Inconsistency and Incompleteness in Data Integration: a Logic-based Approach

Andrea Calì

Università di Roma "La Sapienza"

CoLogNET Workshop

Logic-based methods for information integration

Vienna, Austria, 23 August 2003

Joint work with:

- Maurizio Lenzerini
- Domenio Lembo
- Riccardo Rosati

What is a data integration system?

- Offers uniform access to a set of heterogeneous sources
- The representation provided to the user is called **global schema**
- The user is freed from the knowledge about the data sources
- When the user issues a query over the global schema, the system:
 - 1. determines which sources to query and how
 - 2. issues suitable queries to the sources
 - 3. assembles the results and provides the answer to the user

Logical architecture for a data integration system

Data integration system: formalisation

A data integration system \mathcal{I} is a triple $\langle \mathcal{G}, \mathcal{S}, \mathcal{M} \rangle$:

- \mathcal{G} : global schema
- \mathcal{S} : source schema
- \mathcal{M} : mapping

- global schema \mathcal{G} : relational with integrity constraints (ICs)
- source schema S: relational;
- mapping \mathcal{M} : global-as-view (GAV), expressed with the language of union of conjunctive queries (UCQ)

Example

Global schema: player(Pname, Pteam) team(Tname, Tcity) Source schema: { $s_1/3, s_2/2, s_3/2$ }

The GAV mapping associates to each relation in the global schema \mathcal{G} a view over the source schema:

$$\begin{array}{rcl} \mathsf{player} & \rightsquigarrow & \left\{ \begin{array}{rcl} \mathsf{player}(X,Y) & \leftarrow & s_1(X,Y,Z) \\ \\ \mathsf{player}(X,Y) & \leftarrow & s_3(X,Y) \end{array} \right. \\ \mathbf{team} & \rightsquigarrow & \mathsf{team}(X,Y) & \leftarrow & s_2(X,Y) \end{array}$$

The role of integrity constraints (ICs)

ICs on the global schema:

- enhance the expressiveness of the global schema
- in general they are not satisfied by the data at the sources

ICs on the source schema:

- represent local properties of data sources
- we assume that the data at the sources satisfy ICs expressed over the sources
- \Rightarrow not considered

Constraints on the global schema

1. key dependencies (KDs)

 $key(r) = \{A_1, \dots, A_k\}$

2. inclusion dependencies (IDs) (generalisation of foreign key dependencies) $r_1[A_1, \ldots, A_m] \subseteq r_2[B_1, \ldots, B_m]$

Outline

- \diamond Introduction (done)
- \diamond Framework (done)
- Reasoning on integrity constraints
- Query rewriting for IDs alone
- Query rewriting for KDs and IDs
- Semantics for inconsistent data (loosely-sound)
- Query rewriting under loosely-sound semantics
- Complexity results

Reasoning about constraints

Given a source database \mathcal{D} for a system \mathcal{I} , a global database \mathcal{B} is said to be legal if:

- 1. it satisfies the ICs on the global schema
- 2. it satisfies the mapping, i.e. \mathcal{B} is constituted by a **superset** of the **retrieved** global database $ret(\mathcal{I}, \mathcal{D})$

- $ret(\mathcal{I}, \mathcal{D})$ is obtained by evaluating, for each relation in \mathcal{G} , the mapping queries over the source database
- assumption of **sound mapping**
- there are several global databases that are legal for the system

Answers to queries under constraints

- We are interested in **certain answers**.
- A tuple *t* is a **certain answer** for a query Q if *t* is in the answer to *Q* for **all** (possibly infinite) legal databases.
- The certain answers to Q are denoted by $ans(Q, \mathcal{I}, \mathcal{D})$.

Example

Global schema: player(Pname, Pteam)team(Tname, Tcity)

Constraints:

 $player[Pteam] \subseteq team[Tname]$

Mapping:

$$\begin{array}{rcl} \mathsf{player} & \rightsquigarrow & \left\{ \begin{array}{lll} \mathsf{player}(X,Y) & \leftarrow & s_1(X,Y,Z) \\ \\ \mathsf{player}(X,Y) & \leftarrow & s_3(X,Y) \end{array} \right. \\ \mathbf{team} & \rightsquigarrow & \mathsf{team}(X,Y) & \leftarrow & s_2(X,Y) \end{array}$$

Source database ${\cal D}$

Retrieved global database $ret(\mathcal{I}, \mathcal{D})$

Retrieved global database $ret(\mathcal{I}, \mathcal{D})$

The ID on the global schema tells us that roma is the name of some team

All legal global databases for \mathcal{I} have **at least** the tuples shown above, where α is some value of the domain of the database

Retrieved global database $ret(\mathcal{I}, \mathcal{D})$

The ID on the global schema tells us that roma is the name of some team

All legal global databases for \mathcal{I} have **at least** the tuples shown above, where α is some value of the domain of the database

Warning 1 there may be an infinite number of legal databases for \mathcal{I}

Retrieved global database $ret(\mathcal{I}, \mathcal{D})$

The ID on the global schema tells us that roma is the name of some team

All legal global databases for \mathcal{I} have **at least** the tuples shown above, where α is some value of the domain of the database

Warning 1 there may be an infinite number of legal databases for \mathcal{I}

Warning 2 in case of cyclic IDs, legal databases for \mathcal{I} may be of infinite size

Retrieved global database $ret(\mathcal{I}, \mathcal{D})$

The ID on the global schema tells us that roma is the name of some team

All legal global databases for \mathcal{I} have **at least** the tuples shown above, where α is some value of the domain of the database

Consider the query

 $q(X) \leftarrow \mathsf{team}(X,Y)$

Retrieved global database $ret(\mathcal{I}, \mathcal{D})$

The ID on the global schema tells us that roma is the name of some team

All legal global databases for \mathcal{I} have **at least** the tuples shown above, where α is some value of the domain of the database

Consider the query

 $q(X) \ \leftarrow \ \mathsf{team}(X,Y)$

 $ans(q, \mathcal{I}, \mathcal{D}) = \{realMadrid, roma\}$

Query rewriting

Given a user query Q over ${\mathcal G}$

- $\bullet\,$ we look for a rewriting R of Q expressed over ${\cal S}\,$
- a rewriting R is perfect if $R^{\mathcal{D}} = ans(Q, \mathcal{I}, \mathcal{D})$ for every source database \mathcal{D} .

With a perfect rewriting, we can do query answering by rewriting

Note that we avoid the construction of the retrieved global database $ret(\mathcal{I}, \mathcal{D})$

Query rewriting for IDs alone

Intuition: Use the IDs as basic rewriting rules

 $q(X) \leftarrow \mathsf{team}(X,Y)$

player[*Pteam*] \subseteq team[*Tname*] as a logic rule: team(W_2, W_3) \leftarrow player(W_1, W_2)

Query rewriting for IDs alone

Intuition: Use the IDs as basic rewriting rules

```
q(X) \leftarrow \mathsf{team}(X,Y)
```

 $\mathsf{player}[Pteam] \subseteq \mathsf{team}[Tname]$

as a logic rule: team $(W_2, W_3) \leftarrow \mathsf{player}(W_1.W_2)$

Basic rewriting step:

when the atom unifies with the head of the rule

substitute the atom with the body of the rule

We add to the rewriting the query

$$q(X) \leftarrow \mathsf{player}(W, X)$$

Query Rewriting for IDs alone: algorithm ID-rewrite

Iterative execution of:

- 1. reduction: atoms that are subsumed by another atom are eliminated
- 2. basic rewriting step

Main result

- $\Pi_{\mathcal{M}}$: rules of the mapping
- Π_{ID} : union of CQs produced by the rewriting algorithm

Theorem: $\Pi_{\mathcal{M}} \cup \Pi_{ID}$ is a perfect rewriting of the user query Q

Query answering under IDs and KDs

- possibility of inconsistencies (recall the **sound** mapping)
- when $ret(\mathcal{I}, \mathcal{D})$ violates the KDs, no legal database exists and query answering becomes trivial!

Theorem: Query answering under IDs and KDs is undecidable.

Proof: by reduction from implication of IDs and KDs.

Separation

Non-key-conflicting IDs (NKCIDs) are of the form

 $r_1[\mathbf{A}_1] \subseteq r_2[\mathbf{A}_2]$

where either:

- 1. no KD is defined over r_2
- 2. A_2 is **not** a strict superset of $key(r_2)$

Theorem (separation): Under KDs and NKCIDs, when $ret(\mathcal{I}, \mathcal{D})$ satisfies the KDs, KDs can be ignored wrt certain answers

Query rewriting under IDs and NKCIDs

Set of rules Π_{KD} for considering the case of KD violation for a relation r:

$$q(Y_1, \dots, Y_n) \leftarrow r(X_1, \dots, X_k, \dots, X_i, \dots),$$
$$r(X_1, \dots, X_k, \dots, X'_i, \dots),$$
$$X_i \neq X'_i, val(Y_1), \dots, val(Y_n)$$

 X_1,\ldots,X_k are the variables corresponding to the attributes of key(r)

Theorem: $\Pi_{ID} \cup \Pi_{KD} \cup \Pi_{val} \cup \Pi_{\mathcal{M}}$ is a perfect rewriting of Q.

 Π_{val} is the set of rules that imposes that val(c) is true if c is a value in the database.

Semantics for inconsistent data sources

- Under the (strictly) sound semantics, a single KD violation leads to a non-interesting case for query answering
- New approach: loosely-sound semantics. Add as much as you like (as with sound semantics), and throw away the minimum number of tuples

A global database \mathcal{B}_1 is **better** than another database \mathcal{B}_2 , denoted $\mathcal{B}_1 \gg_{(\mathcal{I},\mathcal{D})} \mathcal{B}_2$, iff

$$\mathcal{B}_1 \cap ret(\mathcal{I}, \mathcal{D}) \supset \mathcal{B}_2 \cap ret(\mathcal{I}, \mathcal{D})$$

The answers $ans_{\ell}(Q, \mathcal{I}, \mathcal{D})$ to a query are those that are true on **all** "best" legal global databases w.r.t. $\gg_{(\mathcal{I}, \mathcal{D})}$.

Example

Global schema:player(Pname, Pteam)team(Tname, Tcity)

Constraints:

$$player[Pteam] \subseteq team[Tname]$$
$$key(player) = \{Pname\}$$

Mapping:

player
$$\rightsquigarrow$$

$$\begin{cases}
player(X,Y) \leftarrow s_1(X,Y,Z) \\
player(X,Y) \leftarrow s_3(X,Y)
\end{cases}$$
team \rightsquigarrow team $(X,Y) \leftarrow s_2(X,Y)$

Source database $\ensuremath{\mathcal{D}}$

Retrieved global database $ret(\mathcal{I}, \mathcal{D})$

	figo	realMadrid
player	totti	roma
	figo	cavese

team

realMadrid madrid

There are two possible ways of repairing the violation with a minimum deletion of tuples.

First form

Second form

For the query

 $q(X) \leftarrow \mathsf{team}(\mathsf{X},\mathsf{Y})$

we have

$$ans_{\ell}(q, \mathcal{I}, \mathcal{D}) = \{roma, realMadrid\}$$

Andrea Calì

Query rewriting under the loosely-sound semantics

Set of rules $\Pi_{\ell KD}$ that take KDs into account (Datalog[¬] under stable model semantics): for each relation r in \mathcal{G}

$$\begin{aligned} r(\mathbf{x}, \mathbf{y}) &\leftarrow r_{\mathcal{D}}(\mathbf{x}, \mathbf{y}) , \ not \ \overline{r}(\mathbf{x}, \mathbf{y}) \\ \overline{r}(\mathbf{x}, \mathbf{y}) &\leftarrow r_{\mathcal{D}}(\mathbf{x}, \mathbf{y}) , \ r(\mathbf{x}, \mathbf{z}) , \ Y_1 \neq Z_1 \\ & \cdots \\ \overline{r}(\mathbf{x}, \mathbf{y}) &\leftarrow r_{\mathcal{D}}(\mathbf{x}, \mathbf{y}) , \ r(\mathbf{x}, \mathbf{z}) , \ Y_m \neq Z_m \end{aligned}$$

where: in $r(\mathbf{x}, \mathbf{y})$ the variables in \mathbf{x} correspond to the attributes constituting the key of the relation r; $\mathbf{y} = Y_1, \ldots, Y_m$ and $\mathbf{z} = Z_1, \ldots, Z_m$.

Query rewriting under the loosely-sound semantics (cont'd)

 $\Pi_{\mathcal{MD}}$: rules obtained from $\Pi_{\mathcal{M}}$ by replacing each r with $r_{\mathcal{D}}$.

Theorem: $\Pi_{\ell KD} \cup \Pi_{ID} \cup \Pi_{\mathcal{MD}}$ is a perfect rewriting of Q.

Summary of complexity results

KDs	IDs	strictly-sound	loosely-sound
no	GEN	PTIME/PSPACE	PTIME/PSPACE
yes	no	PTIME/NP	coNP/ $\Pi_2^p \bigstar$
yes	FK	PTIME/PSPACE	coNP/PSPACE
yes	NKC	PTIME/PSPACE	coNP/PSPACE
yes	1KC	undecidable	undecidable
yes	GEN	undecidable	undecidable

- Deals also with **exclusion dependencies**
- The rules $\Pi_{\mathcal{M}}$ are taken into account by means of **unfolding** (substitution)
- Is able to work with **local-as-view (LAV)** mappings, which are translated into GAV ones (plus integrity constraints) [— ER 2002]

Conclusions

- Query answering by rewriting in data integration systems under constraints
- Query rewriting technique for IDs alone, inspired by [Gryz ICDE 1999]
- Characterisation of the threshold between decidability and undecidability under KDs and IDs [— PODS 2003]
- Query rewriting technique for a maximal class of KDs and IDs
- Loose semantics under KDs and IDs
 - * Query rewriting technique for KDs, decoupled from that for IDs
- All rewritings in purely intensional fashion
- System DIS@DIS

Further information:

- Questions: now
- Presenter's contact: http://www.andreacali.com
- Implementation: system DIS@DIS try it online! available from the link above

Thanks to: Maurizio Lenzerini, Giuseppe De Giacomo, Diego Calvanese, Jarek Gryz

Slides typesetted with LATEX2e

Algorithm ID-rewrite

Input: relational schema Ψ , set of IDs Σ_I , UCQ Q

Output: perfect rewriting of Q

$$Q':=Q;$$

repeat

```
\begin{array}{l} Q_{aux} := Q';\\ \text{for each } q \in Q_{aux} \text{ do}\\ \text{(a) for each } g_1, g_2 \in body(q) \text{ do}\\ \text{ if } g_1 \text{ and } g_2 \text{ unify}\\ \text{ then } Q' := Q' \cup \{\tau(\textit{reduce}(q, g_1, g_2))\};\\ \text{(b) for each } g \in body(q) \text{ do}\\ \text{ for each } I \in \Sigma_I \text{ do}\\ \text{ if } I \text{ is applicable to } g\\ \text{ then } Q' := Q' \cup \{q[g/gr(g, I)]\}\\ \text{until } Q_{aux} = Q';\\ \text{return } Q'\end{array}
```