student may cause him to have to repeat
the class, but if the student is actually smart, then failing him will not make
him stupid. Pearl shows that we can model our action of failing the student
by means of an intervention, denoted do(Fail = t). This is a simple syntactic
transformation, which removes and replaces the original equation for Fail:

Fail := t. Repeat := Fail ∧Required.

According to this updates set of equations, the student fails and may have to
repeat the class, but he has not been made less smart.

In the context of CP-logic, let us consider the following simple medical theory:

(HighBloodPressure : 0.6)← BadLifeStyle. (14)

(HighBloodPressure : 0.9)← Genetics. (15)

(Fatigue : 0.3)← HighBloodPressure. (16)

Here, BadLifeStyle and Genetics are two exogenous predicates, which are both
possible causes for HighBloodPressure. Suppose now that we observe a patient
who suffers from Fatigue. Given our limited theory, this patient must be suffering
from HighBloodPressure, caused by at least one of its two possible causes.

Now, suppose that a doctor is wondering whether it is a good idea to prescribe
this patient some pills that cure high blood pressure. Again, the proper way to
answer such a question is by means of an intervention, that first prevents the
causal mechanisms that normally determine someone’s blood pressure and then
substitutes a new “mechanism” that just makes HighBloodPressure false. This
can be achieved by simply removing the two rules (14) and (15) from the theory.
This is an instance of a general method, developed by Vennekens et al. (2010), of
performing Pearl-style interventions in CP-logic. The result is that probability of
Fatigue drops to zero, i.e., P (Fatigue | do(¬HighBloodPressure)) = 0.

In this way, we can evaluate the effect of prescribing the pills without actually
having these pills in our model. This is a substantial difference to the way
in which reasoning about actions is typically done in the field of knowledge
representation, where formalisms such as situation or event calculus require an
explicit enumeration of all available actions and their effects. Using an intervention,
by contrast, we can envisage the effects of actions that we never even considered
when writing our model.

Eventually, however, we may want to transform the above descriptive theory
into a prescriptive one that tells doctors how to best treat a patient, given his or
her symptoms. In this case, we would need rules such as this:

BPMedicine← Fatigue. (17)

Obviously, this requires us to introduce the action BPMedicine of prescribing
the medicine, which previously was implicit in our intervention, as an explicit
action in our vocabulary. Negation-in-the-head allows us to syntactically express
the effect of this new action: ¬HighBloodPressure← BPMedicine.

This transformation can be applied in general, as the following theorem shows.

Theorem 1. Let T be a CP-theory over a propositional vocabulary Σ. For an
atom A ∈ Σ, let T ′ be the theory T ∪ {r} with r the rule ¬A ← B and B an
exogenous atom not in Σ. For each interpretation X for the exogenous atoms of
T ′, if B ∈ X, then πXT ′ = πXdo(T,¬A) and if B 6∈ X, then πXT ′ = πXT .

This theorem shows that negation-in-the-head allows CP-theories to “in-
ternalize” the intervention of doing ¬A. The result is a theory T ′ in which
the intervention can be switched on or off by simply choosing the appropriate
interpretation for the exogenous predicate that now explicitly represents this
intervention. Once the intervention has been syntactically added to the theory in
this way, additional rules such as (17) may of course be added to turn it from an
exogenous to an endogenous property.

It is important to note that this is a fully modular and elaboration tolerant
encoding of the intervention, i.e., the original CP-theory is left untouched and the
rules that describe the effect of the intervention-turned-action are simply added
to it. This is something that we can only achieve using negation-in-the-head.

5 Representing defaults

An interesting test case for logic programs has always been the representation

of defaults. The typical example concerns the default δ =
Bird(x) : Flies(x)

Flies(x)
together with the background knowledge: ∀x Penguin(x) ⇒ ¬Flies(x). In an
extended logic program, the two kinds of negation can be exploited to represent
the default in an elegant way:

Flies(x)← Bird(x) ∧ not ¬Flies(x). ¬Flies(x)← Penguin(x).

In a normal logic program or deterministic CP-theory, defaults are typically
represented using an abnormality predicate.

Flies(x)← Bird(x) ∧ ¬Abδ(x). Abδ(x)← Penguin(x).

Using CP-logic’s new negation-in-the-head, the abnormality predicate can be
omitted.

Flies(x)← Bird(x). (18)

¬Flies(x)← Penguin(x). (19)

However, we do now lose the ability to distinguish between defeasible and non-
defeasible rules, since negative effect literals can always be added to block any
effect. In fact, this is necessary because of our desire to use negation-in-the-head
to syntactically represent interventions (Section 4). It is after all a key property
of Pearl’s interventions that any causal relation in the model should, in principle,
be open to intervention.

Even though, as this section shows, it is possible to use CP-logic to represent
certain defaults, it is important to remember that it is not intended as a default
logic. In particular, rule (18) should not actually be read as saying that birds
normally fly. Instead, it says that, for each x, x being a bird causes it to be able
to fly. Similarly, rule (19) says that being a penguin is a cause for being unable to
fly. Note also that this is not a generally applicable methodology for representing
defaults. For instance, if we wanted to state that penguins with jetpacks are an
exception to rule (19), we would still have to introduce an abnormality predicate.

6 Probabilities and defaults

An interesting consequence of adding negation-in-the-head to CP-logic is that we
can combine the encoding of defaults as in the previous section with uncertainty.
For instance, let us suppose that there is, in general, a 5% change with which
being a bird does not cause one to be able to fly. This may be the result, for
instance, of a birth defect or some accident. This could be represented as follows:

(Flies(x) : 0.95)← Bird(x). (20)

¬Flies(x)← Penguin(x). (21)

The first rule describes the normal situation for birds, whereas the second rule
still serves to give an exception to the general rule. Note that, even for penguins,
the causal mechanism underlying the first rule still happens, i.e., the rule is still
fired, but it just fails to produce the outcomes of flying. Intuitively, we can think
of this as the penguins still being born and being raised by their parents—i.e.,
they go through the same process of growing up that any bird goes through. It is
just that, whereas this process causes the ability to fly for 95% of the normal
birds, it never has this outcome for penguins. Of course, since learning to fly is
actually the only possible effect of the first rule, the fact that this rule is still
fired for penguins has no effect on anything.

The following example shows that this is not always the case.

(Wound(x) : 0.7) ∨ (HoleInWall : 0.3)← Shoot(x). (22)

¬Wound(x)← Superhero(x). (23)

Here, this first rule states that shooting a gun at someone might produce two
possible effects: either the person ends up being wounded or the shot misses and
causes instead a hole in the wall. The second rule adds an exception: if x happens
to be a superhero, then x cannot be wounded. So, firing a gun at a superhero
never causes Wound(x), but with probability 0.3 still causes a hole in the wall.

This example also reveals a further way in which CP-logic is at heart a causal
logic and not a logic of defaults. While we have so far been getting away with
reading a rule such as (23) as expressing an exception to a default, this is not
what it actually says: what this rule states is that being a superhero causes one
to become “unwoundable”. This does not only apply to wounds that would be
caused by rule (22), but to all wounds. Therefore, if the CP-theory were to contain
other causes for wounds, such as (Wound(x) : 0.9) ← FallFromBuilding(x),
then superheroes are automatically also protected against these.

7 Implementation

To implement the feature of negation-in-the-head, a simple transformation to
regular CP-logic may be used. This transformation is based on the way in which
Denecker and Ternovska (2007) encode causal ramifications in their inductive
definition modelling of the situation calculus.

For a CP-theory T in vocabulary Σ, let Σ¬ consist of all atoms A for which a
negative effect literal ¬A appears in T . For each atom A ∈ Σ¬, we introduce two
new atoms, CA and C¬A. Intuitively, CA means that there is a cause for A, and
C¬A means that there is a cause for ¬A. Let τA be the following transformation:

– Replace all positive effect literals A in the heads of rules by CA
– Replace all negative effect literals ¬A in the heads of rules by C¬A
– Add this rule: A← CA ∧ ¬C¬A

Let τ¬(T) denote the result of applying to T , in any order, all the transformations
τA for which A ∈ Σ¬. It is clear that τ¬(T) is a regular CP-theory, i.e., one

without negation-in-the-head. As the following theorem shows, this reduction
preserves the semantics of the theory.

Theorem 2. For each interpretation X for the exogenous predicates, the projec-
tion of πXτ¬(T) onto the original vocabulary Σ of T is equal to πXT .

When comparing the transformed theory πτ¬(T) to the original theory T , we
see that the main benefit of having negation-in-the-head lies in its elaboration
tolerance: there is no need to know before-hand for which atoms we later might
wish to add negative effect literals, since we can always add these later, without
having to change to original rules. Both in the example of syntactically represent-
ing an intervention (Section 4) and that of representing exceptions to defaults
(Section 5), this feature may be useful.

8 Conclusion

This paper is part of a long-term research project which aims to develop a Tarskian
alternative to ASP: instead of relying on ASP’s original epistemic intuitions,
our goal is to have a language in which every expression can be interpreted as
an objective statement about the real world. The first motivation for this is
simplicity: many problems that are solved using present-day ASP systems and the
GDT-methodology do not have an inherent epistemic component, so it would just
be simpler if we could understand such programs in terms of what they say about
the real world directly, instead of having to make a detour through the beliefs
of some (irrelevant) rational agent. A second motivation is the unity of science:
a huge effort has gone into both theoretical and practical research on classical
logic. Its roots in Non-monotonic Reasoning have made ASP an antithesis to
the classical approach, in which the desire to express objective knowledge is
abandoned in favor of epistemic knowledge. Even though applications of ASP-
solvers and SAT-solvers are often quite similar in practice, the “official” reading
of ASP programs and classical theories is therefore radically different. The second
goal is to bridge this gap.

An important part of this research project was the development of the
language FO(ID), which showed how normal logic programs could be interpreted
as inductive definitions and added in a meaningful way to classical logic. An
extension of this work was the development of the language CP-logic, which
allows non-deterministic and probabilistic causal processes to be expressed. In
this paper, we have investigated the useful ASP feature of negation-in-the-head.
We presented a meaningful interpretation of this feature in the context of CP-logic
and discussed possibles uses of it. Finally, we also showed a simple transformation
that reduces it to regular CP-logic.

References

C. Baral, M. Gelfond, and N. Rushton. Probabilistic reasoning with answer sets.
Theory and Practice of Logic Programming 9(1):57-144, 2008.

M. Denecker and E. Ternovska. Inductive situation calculus. Artificial Intelligence,
171(5-6):332–360, 2007.

M. Denecker and J. Vennekens. Well-founded semantics and the algebraic theory
of non-monotone inductive definitions. In LPNMR, volume 4483 of LNCS,
pages 84–96. Springer, 2007.

M. Denecker, J. Vennekens, H. Vlaeminck, J. Wittocx, and M. Bruynooghe.
Answer set programming’s contributions to classical logic. An analysis of
ASP methodology. In MG-65: Symposium on Constructive Mathematics in
Computer Science, 2010.

M. Denecker, Y. Lierler, M. Truszczynski, and J. Vennekens. A tarskian informal
semantics for asp. In Technical Communications of the 28th International
Conference on Logic Programming, 2012.

M. Gelfond. Strong introspection. In AAAI, pages 386–391, 1991.
M. Gelfond and V. Lifschitz. Classical negation in logic programs and disjunctive

databases. New Generation Computing, 9(3/4):365–386, 1991.
M. Gelfond and V. Lifschitz. The stable model semantics for logic programming.

In ICLP/SLP, pages 1070–1080. MIT Press, 1988.
N. Hall. Structural equations and causation. Philosophical Studies, 132(1):

109–136, 2007.
V. Lifschitz. Answer set programming and plan generation. Artificial Intelligence,

138(1-2):39–54, 2002.
J. Pearl. Causality: Models, Reasoning, and Inference. Cambridge University

Press, 2000.
C. Sakama and K. Inoue. An alternative approach to the semantics of disjunctive

logic programs and deductive databases. Journal of Automated Reasoning, 13
(1):145–172, 1994.

J. Vennekens, M. Denecker, and M. Bruynooghe. CP-logic: A language of causal
probabilistic events and its relation to logic programming. Theory and Practice
of Logic Programming, 9(3):245–308, 2009.

J. Vennekens, M. Denecker, and M. Bruynooghe. Embracing events in causal
modelling: Interventions and counterfactuals in CP-logic. In JELIA, pages
313–325, 2010.

