
CoLogNET Workshop 1 Vienna, August 2003

Obtaining Certain and Consistent
Answers from Data Integration Systems

Loreto Bravo
Computer Science Department

Pontificia Universidad Católica de Chile
lbravo@ing.puc.cl

Joint work with:
Leopoldo Bertossi
School of Computer Science
Carleton University. Ottawa, Canada
bertossi@scs.carleton.ca



CoLogNET Workshop 2 Vienna, August 2003

Presentation Outline

Preliminaries

• Virtual Data Integration Systems

Minimal Instances

• Consistency

• Logic Programming Specification of Minimal Instances
◦ Open Case
◦ Mixed Case

Computing Consistent Answers

• Logic Programming Specification of Repairs

• Retrieving Consistent Answers

Conclusions



CoLogNET Workshop 3 Vienna, August 2003

Virtual Data Integration Systems

Global schema

Global schema R

Local Sources

Schema

Type: open, closed

Contents v

Mapping:

Global-as-View (GAV)

Local-as-View (LAV)

V (X̄) ← ϕ
V
(X̄)



CoLogNET Workshop 4 Vienna, August 2003

LAV: tables in local sources are described as (conjunctive) views of
the global schema

V1(Brand, Model, Y ear, Color) ← Car(Brand, Model, Y ear, Color),

Brand = Susuki, Y ear ≥ 1990

V2(Brand, Model, Country) ← Car(Brand, Model, Y ear, Color),

BrandOrigin(Brand,Country)

Open, Closed and Clopen



CoLogNET Workshop 5 Vienna, August 2003

Virtual Global Instances?

Vi(X̄) ← ϕ
Vi

(X̄) : LAV mapping

D : global database instance

ϕ
Vi

(D) : extension of Vi obtained by applying ϕ
Vi

to D

vi : source contents

The legal instances of G are:

Linst(G) = {D over R | vi ⊆ ϕ
Vi

(D), for all open sources
vi ⊇ ϕ

Vi
(D), for all closed sources

vi = ϕ
Vi

(D), for all clopen sources}

The certain answers to a global query Q are those that can be
obtained as answers from every legal instance: CertainG(Q)



CoLogNET Workshop 6 Vienna, August 2003

Example 1: Global system G1

V1(X,Y ) ← R(X,Y ) with v1 = {(a, b), (c, d)} open

V2(X,Y ) ← R(Y,X) with v2 = {(c, a), (e, d)} open

V3(X) ← P (X) with v3 = {(a), (d)} clopen

Global instance D = {R(a, b), R(c, d), R(a, c), R(d, e), P (a), P (d)} is
legal

v1 ⊆ ϕ1(D) = {(a, b), (c, d), (a, c), (d, e)}

v2 ⊆ ϕ2(D) = {(b, a), (d, c), (c, a), (e, d)}

v3 = ϕ3(D) = {(a), (d)}

The legal instances are supersets of D that do not add tuples to the
predicate P . No proper subsets of D are legal instances.

Query Q: R(X,Y )?

CertainG(Q) = {(a, b), (c, d), (a, c), (d, e)}



CoLogNET Workshop 7 Vienna, August 2003

Presentation Outline

X Preliminaries

X Virtual Data Integration Systems

Minimal Instances

• Consistency

• Logic Programming Specification of Minimal Instances
◦ Open Case
◦ Mixed Case

Computing Consistent Answers

• Logic Programming Specification of Repairs

• Retrieving Consistent Answers

Conclusions



CoLogNET Workshop 8 Vienna, August 2003

Consistency

Example 1 (continued)

V1(X,Y ) ← R(X,Y ) with v1 = {(a, b), (c, d)} open

V2(X,Y ) ← R(Y,X) with v2 = {(c, a), (e, d)} open

V3(X) ← P (X) with v3 = {(a), (d)} clopen

Query Q: R(X,Y )?
CertainG(Q) = {(a, b), (c, d), (a, c), (d, e)}

Local FDs V1 : X → Y , V2 : X → Y are satisfied in the sources

But the global FD R : X → Y is not satisfied by legal instance
D = {(a, b), (c, d), (a, c), (d, e)}

Only (c, d), (d, e) should be consistent answers



CoLogNET Workshop 9 Vienna, August 2003

Several questions arise:

What does it mean for G to satisfy global ICs?

What are the consistent answers to a global query?

How to compute them?

These questions were addressed in

[Bertossi, Chomicki, Cortés and Gutiérrez; FQAS02]

First we briefly review some notions introduced there



CoLogNET Workshop 10 Vienna, August 2003

A minimal global instance is a legal instance that does not properly
contain any other legal instance

Mininst(G) := set of minimal instances of G

The minimal answers to a query are those that can be contained
from every minimal instance:

CertainG(Q) j MinimalG(Q)

For monotone queries they coincide; with negation, possibly not

G is consistent wrt ICs if every minimal instance satisfies the ICs



CoLogNET Workshop 11 Vienna, August 2003

Specification of Minimal Instances: Open Case

Example 2: D = {a, b, c, . . . } G2:

V1(X,Z) ← P (X,Y ), R(Y,Z) {v1(a, b)} open
V2(X,Y ) ← P (X,Y ) {v2(a, c)} open

Inverse Rules [Duschka,Genesereth; SAC97]:

P (X, f(X,Z)) ← V1(X,Z) R(f(X,Z), Z) ← V1(X,Z)

P (X,Y ) ← V2(X,Y )

Try to use something like this to specify minimal instances ...



CoLogNET Workshop 12 Vienna, August 2003

Answer set program Π(G):

1. Fact dom(a) for every constant a ∈ D

2. Fact Vi(ā) whenever Vi(ā) ∈ vi for a source extension vi in G

3. For every view (source) predicate Vi with definition
Vi(X̄) ← P1(X̄1), . . . , Pn(X̄n), the rule

Pj(X̄j) ← V (X̄),
∧

Xi∈(X̄j\X̄)

Fi(X̄,Xi)

4. For every predicate Fi(X̄,Xi) introduced in 3., the rule

Fi(X̄,Xi) ← Vi(X̄), dom(Xi), choice((X̄), (Xi))



CoLogNET Workshop 13 Vienna, August 2003

choice((X̄), (Xi)): non-deterministically chooses a unique
value for Xi for each value of X̄

[Giannotti,Pedreschi,Sacca,Zaniolo; DOOD’91]

Models are the choice models, but the program can be transformed
into one with answer sets (stable models)

Mininst(G) ⊆ stable models of Π(G) ⊆ Linst(G)

Queries expressed as logic programs can be answered from the
query program together with Π(G) under cautious stable model
semantics

For monotone queries Q, answers obtained using Π(G) coincide
with CertainG(Q) and MinimalG(Q)



CoLogNET Workshop 14 Vienna, August 2003

Example 2 (continued) D = {a, b, c, . . . } G2:

V1(X,Z) ← P (X,Y ), R(Y,Z) {v1(a, b)} open
V2(X,Y ) ← P (X,Y ) {v2(a, c)} open

Π(G2) :

dom(a)., dom(b)., dom(c)., . . . , V1(a, b)., V2(a, c).
P (X,Z) ← V1(X,Y ), F1(X,Y,Z)
R(Z, Y ) ← V1(X,Y ), F1(X,Y,Z)
P (X,Y ) ← V2(X,Y )
F1(X,Y,Z) ← V1(X,Y ), dom(Z), choice((X,Y ), (Z))



CoLogNET Workshop 15 Vienna, August 2003

Example 2 (continued) G2:

V1(X,Z) ← P (X,Y ), R(Y,Z) {v1(a, b)} open
V2(X,Y ) ← P (X,Y ) {v2(a, c)} open

Mininst(G) = {{P (a, c), P (a, z), R(z, b)} | z ∈ {a, b, c, ...}}

The stable models of SV (Π(G2)) are:

Mb = {dom(a), . . . , V1(a, b), V2(a, c), P (a, c), diffChoice1(a, b, a),
chosen1(a, b, b), diffChoice1(a, b, c), F1(a, b, b), R(b, b), P (a, b)}

Ma = {dom(a), . . . , V1(a, b), V2(a, c), P (a, c), chosen1(a, b, a),
diffChoice1(a, b, b), diffChoice1(a, b, c), F1(a, b, a), R(a, b), P (a, a)}

Mc = {dom(a), . . . , V1(a, b), V2(a, c), P (a, c), diffChoice1(a, b, a),
diffChoice1(a, b, b), chosen1(a, b, c), F1(a, b, c), R(c, b)}
· · ·

Here: 1-1 correspondence with Mininst(G)



CoLogNET Workshop 16 Vienna, August 2003

Example 3: G3:

V1(X) ← P (X,Y ) {v1(a)} open
V2(X,Y ) ← P (X,Y ) {v2(a, c)} open

Mininst(G3) = {{P (a, c)}}

However, the legal global instances corresponding to models of
Π(G3) are of the form {{P (a, c), P (a, z)} | z ∈ D}

As V2 is open, it forces P (a, c) to be in all legal instances, and with
this, same condition on V1 is automatically satisfied, and no other
values for Y are needed

But the choice operator still has freedom to chose other values (the
z ∈ D)



CoLogNET Workshop 17 Vienna, August 2003

We want Π(G) to capture only the minimal instances

A revised version of Π(G) is able to detect in which cases it is
necessary to use the function predicates.

Fi(X̄,Xi) ← add Vi(X̄), dom(Xi), choice((X̄), (Xi))

where add Vi(X̄) is true only when the openness of source Vi is not
satisfied through other views.

stable models of Π(G) ≡ Mininst(G).

This program not only specifies the minimal instances, but can be
also used to compute certain answers to monotone queries



CoLogNET Workshop 18 Vienna, August 2003

Specification of Minimal Instances: Mixed Case

Example 4: D = {a, b, c, . . . } G4:

V1(X,Z) ← P (X,Y ), R(Y,Z) {v1(a, b)} open
V2(X,Y ) ← P (X,Y ) {v2(a, c)} clopen

In Example 2 we had the same sources but they were all open.
There we had:

Mininst(G2) = {{P (a, c), P (a, z), R(z, b)} | z ∈ {a, b, c, ...}}

Here the second sources restricts predicate P to (a, c) so we have
that in this case we only get:

Mininst(G4) = {{P (a, c), R(c, b)}}

This closure condition imposes restrictions on the legal instances,
but does not force to add new tuples to them.



CoLogNET Workshop 19 Vienna, August 2003

Π(G)mix:

The same clauses as Π(G), but now taking atoms from open
and clopen sources.

For every view predicate V of a clopen or closed source with
description V (X̄) ← P1(X̄1), . . . , Pn(X̄n), the denial
constraint:

← P1(X̄1), . . . , Pn(X̄n), not V (X̄).

(notice that in the specification program, V is purely extensional)

If the simple version of Π(G) is considered we have that:

Mininst(G) ⊆ stable models of Π(G)mix ⊆ Linst(G)

If the revised version of Π(G) is considered we have that:

stable models of Π(G)mix ≡ Mininst(G)



CoLogNET Workshop 20 Vienna, August 2003

Example 4: D = {a, b, c, . . . } G4:

V1(X,Z) ← P (X,Y ), R(Y,Z) {v1(a, b)} open
V2(X,Y ) ← P (X,Y ) {v2(a, c)} clopen

Π(G4)mix :

dom(a)., dom(b)., dom(c)., . . . , V1(a, b)., V2(a, c).
P (X,Z) ← V1(X,Y ), F1(X,Y,Z)
R(Z, Y ) ← V1(X,Y ), F1(X,Y,Z)
P (X,Y ) ← V2(X,Y )
F1(X,Y,Z) ← V1(X,Y ), dom(Z), choice((X,Y ), (Z))

← P (X,Y ), not V2(X,Y )



CoLogNET Workshop 21 Vienna, August 2003

Example 4: D = {a, b, c, . . . } G4:

V1(X,Z) ← P (X,Y ), R(Y,Z) {v1(a, b)} open
V2(X,Y ) ← P (X,Y ) {v2(a, c)} clopen

Mininst(G) = {{P (a, c), R(c, b)}}

The stable model of Π(G4)mix is:

{domd(a), . . . , v1(a, b), v2(a, c), P (a, c), diffchoice1(a, b, a),
diffchoice1(a, b, b), chosen1(a, b, c), f1(a, b, c), R(c, b)}



CoLogNET Workshop 22 Vienna, August 2003

Relation between answers obtained from different types of queries
and programs:

Π(G) Query CertainG(Q) MinimalG(Q)

Revised Monotone = =

General 6= =

Simple Monotone = =

General 6= 6=



CoLogNET Workshop 23 Vienna, August 2003

Presentation Outline

X Preliminaries

X Virtual Data Integration Systems

X Minimal Instances

X Consistency

X Logic Programming Specification of Minimal Instances
X Open Case
X Mixed Case

Computing Consistent Answers

• Logic Programming Specification of Repairs

• Retrieving Consistent Answers

Conclusions



CoLogNET Workshop 24 Vienna, August 2003

Computing Consistent Answers

In [Bertossi, Chomicki, Cortés and Gutiérrez; FQAS02]
(inspired by [Arenas, Bertossi, Chomicki; PODS’99]):

A repair of a global system G wrt to global ICs IC is:

a global instance that satisfies IC , that

minimally differs from a minimal instance
(wrt to inclusion of sets of tuples)

RepairsIC (G) := set of repairs of G wrt IC

A tuple t̄ is a consistent answer to query Q wrt IC if for every
D ∈ RepairsIC (G): D |= Q[t̄]

Intuitively, consistent answers are invariant under minimal
restorations of consistency



CoLogNET Workshop 25 Vienna, August 2003

Example 1 (continued)

Since Mininst(G1) = {{R(a, b), R(c, d), R(a, c), R(d, e), P (a), P (d)}}

G1 is inconsistent wrt FD R : X → Y

RepairsFD(G1) = {D1, D2}

D1 = {R(a, b), R(c, d), R(d, e), P (a), P (d)}

D2 = {R(c, d), R(a, c), R(d, e), P (a), P (d)}

Queries:

Q(X,Y ) : R(X,Y )?

(c, d), (d, e) are the consistent
answers

Q1(X) : ∃Y R(X,Y )?

a is a consistent answer



CoLogNET Workshop 26 Vienna, August 2003

Specification of Repairs

So far: specification of minimal instances of an integration system

Minimal instances can be inconsistent

In consequence, we want to specify their repairs

[Barcelo, Bertossi; NMR’02], [Barcelo, Bertossi; PADL’02]:

Specification of the repairs of a single, inconsistent relational
database using disjunctive logic programs with stable model
semantics

We can apply those ideas here ...



CoLogNET Workshop 27 Vienna, August 2003

We can combine the programs that specify the minimal instances
and the (single DB) repair programs into a new program Π(G, IC )
that specifies the repairs of an integration system G wrt IC

Example 3 (continued) G3:

V1(X) ← P (X,Y ) {v1(a)} open
V2(X,Y ) ← P (X,Y ) {v2(a, c)} open

IC : ∀x, y(P (x, y) → P (y, x))

Mininst(G3) = {{P (a, c)}} ... inconsistent system



CoLogNET Workshop 28 Vienna, August 2003

Repair Program using DLV syntax:
dom(a). dom(c). v1(a). v2(a,c). %begin subprogram for minimal instances

P(X,Y,td) :- P(X,Y,v1).

P(X,Y,td) :- P(X,Y,to).

P(X,Y,nv1) :- P(X,Y,to).

addv1(X) :- v1(X), not auxv1(X).

auxv1(X) :- P(X,Z,nv1).

fz(X,Z) :- addv1(X), dom(Z), chosenv1z(X,Z).

chosenv1z(X,Z) :- addv1(X), dom(Z), not diffchoicev1z(X,Z).

diffchoicev1z(X,Z) :- chosenv1z(X,ZZ), dom(Z), ZZ!=Z.

P(X,Z,v1) :- addv1(X), fz(X,Z).

P(X,Y,v2) :- v2(X,Y).

P(X,Y,ts) :- P(X,Y,ta), dom(X), dom(Y). %begin repair subprogram

P(X,Y,ts) :- P(X,Y,td), dom(X), dom(Y).

P(X,Y,fs) :- dom(X), dom(Y), not P(X,Y,td).

P(X,Y,fs) :- P(X,Y,fa), dom(X), dom(Y).

P(X,Y,fa) v P(Y,X,ta) :- P(X,Y,ts), P(Y,X,fs), dom(X), dom(Y).

P(X,Y,tss) :- P(X,Y,ta), dom(X), dom(Y).

P(X,Y,tss) :- P(X,Y,td), dom(X), dom(Y), not P(X,Y,fa).

P(X,Y,fss) :- P(X,Y,fa), dom(X), dom(Y).

P(X,Y,fss) :- dom(X), dom(Y), not P(X,Y,td), not P(X,Y,ta).

:- p(X,Y,ta), p(X,Y,fa).



CoLogNET Workshop 29 Vienna, August 2003

Repair subprogram annotations

Annotation Atom The tuple P (ā) is...

td P (ā, td) a fact of the database

fd P (ā, fd) not a fact in the database

ta P (ā, ta) advised to be made true

fa P (ā, fa) advised to be made false

ts P (ā, ts) true or becomes true

fs P (ā, fs) false or becomes false

tss P (ā, tss) it is true in the repair

fss P (ā, fss) it is false in the repair



CoLogNET Workshop 30 Vienna, August 2003

Repair subprogram

P(X,Y,ts) :- P(X,Y,ta), dom(X), dom(Y).

P(X,Y,ts) :- P(X,Y,td), dom(X), dom(Y).

P(X,Y,fs) :- dom(X), dom(Y), not P(X,Y,td).

P(X,Y,fs) :- P(X,Y,fa), dom(X), dom(Y).

P(X,Y,fa) v P(Y,X,ta) :- P(X,Y,ts), P(Y,X,fs), dom(X), dom(Y).

P(X,Y,tss) :- P(X,Y,ta), dom(X), dom(Y).

P(X,Y,tss) :- P(X,Y,td), dom(X), dom(Y), not P(X,Y,fa).

P(X,Y,fss) :- P(X,Y,fa), dom(X), dom(Y).

P(X,Y,fss) :- dom(X), dom(Y), not P(X,Y,td), not P(X,Y,ta).

:- p(X,Y,ta), p(X,Y,fa).



CoLogNET Workshop 31 Vienna, August 2003

Stable models obtained with DLV:

Mr
1 = {dom(a), dom(c), v1(a), v2(a,c), P(a,c,nv1),

P(a,c,v2), P(a,c,td), P(a,c,ts), auxv1(a),
P(a,a,fs), P(c,a,fs), P(c,c,fs), P(a,a,fss), P(c,a,ta),
P(c,c,fss), P(a,c,tss), P(c,a,ts), P(c,a,tss)}
≡ {P (a, c), P (c, a)}

Mr
2 = {dom(a),dom(c), v1(a), v2(a,c), P(a,c,nv1),

P(a,c,v2), P(a,c,td), P(a,c,ts), auxv1(a), P(a,a,fs),
P(c,a,fs), P(a,c,fs), P(c,c,fs), P(a,a,fss), P(c,a,fss),
P(a,c,fss), P(c,c,fss), P(a,c,fa)} ≡ ∅

Repair programs specify exactly the repairs of an integration
system for universal and simple referential ICs.



CoLogNET Workshop 32 Vienna, August 2003

Computing Consistent Answers

Consistent answers t̄ to a query posed to a global integration
system Q(x̄)?

Methodology:

1. Q(· · ·P (ū) · · · ¬R(v̄) · · · ) 7→
Q′ := Q(· · ·P (ū, tss) · · · R(v̄, fss) · · · )

2. Q′(x̄) 7→ (Π(Q′), Ans(X̄))

- Π(Q′) is a query program

- Ans(X̄) is a query atom defined in Π(Q′)

3. “Run” Π := Π(Q′) ∪ Π(G, IC)

4. Collect ground atoms

Ans(t̄) ∈
⋂
{S | S is a stable model of Π}



CoLogNET Workshop 33 Vienna, August 2003

Example 3 (continued) Query Q : P (x, y)

1. Q′ : P (x, y, tss)

2. Π(Q′) : Ans(X,Y ) ← P (X,Y, tss)

3. Π(G3, IC ) as before; form Π = Π(G3, IC ) ∪ Π(Q′)

4. The repairs corresponding to the stable models of the program
Π extended with query atoms are

Mr

1 = Mr
1 ∪ {Ans(a, c), Ans(c, a)};

Mr

2 = Mr
2

5. No Ans atoms in common, then query has no consistent
answers



CoLogNET Workshop 34 Vienna, August 2003

Conclusions

A general specification, under the LAV paradigm, of minimal
global instances of an integration system of open, closed and
clopen sources

Certain Answers can be retrieved for monotone queries

General approach to specifying the database repairs of a
mediated integration system with open, closed and clopen
sources under the LAV approach

The methodology works for conjunctive view definitions,
arbitrary universal ICs, simple referential ICs (in particular, no
cycles), and queries expressed as Datalognot programs



CoLogNET Workshop 35 Vienna, August 2003

Can be extended to the case of views defined using disjunctions
of conjunctive queries

Conditions over the views are being identified in order to be
able to calculate Certain answers for any query.



CoLogNET Workshop 36 Vienna, August 2003

Our computations are based on the current implementations of
stable models.

However we are not interested in the repairs per se, we are
interested in answers to queries.

Optimizations are being developed:

Select the data from the sources that is relevant to answer the
query

Magic sets to use the query to guide the computation


