The SILK Information Integration System

Tamas Bené&

IQSYS Information Systems Ltd., H-1135 Budapest, Csata u. 8.
benko.tamas@iqsys.hu

Workshop on Logic-based Methods for Information Integration
Vienna, Austria

23rd August, 2003

Contents

e SILK overview

e Functionality and architecture
e Model Warehouse

e SlLan semantics

e SlLan example

e Reasoning capabilities

e Future work

SILK: System Integration using Logic and Knowledge

e An IST, EU 5th Framework programme project
e Partners

— IQSOFT Ltd. (Hungary)

— EADS Systems & Defence Electronics (France)

— National Institute for Research and Development in Informatics (Rumania)
— Industrial Development and Education Centre (Greece)

e Product: a tool-set for the integration of heterogeneous information sources

— Integrator. building integrated models and customised user views
— Mediator. querying on multiple sources and multiple abstraction levels
— Wrappers common interface for accessing various information source types

x relational and object-oriented databases
x semi-structured sources (e.g., XML, RDF)
x data provided through applications (e.g., Web-services)

The Context of SILK

user/ .
- — enterprise ontologies/
Casual Ext 1 Busi i
erna 0 usiness/ knowledge
User Applications Expert User

r{:l;lt)«élﬁ{a query result

GRS Integration
Engineer

External
Tools

platform-
specific
schema
source query

(e.g. SQL)
S
System ESvs_tem
User ngineer

SILK Functionality

e store meta-data, access data on the fly

— single information source view
— data location transparency
— no restriction on the type and structure of the information

e modelling solution

— import, modify, export object-oriented models
— establish mappings between models
— compose queries (and export query results)

e reasoning capabilities

model comparison

model (in)consistency checking
— model unification

guery and mapping composition support

SILK Architecture

. : - ——
Casual External Business/ Integration
User GO — Expert User Engineer

cations Driver

[
- E 3
MEdlatOI‘ SILK Graphical User Interface =
Query Query Mapping [0]
Driver Designer Editor "2
SILK Access API o m
Command Interpreter 8‘ 5-
: Alz121]0 212 2
Rule Compiler ﬁ 8. g 9 E g. g. g ° E = Q
= clz|z| MMe |2 |= |2 |2]2 3
o 2 s 2|93 slelsl2 1215 o
= F |] = 3, 3 3 [} -
g = HEAEHE BICAELEa
= = 2lajla]je 2 |5 o i 1 I =3
3 & 28| 2151512 |z)
L = -_
3 3 o | 9 g g 7]
N K - :
2 E Model Access APL

Query Executor

Wrapper

Prolog SILK Base Connectivity API Java SILK Base Connectivity API

JDBC/ODBC XML SOAP
Wrapper Wrapper Wrapper

P g e 4
Legend: Prolog component Planned Prolog component

Structure of the Model Warehouse

y
" 1
users’ 1 ' g
memntal view ' .

Conceptua tevel =

N
e

Glohal

Application level .<

Tnierface sihievel .

o

Sosrce level

Components of the Model Warehouse

e Models (UML class diagrams)

— local: model of single system or a user view
— unified model covering several other models

e Mappings (OCL constraints)

— correspondenceconstraint linking model elements on teamelevel of ab-
straction

— abstraction constraint linking model elements differentlevels of abstraction

e Queries (SQL with OCL expressions)

SILK modelling example

model Factory {

class Product {
attribute String serial;
primary key serial;

%

class Car: Product {
attribute String make;
attribute Integer price;
constraint self.wheel.size>2;

k

class Wheel: Product {
attribute Integer size;

k

association 'Car-Wheel’ {
connection Car;
connection Wheel composite;

k

Model semantics

class set ofinstances
association set oflinks

attribute function from the class to
the type of the attribute

operation function from the product
of the class and the domains of the pa-
rameters to the type of the operation

connection end-point of an associa-
tion

inheritance derived class is the sub-
set of the base class

primary key a set of attributes uniquely
identifying an instance of a class

constraint an invariant for all instances
of a class or links of an association

Mapping example (an abstraction)

abstraction (s: Peugeot::Vehicle -> c¢: Factory::Car) {
constraint s.type = "Car" implies
s.serial_number = c.serial and
"Peugeot" = c.make and
s.price*1000 = c.price;

k

e abstractions give the necessary rules to create new instances (links) of classes (asso
ciations)

e suppliers the sources of the information (hesg
e clients the new instances or links (hecg
e in this case we create “abstract” cars from Peugeot vehicles ofdgpe

e OCL constraints for necessary conditionsype = "Car") and conversions
(s.price*1000 = c.price)

Mediator Logical Language

e A simple and uniform representation of the contents (both structural properties and
constraints) of the Model Warehouse

e A set of Description Rule®f the form
VY(pQ(Yo) N ... — 37(]0(?0) VAN)
whereX =J, X;,Y =, Y, andZ =Y\ X.

e Quantification is implicit

Example: Abstraction

The condition consists of the existence of the suppliers in conjunction with the condition
part of the top-leveimplies (if any). The consequent part is the right hand side of the

top-levelimplies

"Vehicle’(SNo,’Car’,Price)
---> 'Car’'(SNo,'Peugeot’,CPrice), CPrice = 1000*Price

Model comparison

Task

e Find and connect similar elements in two sets of model elements.

e Mathematically: compare two graphs with different kinds of nodes and leaves.

Functionality

e compare models

— on the same or on different levels of abstraction
— with a mix of UML and DL constructs

e connect matching elements bigks

¢ label links with default constraints (to be refined by the Integration Engineer e.g., by
using Mapping Designer)

Result of using the Mapping Designer

t Check Map Query Window Help

New Selector:
u:k Folw vt —

Current Focus:

[Mapping Designer

Select the mapping to be designed

(Cr=wm|

S00]

bstraction ‘Vehicle-Car'

Model elements related to this pping
Use browser tree Show contents " ¥y
package "' [Table of features- D class vehicle 3 class product :
Select Madel
© [package builtins e Delass car
9 Ol model Peugeot - D class wheel | show Relseed |
® D class vehicle D association ‘Car-Wheel’ Hide All Mod.
D) areribute type’
[attribute serial_number
D) aneribute price
® Clmodel Factory 20 (GO
© [class Product Source and result assig [Source
& Pctass car S e e ans_|
© O class wheel < serial_number cserial Peugeor Vehicle s |
“peugeat” cmake
© Cassociation ‘Car-Wheel’ - price * 1060 [cprice
® Clmapsundle mappings
© D abstraction “<unnamed>" T E—
9 Cpackage queries emity | atias |
D) auery Cheapsigwheelcar Factory.iCar |]
implication
expression (conjunction members)
[shorccus
expression alias |
» list=[mapBundle mappings], command=list}
oEBUG:

check_element(. (-(type,abstraction),.(-(name,Vehicle-Car

Car, 1)), (-(consequence, .

ype

~(s.serial_number,c

i | | i [ctone | [osee | [oree] [swe | [coe |

[Ready. [so0]] ﬂ

Model verification

Task

e check model elements for inconsistency

e provide explanation for the inconsistency

Functionality

e convert OCL constraints and UML structure to first order logic
e check classes and associations for emptiness
e check correspondences and abstractions for satisfiability

e work solely on the meta level, i.e., without considering the data in the information
sources

Model unification

Task

e combine several models into a new one

e link the old and new elements to facilitate mediation

Functionality

e create new model elements

e according to unification policy (e.g., create the union or the intersection of models
being unified)

e taking into account correspondences

e introducing default abstractions

Future work

Complete DL (Description Logic) support

e extend the RDF support to DL support

e support DL on all levels of SILK

Tighter J2EE coupling

e integrate into J2EE application servers

e provide standard J2EE communication interfaces

Develop an agent architecture

e make the communication with SILK easier for mobile applications

e make SILK-components more autonomous

