
(Description) Logics for

Information Modelling and Access

- or -

How to Use an Ontology

Enrico Franconi

franconi@inf.unibz.it

http://www.inf.unibz.it/˜franconi

Faculty of Computer Science, Free University of Bozen-Bolzano

(1/31)

Summary

• What is an Ontology

• Description Logics for Conceptual Modelling

• Queries with an Ontology

(2/31)

What is an Ontology

• An ontology is a formal conceptualisation of the world: a conceptual schema.

(3/31)

What is an Ontology

• An ontology is a formal conceptualisation of the world: a conceptual schema.

• An ontology specifies a set of constraints, which declare what should

necessarily hold in any possible world.

(3/31)

What is an Ontology

• An ontology is a formal conceptualisation of the world: a conceptual schema.

• An ontology specifies a set of constraints, which declare what should

necessarily hold in any possible world.

• Any possible world should conform to the constraints expressed by the

ontology.

(3/31)

What is an Ontology

• An ontology is a formal conceptualisation of the world: a conceptual schema.

• An ontology specifies a set of constraints, which declare what should

necessarily hold in any possible world.

• Any possible world should conform to the constraints expressed by the

ontology.

• Given an ontology, a legal world description is a finite possible world

satisfying the constraints.

(3/31)

Ontology languages and Conceptual Data Models

• An ontology language usually introduces concepts (aka classes, entities),

properties of concepts (aka slots, attributes, roles), relationships between

concepts (aka associations), and additional constraints.

(4/31)

Ontology languages and Conceptual Data Models

• An ontology language usually introduces concepts (aka classes, entities),

properties of concepts (aka slots, attributes, roles), relationships between

concepts (aka associations), and additional constraints.

• Ontology languages may be simple (e.g., having only concepts and

taxonomies), frame-based (having only concepts and properties), or

logic-based (e.g. Ontolingua, DAML+OIL, OWL).

(4/31)

Ontology languages and Conceptual Data Models

• An ontology language usually introduces concepts (aka classes, entities),

properties of concepts (aka slots, attributes, roles), relationships between

concepts (aka associations), and additional constraints.

• Ontology languages may be simple (e.g., having only concepts and

taxonomies), frame-based (having only concepts and properties), or

logic-based (e.g. Ontolingua, DAML+OIL, OWL).

• Ontology languages are typically expressed by means of diagrams.

(4/31)

Ontology languages and Conceptual Data Models

• An ontology language usually introduces concepts (aka classes, entities),

properties of concepts (aka slots, attributes, roles), relationships between

concepts (aka associations), and additional constraints.

• Ontology languages may be simple (e.g., having only concepts and

taxonomies), frame-based (having only concepts and properties), or

logic-based (e.g. Ontolingua, DAML+OIL, OWL).

• Ontology languages are typically expressed by means of diagrams.

• Entity-Relationship schemas and UML class diagrams can be considered

as ontologies.

(4/31)

UML Class Diagram

AreaManager TopManager

Manager
Project

ProjectCode:String

Employee

PaySlipNumber:Integer

Salary:Integer

{disjoint,complete}

1..?

Works-for

1..1

1..1

Manages

(5/31)

Entity-Relationship Schema

Employee

PaySlipNumber(Integer)

Salary(Integer)

Project

ProjectCode(String)

Manager

TopManagerAreaManager

×

Works-for

Manages

(1,n)

(1,1)
(1,1)

(6/31)

The role of a Conceptual Schema

Data Store

Logical
Schema

Conceptual
Schema

(7/31)

The role of a Conceptual Schema

Constraints

Data Store

Logical
Schema

Conceptual
Schema

(7/31)

The role of a Conceptual Schema

Constraints

Query
Result

Data Store

Logical
Schema

Conceptual
Schema

(7/31)

The role of a Conceptual Schema

Deduction

Constraints

Query
Result

Data Store

Logical
Schema

Conceptual
Schema

(7/31)

The role of a Conceptual Schema

Deduction

Constraints

Query
Result

Data Store

Logical
Schema

Conceptual
Schema

(7/31)

Reasoning with Ontologies

AreaManager TopManager

Manager
Project

ProjectCode:String

Employee

PaySlipNumber:Integer

Salary:Integer

{disjoint,complete}

1..?

Works-for

1..1

1..1

Manages

• Managers do not work for a project (she/he just manages it):

∀x. Manager(x) → ∀y.¬WORKS-FOR(x, y)

(8/31)

Reasoning with Ontologies

AreaManager TopManager

Manager
Project

ProjectCode:String

Employee

PaySlipNumber:Integer

Salary:Integer

{disjoint,complete}

1..?

1..?
Works-for

1..1

1..1

Manages

• Managers do not work for a project (she/he just manages it):

∀x. Manager(x) → ∀y.¬WORKS-FOR(x, y)

• If the minimum cardinality for the participation of employees to the works-for

relationship is increased, then . . .
(8/31)

Summary

• Logic and Conceptual Modelling

• Description Logics for Conceptual Modelling

• Queries with an Ontology

(9/31)

Encoding ontologies in Description Logics

• Object-oriented data models (e.g., UML and ODMG)

• Semantic data models (e.g., EER and ORM)

• Frame-based and web ontology languages (e.g., DAML+OIL and OWL)

(10/31)

Encoding ontologies in Description Logics

• Object-oriented data models (e.g., UML and ODMG)

• Semantic data models (e.g., EER and ORM)

• Frame-based and web ontology languages (e.g., DAML+OIL and OWL)

• Theorems prove that an ontology and its encoding as DL knowledge bases

constrain every world description in the same way – i.e., the models of the DL

theory correspond to the legal world descriptions of the ontology, and

vice-versa.

(10/31)

AreaManager TopManager

Manager
Project

ProjectCode:String

Employee

PaySlipNumber:Integer

Salary:Integer

{disjoint,complete}

1..?

Works-for

1..1

1..1

Manages

Works-for v emp/2 : Employee u act/2 : Project

Manages v man/2 : TopManager u prj/2 : Project

Employee v ∃=1[worker](PaySlipNumber u num/2 : Integer)u

∃=1[payee](Salary u amount/2 : Integer)
> v ∃≤1[num](PaySlipNumber u worker/2 : Employee)

Manager v Employee u (AreaManager t TopManager)

AreaManager v Manager u ¬TopManager

TopManager v Manager u ∃=1[man]Manages

Project v ∃≥1[act]Works-for u ∃=1[prj]Manages

· · · (11/31)

Deducing constraints

AreaManager TopManager

Manager
Project

ProjectCode:String

Employee

PaySlipNumber:Integer

Salary:Integer

{disjoint,complete}

1..?

Works-for

1..1

1..1

Manages

Managers are employees who do not work for a project (she/he just manages it):

Employee u ¬(∃≥1[emp]Works-for) v Manager, Manager v ¬(∃≥1[emp]Works-for)

(12/31)

Deducing constraints

AreaManager TopManager

Manager
Project

ProjectCode:String

Employee

PaySlipNumber:Integer

Salary:Integer

{disjoint,complete}

1..?

Works-for

1..1

1..1

Manages

Managers are employees who do not work for a project (she/he just manages it):

Employee u ¬(∃≥1[emp]Works-for) v Manager, Manager v ¬(∃≥1[emp]Works-for)

|= For every project, there is at least one employee who is not a manager:

Project v ∃≥1[act](Works-for u emp : ¬Manager) (12/31)

i•com: Intelligent Conceptual Modelling tool

• i•com allows for the specification of multiple EER (or UML) diagrams and

inter- and intra-schema constraints;

• Complete logical reasoning is employed by the tool using a hidden underlying

DLR inference engine;

• i•com verifies the specification, infers implicit facts and stricter constraints,

and manifests any inconsistencies during the conceptual modelling phase.

(13/31)

Summary

• Logic and Conceptual Modelling

• Description Logics for Conceptual Modelling

• Queries with an Ontology

(14/31)

The role of a Conceptual Schema – revisited

Data Store

Logical
Schema

Conceptual
Schema

(15/31)

The role of a Conceptual Schema – revisited

Constraints

Data Store

Logical
Schema

Conceptual
Schema

(15/31)

The role of a Conceptual Schema – revisited

Constraints

Query
Result

Data Store

Logical
Schema

Conceptual
Schema

(15/31)

The role of a Conceptual Schema – revisited

Deduction

Constraints

Query
Result

Data Store

Logical
Schema

Conceptual
Schema

(15/31)

The role of a Conceptual Schema – revisited

Deduction

Constraints

Query
Result

Data Store

Logical
Schema

Conceptual
Schema

(15/31)

The role of a Conceptual Schema – revisited

Deduction

Constraints

Query
Result

Data Store

Logical
Schema

Conceptual
Schema

(15/31)

The role of a Conceptual Schema – revisited

Query
Result

Deduction

Constraints

Query
Result

Data Store

Logical
Schema

Conceptual
Schema

(15/31)

The role of a Conceptual Schema – revisited

Deduction

Query
Result

Deduction

Constraints

Query
Result

Data Store

Logical
Schema

Conceptual
Schema

(15/31)

The role of a Conceptual Schema – revisited

Deduction

Query
Result

Deduction

Constraints

Query
Result

Data Store

Logical
Schema

Conceptual
Schema

(15/31)

The role of a Conceptual Schema – revisited

Mediator

Deduction

Query
Result

Deduction

Constraints

Query
Result

Data Store

Logical
Schema

Conceptual
Schema

(15/31)

Queries with Ontologies: the DB assumption

• Basic assumption: consistent information with respect to the constraints

introduced by the ontology

• DB assumption: complete information about each term appearing in the

ontology

• Problem: answer a query over the ontology vocabulary

(16/31)

Queries with Ontologies: the DB assumption

• Basic assumption: consistent information with respect to the constraints

introduced by the ontology

• DB assumption: complete information about each term appearing in the

ontology

• Problem: answer a query over the ontology vocabulary

• Solution: use a standard DB technology (e.g., SQL, datalog, etc)

(16/31)

Example with DB assumption

Manager

Employee Project1..?Works-for

(17/31)

Example with DB assumption

Manager

Employee Project1..?Works-for

Employee = { John, Mary, Paul }

Manager = { John, Paul }

Works-for = { (John, Prj-A), (Mary, Prj-B) }

Project = { Prj-A, Prj-B }

(17/31)

Example with DB assumption

Manager

Employee Project1..?Works-for

Employee = { John, Mary, Paul }

Manager = { John, Paul }

Works-for = { (John, Prj-A), (Mary, Prj-B) }

Project = { Prj-A, Prj-B }

Q(X) :- Manager(X), Works-for(X,Y), Project(Y)

=⇒ { John } (17/31)

Weakening the DB assumption

• The DB assumption is against the principle that an ontology presents a richer

vocabulary than the data stores.

(18/31)

Weakening the DB assumption

• The DB assumption is against the principle that an ontology presents a richer

vocabulary than the data stores.

• Partial DB assumption: complete information about some term appearing in

the ontology

• Standard DB technologies do not apply

• The query answering problem in this context is inherently complex

(18/31)

Example with partial DB assumption

Manager

Employee Project1..?Works-for

Manager = { John, Paul }

Works-for = { (John, Prj-A), (Mary, Prj-B) }

Project = { Prj-A, Prj-B }

(19/31)

Example with partial DB assumption

Manager

Employee Project1..?Works-for

Manager = { John, Paul }

Works-for = { (John, Prj-A), (Mary, Prj-B) }

Project = { Prj-A, Prj-B }

Q(X) :- Employee(X)

(19/31)

Example with partial DB assumption

Manager

Employee Project1..?Works-for

Manager = { John, Paul }

Works-for = { (John, Prj-A), (Mary, Prj-B) }

Project = { Prj-A, Prj-B }

Q(X) :- Employee(X)

=⇒ { John, Paul, Mary }

(19/31)

Andrea’s Example

AreaManager p TopManager p

AreaManager TopManager

Manager

Employee

{disjoint,complete}

Supervised

OfficeMate

(20/31)

Andrea’s Example

AreaManager p TopManager p

AreaManager TopManager

Manager

Employee

{disjoint,complete}

Supervised

OfficeMate Employee = { Andrea, Paul, Mary, John }

Manager = { Andrea, Paul, Mary}

AreaManager p = { Paul }

TopManager p = { Mary }

Supervised = { (John, Andrea), (John, Mary) }

OfficeMate = { (Mary, Andrea), (Andrea, Paul) }

(20/31)

Andrea’s Example

AreaManager p TopManager p

AreaManager TopManager

Manager

Employee

{disjoint,complete}

Supervised

OfficeMate Employee = { Andrea, Paul, Mary, John }

Manager = { Andrea, Paul, Mary}

AreaManager p = { Paul }

TopManager p = { Mary }

Supervised = { (John, Andrea), (John, Mary) }

OfficeMate = { (Mary, Andrea), (Andrea, Paul) }

Paul: AreaManager p

Andrea: Manager Mary: TopManager p

John

?

�

�
�

�
��	

@
@

@
@@R

Supervised Supervised

OfficeMate

OfficeMate

(20/31)

Andrea’s Example (cont.)

AreaManager p TopManager p

AreaManager TopManager

Manager

Employee

{disjoint,complete}

Supervised

OfficeMate

(21/31)

Andrea’s Example (cont.)

AreaManager p TopManager p

AreaManager TopManager

Manager

Employee

{disjoint,complete}

Supervised

OfficeMate

Paul: AreaManager p

Andrea: Manager Mary: TopManager p

John

?

�

�
�

�
��	

@
@

@
@@R

Supervised Supervised

OfficeMate

OfficeMate

(21/31)

Andrea’s Example (cont.)

AreaManager p TopManager p

AreaManager TopManager

Manager

Employee

{disjoint,complete}

Supervised

OfficeMate

Paul: AreaManager p

Andrea: Manager Mary: TopManager p

John

?

�

�
�

�
��	

@
@

@
@@R

Supervised Supervised

OfficeMate

OfficeMate

Q(X) :- Supervised(X, Y), TopManager(Y),

Officemate(Y, Z), AreaManager(Z)

(21/31)

Andrea’s Example (cont.)

AreaManager p TopManager p

AreaManager TopManager

Manager

Employee

{disjoint,complete}

Supervised

OfficeMate

Paul: AreaManager p

Andrea: Manager Mary: TopManager p

John

?

�

�
�

�
��	

@
@

@
@@R

Supervised Supervised

OfficeMate

OfficeMate

Q(X) :- Supervised(X, Y), TopManager(Y),

Officemate(Y, Z), AreaManager(Z)

=⇒ { John }

(21/31)

The general case: View based Query Processing

In general, the mapping between the ontology and the information source terms

can be given in terms of a set of sound or exact views:

(22/31)

The general case: View based Query Processing

In general, the mapping between the ontology and the information source terms

can be given in terms of a set of sound or exact views:

• GAV (global-as-view): a view over the information source is given for some

term in the ontology

(22/31)

The general case: View based Query Processing

In general, the mapping between the ontology and the information source terms

can be given in terms of a set of sound or exact views:

• GAV (global-as-view): a view over the information source is given for some

term in the ontology

• both the DB and the partial DB assumptions are special cases of GAV

• an ER schema can be easily mapped to its corresponding relational

schema in normal form via a GAV mapping

(22/31)

The general case: View based Query Processing

In general, the mapping between the ontology and the information source terms

can be given in terms of a set of sound or exact views:

• GAV (global-as-view): a view over the information source is given for some

term in the ontology

• both the DB and the partial DB assumptions are special cases of GAV

• an ER schema can be easily mapped to its corresponding relational

schema in normal form via a GAV mapping

• LAV (local-as-view): a view over the ontology terms is given for each term in

the information source;

• GLAV : mixed from the above.

(22/31)

Sound GAV mapping

Manager

Employee

PaySlipNumber:Integer

Salary:Integer

Project

ProjectCode:String

1..?Works-for

(23/31)

Sound GAV mapping

Manager

Employee

PaySlipNumber:Integer

Salary:Integer

Project

ProjectCode:String

1..?Works-for

1-Employee(PaySlipNumber ,Salary,ManagerP)

2-Works-for(PaySlipNumber ,ProjectCode)

(23/31)

Sound GAV mapping

Manager

Employee

PaySlipNumber:Integer

Salary:Integer

Project

ProjectCode:String

1..?Works-for

1-Employee(PaySlipNumber ,Salary,ManagerP)

2-Works-for(PaySlipNumber ,ProjectCode)

Employee(X) :- 1-Employee(X,Y,Z)

Employee(X) :- 2-Works-for(X,Y)

Manager(X) :- 1-Employee(X,Y, true)

Project(Y) :- 2-Works-for(X,Y)

Works-for(X,Y) :- 2-Works-for(X,Y)

Salary(X,Y) :- 1-Employee(X,Y,Z)

(23/31)

Queries with Sound GAV mapping

Manager

Employee

PaySlipNumber:Integer

Salary:Integer

Project

ProjectCode:String

1..?Works-for

1-Employee(PaySlipNumber ,Salary,ManagerP)

2-Works-for(PaySlipNumber ,ProjectCode)

Employee(X) :- 1-Employee(X,Y,Z)

Employee(X) :- 2-Works-for(X,Y)

Manager(X) :- 1-Employee(X,Y, true)

Project(Y) :- 2-Works-for(X,Y)

Works-for(X,Y) :- 2-Works-for(X,Y)

Salary(X,Y) :- 1-Employee(X,Y,Z)

(24/31)

Queries with Sound GAV mapping

Manager

Employee

PaySlipNumber:Integer

Salary:Integer

Project

ProjectCode:String

1..?Works-for

1-Employee(PaySlipNumber ,Salary,ManagerP)

2-Works-for(PaySlipNumber ,ProjectCode)

Employee(X) :- 1-Employee(X,Y,Z)

Employee(X) :- 2-Works-for(X,Y)

Manager(X) :- 1-Employee(X,Y, true)

Project(Y) :- 2-Works-for(X,Y)

Works-for(X,Y) :- 2-Works-for(X,Y)

Salary(X,Y) :- 1-Employee(X,Y,Z)

Q(X) :- Employee(X)

(24/31)

Queries with Sound GAV mapping

Manager

Employee

PaySlipNumber:Integer

Salary:Integer

Project

ProjectCode:String

1..?Works-for

1-Employee(PaySlipNumber ,Salary,ManagerP)

2-Works-for(PaySlipNumber ,ProjectCode)

Employee(X) :- 1-Employee(X,Y,Z)

Employee(X) :- 2-Works-for(X,Y)

Manager(X) :- 1-Employee(X,Y, true)

Project(Y) :- 2-Works-for(X,Y)

Works-for(X,Y) :- 2-Works-for(X,Y)

Salary(X,Y) :- 1-Employee(X,Y,Z)

Q(X) :- Employee(X)

=⇒ Q’(X) :- 1-Employee(X,Y,Z) ∪ 2-Works-for(X,W)

(24/31)

Sound LAV mapping

Manager

Employee

PaySlipNumber:Integer

Salary:Integer

Project

ProjectCode:String

1..?Works-for

(25/31)

Sound LAV mapping

Manager

Employee

PaySlipNumber:Integer

Salary:Integer

Project

ProjectCode:String

1..?Works-for

1-Employee(PaySlipNumber ,Salary,ManagerP)

2-Works-for(PaySlipNumber ,ProjectCode)

(25/31)

Sound LAV mapping

Manager

Employee

PaySlipNumber:Integer

Salary:Integer

Project

ProjectCode:String

1..?Works-for

1-Employee(PaySlipNumber ,Salary,ManagerP)

2-Works-for(PaySlipNumber ,ProjectCode)

1-Employee(X,Y,Z) :- Manager(X), Salary(X,Y), Z=true

1-Employee(X,Y,Z) :- Employee(X), ¬Manager(X), Salary(X,Y), Z=false

2-Works-for(X,Y) :- Works-for(X,Y)

(25/31)

Queries with Sound LAV mapping

Manager

Employee

PaySlipNumber:Integer

Salary:Integer

Project

ProjectCode:String

1..?Works-for

1-Employee(PaySlipNumber ,Salary,ManagerP)

2-Works-for(PaySlipNumber ,ProjectCode)

1-Employee(X,Y,Z) :- Manager(X), Salary(X,Y), Z=true

1-Employee(X,Y,Z) :- Employee(X), ¬Manager(X), Salary(X,Y), Z=false

2-Works-for(X,Y) :- Works-for(X,Y)

(26/31)

Queries with Sound LAV mapping

Manager

Employee

PaySlipNumber:Integer

Salary:Integer

Project

ProjectCode:String

1..?Works-for

1-Employee(PaySlipNumber ,Salary,ManagerP)

2-Works-for(PaySlipNumber ,ProjectCode)

1-Employee(X,Y,Z) :- Manager(X), Salary(X,Y), Z=true

1-Employee(X,Y,Z) :- Employee(X), ¬Manager(X), Salary(X,Y), Z=false

2-Works-for(X,Y) :- Works-for(X,Y)

Q(X) :- Manager(X), Works-for(X,Y), Project(Y)

(26/31)

Queries with Sound LAV mapping

Manager

Employee

PaySlipNumber:Integer

Salary:Integer

Project

ProjectCode:String

1..?Works-for

1-Employee(PaySlipNumber ,Salary,ManagerP)

2-Works-for(PaySlipNumber ,ProjectCode)

1-Employee(X,Y,Z) :- Manager(X), Salary(X,Y), Z=true

1-Employee(X,Y,Z) :- Employee(X), ¬Manager(X), Salary(X,Y), Z=false

2-Works-for(X,Y) :- Works-for(X,Y)

Q(X) :- Manager(X), Works-for(X,Y), Project(Y)

=⇒ Q’(X) :- 1-Employee(X,Y, true), 2-Works-for(X,Z)
(26/31)

Reasoning over queries

Q(X,Y) :- Employee(X), Works-for(X,Y), Manages(X,Y)

AreaManager TopManager

Manager
Project

ProjectCode:String

Employee

PaySlipNumber:Integer

Salary:Integer

{disjoint,complete}

1..?

Works-for

1..1

1..1

Manages

∀x. Manager(x) → ∀y.¬WORKS-FOR(x, y)

(27/31)

Reasoning over queries

Q(X,Y) :- Employee(X), Works-for(X,Y), Manages(X,Y)

AreaManager TopManager

Manager
Project

ProjectCode:String

Employee

PaySlipNumber:Integer

Salary:Integer

{disjoint,complete}

1..?

Works-for

1..1

1..1

Manages

∀x. Manager(x) → ∀y.¬WORKS-FOR(x, y)

 INCONSISTENT QUERY!

(27/31)

Local-as-view vs. Global-as-view

Local-as-view

• High modularity and reusability (when a source changes, only its view definition is changed).

• Relationships between sources can be inferred.

• Computationally more difficult (query reformulation).

Global-as-view

• Whenever the source changes or a new one is added, the view needs to be reconsidered.

• Needs to understand the relationships between the sources.

• Query processing sometimes easy (unfolding), when the ontology is very simple. Otherwise it

requires sophisticated query evaluation procedures.

(28/31)

Possible scenarios

• Empty ontology / very simple Ontology

• Global-as-view

• Local-as-view

• Full Ontology / Integrity Constraints

• Global-as-view

• Local-as-view

(29/31)

Possible scenarios

• Empty ontology / very simple Ontology

• Global-as-view

• The problem reduces to standard DB technology.
• Can not express Ontology Integration needs.
• Not modular.

• Local-as-view

• Full Ontology / Integrity Constraints

• Global-as-view

• Local-as-view

(29/31)

Possible scenarios

• Empty ontology / very simple Ontology

• Global-as-view

• The problem reduces to standard DB technology.
• Can not express Ontology Integration needs.
• Not modular.

• Local-as-view

• “Standard” view-based query processing.
• Can express only few Ontology Integration needs.
• Modular.

• Full Ontology / Integrity Constraints

• Global-as-view

• Local-as-view

(29/31)

Possible scenarios

• Empty ontology / very simple Ontology

• Global-as-view

• The problem reduces to standard DB technology.
• Can not express Ontology Integration needs.
• Not modular.

• Local-as-view

• “Standard” view-based query processing.
• Can express only few Ontology Integration needs.
• Modular.

• Full Ontology / Integrity Constraints

• Global-as-view

• Requires sophisticated query evaluation procedures (involving deduction).
• Can express Ontology Integration needs.
• Not modular.

• Local-as-view

(29/31)

Possible scenarios

• Empty ontology / very simple Ontology

• Global-as-view

• The problem reduces to standard DB technology.
• Can not express Ontology Integration needs.
• Not modular.

• Local-as-view

• “Standard” view-based query processing.
• Can express only few Ontology Integration needs.
• Modular.

• Full Ontology / Integrity Constraints

• Global-as-view

• Requires sophisticated query evaluation procedures (involving deduction).
• Can express Ontology Integration needs.
• Not modular.

• Local-as-view

• View-based query processing under constraints.
• Can express Ontology Integration needs.
• Modular.

(29/31)

Current Practice

• Most implemented ontology based systems:

(30/31)

Current Practice

• Most implemented ontology based systems:

• either assume no Ontology or a very simple Ontology with a

global-as-view approach,

(30/31)

Current Practice

• Most implemented ontology based systems:

• either assume no Ontology or a very simple Ontology with a

global-as-view approach,

• or include an Ontology or Integrity Constraints in their framework, but

adopt a naive query evaluation procedure, based on query unfolding: no

correctness of the query answering can be proved.

(30/31)

Conclusions

Made with LATEX (31/31)

Conclusions

Do you have an ontology in your application?

Made with LATEX (31/31)

Conclusions

Do you have an ontology in your application?

Pay attention!

Made with LATEX (31/31)

	@semtitle
	Summary
	What is an Ontology
	What is an Ontology
	What is an Ontology
	What is an Ontology

	Ontology languages and Conceptual Data Models
	Ontology languages and Conceptual Data Models
	Ontology languages and Conceptual Data Models
	Ontology languages and Conceptual Data Models

	UML Class Diagram
	Entity-Relationship Schema
	The role of a Conceptual Schema
	The role of a Conceptual Schema
	The role of a Conceptual Schema
	The role of a Conceptual Schema
	The role of a Conceptual Schema

	Reasoning with Ontologies
	Reasoning with Ontologies

	Summary
	Encoding ontologies in Description Logics
	Encoding ontologies in Description Logics

	Deducing constraints
	Deducing constraints

	icom : Intelligent Conceptual Modelling tool
	Summary
	The role of a Conceptual Schema -- revisited
	The role of a Conceptual Schema -- revisited
	The role of a Conceptual Schema -- revisited
	The role of a Conceptual Schema -- revisited
	The role of a Conceptual Schema -- revisited
	The role of a Conceptual Schema -- revisited
	The role of a Conceptual Schema -- revisited
	The role of a Conceptual Schema -- revisited
	The role of a Conceptual Schema -- revisited
	The role of a Conceptual Schema -- revisited

	Queries with Ontologies: the DB assumption
	Queries with Ontologies: the DB assumption

	Example with DB assumption
	Example with DB assumption
	Example with DB assumption

	Weakening the DB assumption
	Weakening the DB assumption

	Example with partial DB assumption
	Example with partial DB assumption
	Example with partial DB assumption

	Andrea's Example
	Andrea's Example
	Andrea's Example

	Andrea's Example (cont.)
	Andrea's Example (cont.)
	Andrea's Example (cont.)
	Andrea's Example (cont.)

	The general case: View based Query Processing
	The general case: View based Query Processing
	The general case: View based Query Processing
	The general case: View based Query Processing

	Sound GAV mapping
	Sound GAV mapping
	Sound GAV mapping

	Queries with Sound GAV mapping
	Queries with Sound GAV mapping
	Queries with Sound GAV mapping

	Sound LAV mapping
	Sound LAV mapping
	Sound LAV mapping

	Queries with Sound LAV mapping
	Queries with Sound LAV mapping
	Queries with Sound LAV mapping

	Reasoning over queries
	Reasoning over queries

	Local-as-view vs. Global-as-view
	Possible scenarios
	Possible scenarios
	Possible scenarios
	Possible scenarios
	Possible scenarios

	Current Practice
	Current Practice
	Current Practice

	Conclusions
	Conclusions
	Conclusions

