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What is an Ontology

• An ontology is a formal conceptualisation of the world: a conceptual schema.

• An ontology specifies a set of constraints, which declare what should

necessarily hold in any possible world.

• Any possible world should conform to the constraints expressed by the

ontology.

• Given an ontology, a legal world description is a finite possible world

satisfying the constraints.
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Ontology languages and Conceptual Data Models

• An ontology language usually introduces concepts (aka classes, entities),

properties of concepts (aka slots, attributes, roles), relationships between

concepts (aka associations), and additional constraints.
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Ontology languages and Conceptual Data Models

• An ontology language usually introduces concepts (aka classes, entities),

properties of concepts (aka slots, attributes, roles), relationships between

concepts (aka associations), and additional constraints.

• Ontology languages may be simple (e.g., having only concepts and

taxonomies), frame-based (having only concepts and properties), or

logic-based (e.g. Ontolingua, DAML+OIL, OWL).

• Ontology languages are typically expressed by means of diagrams.

• Entity-Relationship schemas and UML class diagrams can be considered

as ontologies.

(4/31)



UML Class Diagram

AreaManager TopManager

Manager
Project

ProjectCode:String

Employee

PaySlipNumber:Integer

Salary:Integer

{disjoint,complete}

1..?

Works-for

1..1

1..1

Manages
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Entity-Relationship Schema

Employee

PaySlipNumber(Integer)

Salary(Integer)

Project

ProjectCode(String)

Manager

TopManagerAreaManager

×

Works-for

Manages

(1,n)

(1,1)
(1,1)
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Reasoning with Ontologies
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• Managers do not work for a project (she/he just manages it):

∀x. Manager(x) → ∀y.¬WORKS-FOR(x, y)
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Reasoning with Ontologies

AreaManager TopManager

Manager
Project

ProjectCode:String

Employee

PaySlipNumber:Integer

Salary:Integer

{disjoint,complete}

1..?

1..?
Works-for

1..1

1..1

Manages

• Managers do not work for a project (she/he just manages it):

∀x. Manager(x) → ∀y.¬WORKS-FOR(x, y)

• If the minimum cardinality for the participation of employees to the works-for

relationship is increased, then . . .
(8/31)
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Encoding ontologies in Description Logics

• Object-oriented data models (e.g., UML and ODMG)

• Semantic data models (e.g., EER and ORM)

• Frame-based and web ontology languages (e.g., DAML+OIL and OWL)
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Encoding ontologies in Description Logics

• Object-oriented data models (e.g., UML and ODMG)

• Semantic data models (e.g., EER and ORM)

• Frame-based and web ontology languages (e.g., DAML+OIL and OWL)

• Theorems prove that an ontology and its encoding as DL knowledge bases

constrain every world description in the same way – i.e., the models of the DL

theory correspond to the legal world descriptions of the ontology, and

vice-versa.
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AreaManager TopManager

Manager
Project

ProjectCode:String

Employee

PaySlipNumber:Integer

Salary:Integer

{disjoint,complete}

1..?

Works-for

1..1

1..1

Manages

Works-for v emp/2 : Employee u act/2 : Project

Manages v man/2 : TopManager u prj/2 : Project

Employee v ∃=1[worker](PaySlipNumber u num/2 : Integer)u

∃=1[payee](Salary u amount/2 : Integer)
> v ∃≤1[num](PaySlipNumber u worker/2 : Employee)

Manager v Employee u (AreaManager t TopManager)

AreaManager v Manager u ¬TopManager

TopManager v Manager u ∃=1[man]Manages

Project v ∃≥1[act]Works-for u ∃=1[prj]Manages

· · · (11/31)



Deducing constraints

AreaManager TopManager

Manager
Project

ProjectCode:String

Employee

PaySlipNumber:Integer

Salary:Integer

{disjoint,complete}

1..?

Works-for

1..1

1..1

Manages

Managers are employees who do not work for a project (she/he just manages it):

Employee u ¬(∃≥1[emp]Works-for) v Manager, Manager v ¬(∃≥1[emp]Works-for)
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Deducing constraints

AreaManager TopManager

Manager
Project

ProjectCode:String

Employee

PaySlipNumber:Integer

Salary:Integer

{disjoint,complete}

1..?

Works-for

1..1

1..1

Manages

Managers are employees who do not work for a project (she/he just manages it):

Employee u ¬(∃≥1[emp]Works-for) v Manager, Manager v ¬(∃≥1[emp]Works-for)

|= For every project, there is at least one employee who is not a manager:

Project v ∃≥1[act](Works-for u emp : ¬Manager) (12/31)



i•com: Intelligent Conceptual Modelling tool

• i•com allows for the specification of multiple EER (or UML) diagrams and

inter- and intra-schema constraints;

• Complete logical reasoning is employed by the tool using a hidden underlying

DLR inference engine;

• i•com verifies the specification, infers implicit facts and stricter constraints,

and manifests any inconsistencies during the conceptual modelling phase.
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The role of a Conceptual Schema – revisited

Data Store

Logical
Schema

Conceptual
Schema

(15/31)



The role of a Conceptual Schema – revisited

Constraints

Data Store

Logical
Schema

Conceptual
Schema

(15/31)



The role of a Conceptual Schema – revisited

Constraints

Query
Result

Data Store

Logical
Schema

Conceptual
Schema

(15/31)



The role of a Conceptual Schema – revisited

Deduction

Constraints

Query
Result

Data Store

Logical
Schema

Conceptual
Schema

(15/31)



The role of a Conceptual Schema – revisited

Deduction

Constraints

Query
Result

Data Store

Logical
Schema

Conceptual
Schema

(15/31)



The role of a Conceptual Schema – revisited

Deduction

Constraints

Query
Result

Data Store

Logical
Schema

Conceptual
Schema

(15/31)



The role of a Conceptual Schema – revisited

Query
Result

Deduction

Constraints

Query
Result

Data Store

Logical
Schema

Conceptual
Schema

(15/31)



The role of a Conceptual Schema – revisited

Deduction

Query
Result

Deduction

Constraints

Query
Result

Data Store

Logical
Schema

Conceptual
Schema

(15/31)



The role of a Conceptual Schema – revisited

Deduction

Query
Result

Deduction

Constraints

Query
Result

Data Store

Logical
Schema

Conceptual
Schema

(15/31)



The role of a Conceptual Schema – revisited
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Queries with Ontologies: the DB assumption

• Basic assumption: consistent information with respect to the constraints

introduced by the ontology

• DB assumption: complete information about each term appearing in the

ontology

• Problem: answer a query over the ontology vocabulary
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Queries with Ontologies: the DB assumption

• Basic assumption: consistent information with respect to the constraints

introduced by the ontology

• DB assumption: complete information about each term appearing in the

ontology

• Problem: answer a query over the ontology vocabulary

• Solution: use a standard DB technology (e.g., SQL, datalog, etc)

(16/31)



Example with DB assumption
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Example with DB assumption

Manager

Employee Project1..?Works-for

Employee = { John, Mary, Paul }

Manager = { John, Paul }

Works-for = { ( John, Prj-A), ( Mary, Prj-B) }

Project = { Prj-A, Prj-B }
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Example with DB assumption

Manager

Employee Project1..?Works-for

Employee = { John, Mary, Paul }

Manager = { John, Paul }

Works-for = { ( John, Prj-A), ( Mary, Prj-B) }

Project = { Prj-A, Prj-B }

Q(X) :- Manager(X), Works-for(X,Y), Project(Y)

=⇒ { John } (17/31)



Weakening the DB assumption

• The DB assumption is against the principle that an ontology presents a richer

vocabulary than the data stores.
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Weakening the DB assumption

• The DB assumption is against the principle that an ontology presents a richer

vocabulary than the data stores.

• Partial DB assumption: complete information about some term appearing in

the ontology

• Standard DB technologies do not apply

• The query answering problem in this context is inherently complex
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Example with partial DB assumption

Manager

Employee Project1..?Works-for

Manager = { John, Paul }

Works-for = { ( John, Prj-A), ( Mary, Prj-B) }

Project = { Prj-A, Prj-B }
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Employee Project1..?Works-for
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Example with partial DB assumption

Manager

Employee Project1..?Works-for

Manager = { John, Paul }

Works-for = { ( John, Prj-A), ( Mary, Prj-B) }

Project = { Prj-A, Prj-B }

Q(X) :- Employee(X)

=⇒ { John, Paul, Mary }

(19/31)



Andrea’s Example

AreaManager p TopManager p

AreaManager TopManager

Manager

Employee

{disjoint,complete}

Supervised

OfficeMate
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Andrea’s Example

AreaManager p TopManager p

AreaManager TopManager

Manager

Employee

{disjoint,complete}

Supervised

OfficeMate Employee = { Andrea, Paul, Mary, John }

Manager = { Andrea, Paul, Mary}

AreaManager p = { Paul }

TopManager p = { Mary }

Supervised = { ( John, Andrea), ( John, Mary) }

OfficeMate = { ( Mary, Andrea), ( Andrea, Paul) }
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Andrea’s Example

AreaManager p TopManager p

AreaManager TopManager

Manager

Employee

{disjoint,complete}

Supervised

OfficeMate Employee = { Andrea, Paul, Mary, John }

Manager = { Andrea, Paul, Mary}

AreaManager p = { Paul }

TopManager p = { Mary }

Supervised = { ( John, Andrea), ( John, Mary) }

OfficeMate = { ( Mary, Andrea), ( Andrea, Paul) }

Paul: AreaManager p

Andrea: Manager Mary: TopManager p

John

?

�

�
�

�
��	

@
@

@
@@R

Supervised Supervised

OfficeMate

OfficeMate
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Andrea’s Example (cont.)
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Andrea’s Example (cont.)

AreaManager p TopManager p

AreaManager TopManager

Manager

Employee

{disjoint,complete}

Supervised
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Andrea: Manager Mary: TopManager p

John
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@
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Supervised Supervised

OfficeMate

OfficeMate

Q(X) :- Supervised( X, Y), TopManager( Y),

Officemate( Y, Z), AreaManager( Z)
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Andrea’s Example (cont.)

AreaManager p TopManager p

AreaManager TopManager

Manager

Employee

{disjoint,complete}

Supervised

OfficeMate

Paul: AreaManager p

Andrea: Manager Mary: TopManager p

John

?

�

�
�

�
��	

@
@

@
@@R

Supervised Supervised

OfficeMate

OfficeMate

Q(X) :- Supervised( X, Y), TopManager( Y),

Officemate( Y, Z), AreaManager( Z)

=⇒ { John }
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The general case: View based Query Processing

In general, the mapping between the ontology and the information source terms

can be given in terms of a set of sound or exact views:

• GAV (global-as-view): a view over the information source is given for some

term in the ontology

• both the DB and the partial DB assumptions are special cases of GAV

• an ER schema can be easily mapped to its corresponding relational

schema in normal form via a GAV mapping

• LAV (local-as-view): a view over the ontology terms is given for each term in

the information source;

• GLAV : mixed from the above.

(22/31)



Sound GAV mapping
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Manager

Employee
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Project

ProjectCode:String
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1-Employee(PaySlipNumber ,Salary,ManagerP)

2-Works-for(PaySlipNumber ,ProjectCode )
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Sound GAV mapping

Manager

Employee

PaySlipNumber:Integer

Salary:Integer

Project

ProjectCode:String

1..?Works-for

1-Employee(PaySlipNumber ,Salary,ManagerP)

2-Works-for(PaySlipNumber ,ProjectCode )

Employee(X) :- 1-Employee(X,Y,Z)

Employee(X) :- 2-Works-for(X,Y)

Manager(X) :- 1-Employee(X,Y, true)

Project(Y) :- 2-Works-for(X,Y)

Works-for(X,Y) :- 2-Works-for(X,Y)

Salary(X,Y) :- 1-Employee(X,Y,Z)
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Queries with Sound GAV mapping

Manager

Employee

PaySlipNumber:Integer

Salary:Integer

Project

ProjectCode:String

1..?Works-for

1-Employee(PaySlipNumber ,Salary,ManagerP)

2-Works-for(PaySlipNumber ,ProjectCode )

Employee(X) :- 1-Employee(X,Y,Z)

Employee(X) :- 2-Works-for(X,Y)

Manager(X) :- 1-Employee(X,Y, true)

Project(Y) :- 2-Works-for(X,Y)

Works-for(X,Y) :- 2-Works-for(X,Y)

Salary(X,Y) :- 1-Employee(X,Y,Z)
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Manager

Employee

PaySlipNumber:Integer

Salary:Integer

Project

ProjectCode:String

1..?Works-for

1-Employee(PaySlipNumber ,Salary,ManagerP)

2-Works-for(PaySlipNumber ,ProjectCode )

Employee(X) :- 1-Employee(X,Y,Z)

Employee(X) :- 2-Works-for(X,Y)

Manager(X) :- 1-Employee(X,Y, true)

Project(Y) :- 2-Works-for(X,Y)

Works-for(X,Y) :- 2-Works-for(X,Y)

Salary(X,Y) :- 1-Employee(X,Y,Z)

Q(X) :- Employee(X)
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Queries with Sound GAV mapping

Manager

Employee

PaySlipNumber:Integer

Salary:Integer

Project

ProjectCode:String

1..?Works-for

1-Employee(PaySlipNumber ,Salary,ManagerP)

2-Works-for(PaySlipNumber ,ProjectCode )

Employee(X) :- 1-Employee(X,Y,Z)

Employee(X) :- 2-Works-for(X,Y)

Manager(X) :- 1-Employee(X,Y, true)

Project(Y) :- 2-Works-for(X,Y)

Works-for(X,Y) :- 2-Works-for(X,Y)

Salary(X,Y) :- 1-Employee(X,Y,Z)

Q(X) :- Employee(X)

=⇒ Q’(X) :- 1-Employee(X,Y,Z) ∪ 2-Works-for(X,W)

(24/31)



Sound LAV mapping
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Sound LAV mapping

Manager

Employee

PaySlipNumber:Integer

Salary:Integer

Project

ProjectCode:String

1..?Works-for

1-Employee(PaySlipNumber ,Salary,ManagerP)

2-Works-for(PaySlipNumber ,ProjectCode )

1-Employee(X,Y,Z) :- Manager(X), Salary(X,Y), Z=true

1-Employee(X,Y,Z) :- Employee(X), ¬Manager(X), Salary(X,Y), Z=false

2-Works-for(X,Y) :- Works-for(X,Y)
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Queries with Sound LAV mapping

Manager

Employee

PaySlipNumber:Integer

Salary:Integer

Project

ProjectCode:String

1..?Works-for

1-Employee(PaySlipNumber ,Salary,ManagerP)

2-Works-for(PaySlipNumber ,ProjectCode )

1-Employee(X,Y,Z) :- Manager(X), Salary(X,Y), Z=true

1-Employee(X,Y,Z) :- Employee(X), ¬Manager(X), Salary(X,Y), Z=false

2-Works-for(X,Y) :- Works-for(X,Y)
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2-Works-for(PaySlipNumber ,ProjectCode )

1-Employee(X,Y,Z) :- Manager(X), Salary(X,Y), Z=true

1-Employee(X,Y,Z) :- Employee(X), ¬Manager(X), Salary(X,Y), Z=false

2-Works-for(X,Y) :- Works-for(X,Y)
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Queries with Sound LAV mapping

Manager

Employee

PaySlipNumber:Integer

Salary:Integer

Project

ProjectCode:String

1..?Works-for

1-Employee(PaySlipNumber ,Salary,ManagerP)

2-Works-for(PaySlipNumber ,ProjectCode )

1-Employee(X,Y,Z) :- Manager(X), Salary(X,Y), Z=true

1-Employee(X,Y,Z) :- Employee(X), ¬Manager(X), Salary(X,Y), Z=false

2-Works-for(X,Y) :- Works-for(X,Y)

Q(X) :- Manager(X), Works-for(X,Y), Project(Y)

=⇒ Q’(X) :- 1-Employee(X,Y, true), 2-Works-for(X,Z)
(26/31)



Reasoning over queries

Q(X,Y) :- Employee(X), Works-for(X,Y), Manages(X,Y)

AreaManager TopManager

Manager
Project

ProjectCode:String

Employee

PaySlipNumber:Integer

Salary:Integer

{disjoint,complete}

1..?

Works-for

1..1

1..1

Manages

∀x. Manager(x) → ∀y.¬WORKS-FOR(x, y)
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Reasoning over queries

Q(X,Y) :- Employee(X), Works-for(X,Y), Manages(X,Y)

AreaManager TopManager

Manager
Project

ProjectCode:String

Employee

PaySlipNumber:Integer

Salary:Integer

{disjoint,complete}

1..?

Works-for

1..1

1..1

Manages

∀x. Manager(x) → ∀y.¬WORKS-FOR(x, y)

 INCONSISTENT QUERY!
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Local-as-view vs. Global-as-view

Local-as-view

• High modularity and reusability (when a source changes, only its view definition is changed).

• Relationships between sources can be inferred.

• Computationally more difficult (query reformulation).

Global-as-view

• Whenever the source changes or a new one is added, the view needs to be reconsidered.

• Needs to understand the relationships between the sources.

• Query processing sometimes easy (unfolding), when the ontology is very simple. Otherwise it

requires sophisticated query evaluation procedures.
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Possible scenarios
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• Local-as-view

• Full Ontology / Integrity Constraints

• Global-as-view

• Local-as-view
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Possible scenarios

• Empty ontology / very simple Ontology

• Global-as-view

• The problem reduces to standard DB technology.
• Can not express Ontology Integration needs.
• Not modular.

• Local-as-view

• “Standard” view-based query processing.
• Can express only few Ontology Integration needs.
• Modular.

• Full Ontology / Integrity Constraints

• Global-as-view

• Requires sophisticated query evaluation procedures (involving deduction).
• Can express Ontology Integration needs.
• Not modular.

• Local-as-view

• View-based query processing under constraints.
• Can express Ontology Integration needs.
• Modular.

(29/31)



Current Practice

• Most implemented ontology based systems:
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Current Practice

• Most implemented ontology based systems:

• either assume no Ontology or a very simple Ontology with a

global-as-view approach,
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Current Practice

• Most implemented ontology based systems:

• either assume no Ontology or a very simple Ontology with a

global-as-view approach,

• or include an Ontology or Integrity Constraints in their framework, but

adopt a naive query evaluation procedure, based on query unfolding: no

correctness of the query answering can be proved.

(30/31)
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Conclusions

Do you have an ontology in your application?

Pay attention!

Made with LATEX (31/31)
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