
The SILK Information Integration System

Tamás Benk̋o
IQSYS Information Systems Ltd., H-1135 Budapest, Csata u. 8.

benko.tamas@iqsys.hu

Workshop on Logic-based Methods for Information Integration
Vienna, Austria

23rd August, 2003



Contents

• SILK overview

• Functionality and architecture

• Model Warehouse

• SILan semantics

• SILan example

• Reasoning capabilities

• Future work



SILK: System Integration using Logic and Knowledge

• An IST, EU 5th Framework programme project

• Partners

– IQSOFT Ltd. (Hungary)

– EADS Systems & Defence Electronics (France)

– National Institute for Research and Development in Informatics (Rumania)

– Industrial Development and Education Centre (Greece)

• Product: a tool-set for the integration of heterogeneous information sources

– Integrator: building integrated models and customised user views

– Mediator: querying on multiple sources and multiple abstraction levels

– Wrappers: common interface for accessing various information source types

∗ relational and object-oriented databases

∗ semi-structured sources (e.g., XML, RDF)

∗ data provided through applications (e.g., Web-services)



The Context of SILK



SILK Functionality

• store meta-data, access data on the fly

– single information source view

– data location transparency

– no restriction on the type and structure of the information

• modelling solution

– import, modify, export object-oriented models

– establish mappings between models

– compose queries (and export query results)

• reasoning capabilities

– model comparison

– model (in)consistency checking

– model unification

– query and mapping composition support



SILK Architecture



Structure of the Model Warehouse



Components of the Model Warehouse

• Models (UML class diagrams)

– local: model of single system or a user view

– unified: model covering several other models

• Mappings (OCL constraints)

– correspondence: constraint linking model elements on thesamelevel of ab-
straction

– abstraction: constraint linking model elements ondifferentlevels of abstraction

• Queries (SQL with OCL expressions)



SILK modelling example Model semantics

model Factory {
class Product {

attribute String serial;
primary key serial;

};

class Car: Product {
attribute String make;
attribute Integer price;
constraint self.wheel.size>2;

};

class Wheel: Product {
attribute Integer size;

};

association ’Car-Wheel’ {
connection Car;
connection Wheel composite;

};
};

• class: set ofinstances

• association: set oflinks

• attribute: function from the class to
the type of the attribute

• operation: function from the product
of the class and the domains of the pa-
rameters to the type of the operation

• connection: end-point of an associa-
tion

• inheritance: derived class is the sub-
set of the base class

• primary key: a set of attributes uniquely
identifying an instance of a class

• constraint: an invariant for all instances
of a class or links of an association



Mapping example (an abstraction)

abstraction (s: Peugeot::Vehicle -> c: Factory::Car) {
constraint s.type = "Car" implies

s.serial_number = c.serial and
"Peugeot" = c.make and
s.price*1000 = c.price;

};

• abstractions give the necessary rules to create new instances (links) of classes (asso-
ciations)

• suppliers: the sources of the information (heres)

• clients: the new instances or links (herec)

• in this case we create “abstract” cars from Peugeot vehicles of typeCar

• OCL constraints for necessary conditions (s.type = "Car" ) and conversions
(s.price*1000 = c.price )



Mediator Logical Language

• A simple and uniform representation of the contents (both structural properties and
constraints) of the Model Warehouse

• A set ofDescription Rulesof the form

∀X.(p0(X0) ∧ . . . → ∃Z.q0(Y 0) ∧ . . .)

whereX =
⋃

i Xi, Y =
⋃

i Y i, andZ = Y \X.

• Quantification is implicit

Example: Abstraction

The condition consists of the existence of the suppliers in conjunction with the condition
part of the top-levelimplies (if any). The consequent part is the right hand side of the
top-levelimplies

’Vehicle’(SNo,’Car’,Price)
---> ’Car’(SNo,’Peugeot’,CPrice), CPrice = 1000*Price



Model comparison

Task

• Find and connect similar elements in two sets of model elements.

• Mathematically: compare two graphs with different kinds of nodes and leaves.

Functionality

• compare models

– on the same or on different levels of abstraction

– with a mix of UML and DL constructs

• connect matching elements bylinks

• label links with default constraints (to be refined by the Integration Engineer e.g., by
using Mapping Designer)



Result of using the Mapping Designer



Model verification

Task

• check model elements for inconsistency

• provide explanation for the inconsistency

Functionality

• convert OCL constraints and UML structure to first order logic

• check classes and associations for emptiness

• check correspondences and abstractions for satisfiability

• work solely on the meta level, i.e., without considering the data in the information
sources



Model unification

Task

• combine several models into a new one

• link the old and new elements to facilitate mediation

Functionality

• create new model elements

• according to unification policy (e.g., create the union or the intersection of models
being unified)

• taking into account correspondences

• introducing default abstractions



Future work

Complete DL (Description Logic) support

• extend the RDF support to DL support

• support DL on all levels of SILK

Tighter J2EE coupling

• integrate into J2EE application servers

• provide standard J2EE communication interfaces

Develop an agent architecture

• make the communication with SILK easier for mobile applications

• make SILK-components more autonomous


