
Revisiting Postulates for Inconsistency Measures

Philippe Besnard
CNRS

IRIT – Université Paul Sabatier
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Abstract
We discuss postulates for inconsistency measures as
proposed in the literature.We examine them both indi-
vidually and as a collection. Although we criticize two
of the original postulates, we mostly focus on the mean-
ing of the postulates as a whole. Also and accordingly,
we discuss a number of new postulates as substitutes
and/or as alternative families.

Introduction
In (Hunter and Konieczny 2008; Hunter and Konieczny
2010), Hunter and Konieczny have introduced postulates
for inconsistency measures over knowledge bases. Let us
first make it clear that the phrase “inconsistency measure”
refers to the informal meaning of a measure, not to the
usual formal definition whose countable additivity require-
ment would leave no choice for an inconsistency measure,
making all minimal inconsistent knowledge bases in each
cardinality to count as equally inconsistent (unless making
some consistent formulas to count as more inconsistent than
others!). However, we stick with the usual range R+ ∪ {∞}
(so, the range is totally ordered and 0 is the least element).
The intuition is: The higher the amount of inconsistency in
the knowledge base, the greater the number returned by the
inconsistency measure.

Let us emphasize that we deal with postulates for incon-
sistency measures that account for a raw amount of incon-
sistency: E.g., it will clearly appear below that an inconsis-
tency measure I satisfying the (Monotony) postulate due to
Hunter-Konieczny precludes I to be a ratio (except for quite
special cases, see (Hunter and Konieczny 2010)).

HK Postulates
Hunter and Konieczny refer to a propositional language1 L
for classical logic `. Belief bases are finite sequences over
L.KL is comprised of all belief bases overL, in set-theoretic
form (i.e., a member of KL is an ordinary set2).

According to Hunter and Konieczny, a function I over be-
lief bases is an inconsistency measure if it satisfies the fol-
lowing properties, ∀K,K ′ ∈ KL, ∀α, β ∈ L

1For simplicity, we use a language based on the complete set of
connectives {¬,∧,∨}.

2In the conclusion, we mention the case of multisets.

- I(K) = 0 iff K 6` ⊥ (Consistency Null)
- I(K ∪K ′) ≥ I(K) (Monotony)
- If α is free3 for K then I(K ∪ {α}) = I(K)

(Free Formula Independence)
- If α ` β and α 6` ⊥ then I(K ∪ {α}) ≥ I(K ∪ {β})

(Dominance)
We start by arguing against (Free Formula Independence)

and (Dominance) in the next section. We browse in the
subsequent section several consequences of HK postulates,
stressing the need for more general principles in each case.
We then introduce various postulates supplementing the
original ones, ending with a new axiomatization. We also
devote a full section to a major principle, replacement of
equivalent subsets. The section preceding the conclusion can
be viewed as a kind of rejoinder backing (Monotony) and
(Free Formula Independence) via the main new postulate.

Objections to HK Postulates
Objection to (Dominance)
In contrapositive form, (Dominance) says:

For α ` β, if I(K ∪ {α}) < I(K ∪ {β}) then α ` ⊥ (1)

but it makes sense that the lefthand side holds while α 6` ⊥.
An example is as follows. Let K = {a ∧ b ∧ c ∧ · · · ∧ z}.
Take β = ¬a∨ (¬b∧¬c∧· · ·∧¬z) while α = ¬a. We may
hold I(K ∪ {α}) < I(K ∪ {β}) on the following grounds:
- The inconsistency in I(K ∪ {α}) is ¬a vs a.
- The inconsistency in I(K ∪ {β}) is either as above (i.e.,
¬a vs a) or it is ¬b ∧ ¬c ∧ · · · ∧ ¬z vs b ∧ c ∧ · · · ∧ z that
may be viewed as more inconsistent than the case ¬a vs a,
hence, {a∧ b∧ c∧ · · · ∧ z}∪{¬a∨ (¬b∧¬c∧ · · · ∧¬z)}
can be taken as more inconsistent overall than {a∧ b∧ c∧
· · ·∧ z}∪{¬a} thereby violating (1) because α 6` ⊥ here.

Objection to (Free Formula Independence)
Unfolding the definition, (Free Formula Independence) is:

If K ′ ∪ {α} ` ⊥ for no consistent subset K ′ of K (2)
then I(K ∪ {α}) = I(K)

3A formula ϕ is free for X iff Y ∪ {α} ` ⊥ for no consistent
subset Y of X .
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(Hunter and Konieczny 2010) has an example of a consistent
free formula whose rightmost conjunct contradicts a consis-
tent part of a formula ofK and so does its leftmost conjunct.
A different case (where no minimal inconsistent subset is a
singleton set) is K = {a ∧ c, b ∧ ¬c} and α = ¬a ∨ ¬b.
Atoms a and b are compatible but a∧ b is contradicted by α,
and K ∪ {α} may be regarded as more inconsistent than K:
(2) is failed.

Consequences of HK Postulates
Proposition 1 (Monotony) entails
- if I(K∪{α∧β}) = I(K∪{α, β}) then I(K∪{α∧β}) ≥
I(K ∪ {β})

Proof Assume I(K ∪{α∧β}) = I(K ∪{α, β}). However,
(Monotony) ensures I(K ∪ {α, β}) ≥ I(K ∪ {β}. Hence
the result.

That is, if I conforms with adjunction (roughly speaking,
it means identifying {α, β} with {α ∧ β}) then I respects
the idea that adding a conjunct cannot make the amount of
inconsistency to decrease.

Notation. α ≡ β denotes that both α ` β and β ` α hold.
Also, α ≡ β ` γ is an abbreviation for α ≡ β and β ` γ
(so, α ≡ β 6` γ means that α ≡ β and β 6` γ).

Proposition 2 (Free Formula Independence) entails
- if α ≡ > then I(K ∪ {α}) = I(K)

(Tautology Independence)

Proof A tautology is trivially a free formula for any K.

Unless β 6` ⊥, there is however no guarantee that the fol-
lowing holds:
- if α ≡ > then I(K ∪ {α ∧ β}) = I(K ∪ {β})

(>-conjunct Independence)

Proposition 3 (Dominance) entails
- I(K ∪ {α1, . . . , αn}) = I(K ∪ {β1, . . . , βn})

whenever αi ≡ βi 6` ⊥ for i = 1..n (Swap)

Proof For i = 1..n, αi ≡ βi so that (Dominance) can be
applied in both directions. As a consequence, for i = 1..n,
it clearly holds that I(K ∪ {β1, . . . , βi−1, αi, . . . , αn}) =
I(K ∪ {β1, . . . , βi, αi+1, . . . , αn}).

Proposition 3 fails to guarantee that I be independent of any
consistent subset of the knowledge base being replaced by
an equivalent (consistent) set of formulas:
- if K ′ 6` ⊥ and K ′ ≡ K ′′ then I(K ∪K ′) = I(K ∪K ′′)

(Exchange)
Proposition 3 guarantees that any consistent formula of the
knowledge base can be replaced by an equivalent formula
without altering the result of the inconsistency measure.
Clearly, postulates for inconsistency measures are expected
not to entail I(K ∪ {α}) = I(K ∪ {β}) for α ≡ β ` ⊥.
However, some subcases are desirable: I(K ∪ {α ∨ α}) =
I(K ∪ {α}), I(K ∪ {α ∧ β}) = I(K ∪ {β ∧ α}), and so
on, in full generality (i.e., even for α ` ⊥) but Proposition 3
fails to ensure any of these.

Proposition 4 (Dominance) entails
- if α ∧ β 6` ⊥ then I(K ∪ {α ∧ β}) ≥ I(K ∪ {β})
Proof Apply (Dominance) to the valid inference α ∧ β ` β
and the result ensues.

Proposition 4 means that I respects the idea that adding a
conjunct cannot make amount of inconsistency to decrease,
in the case of a consistent conjunction (however, one really
wonders why this not guaranteed to hold in more cases?).

Proposition 5 Due to (Dominance) and (Monotony)
- For α ∈ K, if α 6` ⊥ and α ` β then I(K∪{β}) = I(K)

Proof I(K ∪ {α}) = I(K) as α ∈ K. By (Dominance),
I(K∪{α}) ≥ I(K∪{β}). Therefore, I(K) ≥ I(K∪{β}).
The converse holds due to (Monotony).

Proposition 5 guarantees that a consequence of a consistent
formula of the knowledge base can be added without alter-
ing the result of the inconsistency measure. What about a
consequence of a consistent subset of the knowledge base?
Indeed, Proposition 5 is a special case of
(An) For {α1, . . . , αn} ⊆ K, if {α1, . . . , αn} 6` ⊥ and

{α1, . . . , αn} ` β then I(K ∪ {β}) = I(K)
That is, Proposition 5 guarantees (An) only for n = 1 but
what is the rationale for stopping there?

Example 1 LetK = {¬b, a∧b, b∧c}. Proposition 5 ensures
that I(K ∪ {a, c}) = I(K ∪ {a}) = I(K ∪ {c}) = I(K).
Although a∧ c behaves as a and c with respect to all contra-
dictions inK (i.e., a∧b vs ¬b and b∧c vs ¬b), HK postulates
fail to ensure I(K ∪ {a ∧ c}) = I(K).

Replacement of Equivalent Subsets
The value of (Exchange)
Firstly, (Exchange) is not a consequence of (Dominance)
and (Monotony). An example isK1 = {a∧c∧e, b∧d∧¬e}
and K2 = {a ∧ e, c ∧ e, b ∧ d ∧ ¬e}. Due to (Exchange),
I(K1) = I(K2) but HK postulates do not impose equality.
Next are a few results showing properties of (Exchange).

Proposition 6 (Exchange) is equivalent to each of these:
- The family (An)n≥1

- IfK ′ ≡ K ′′,K ′ 6` ⊥ then I(K∪K ′) = I((K\K ′)∪K ′′)
- If K ′ ≡ K ′′ and K ′ 6` ⊥ and K ∩K ′ = ∅

then I(K ∪K ′) = I(K ∪K ′′)
- If {K1, . . . ,Kn} is a partition of K \ K0 where K0 is

defined as K0 = {α ∈ K | α ` ⊥} such that Ki 6` ⊥ and
K ′i ≡ Ki for i = 1..n then I(K) = I(K0∪K ′1∪· · ·∪K ′n)

Proof Assume (An) for all n ≥ 1 andK ′ ≡ K ′′ 6` ⊥. (i) Let
K ′ = {α1, . . . , αm}. Define 〈K ′j〉j≥0 where K ′0 = K ∪K ′′
and K ′j+1 = K ′j ∪ {αj+1}. It is clear that K ′′ 6` ⊥ and
K ′′ ` αj+1 and K ′′ ⊆ K ′j . Hence, (An) can be ap-
plied to K ′j and this gives I(K ′j) = I(K ′j ∪ {αj+1}) =
I(K ′j+1). Overall, I(K ′0) = I(K ′m). I.e., I(K ∪ K ′′) =
I(K ∪ K ′ ∪ K ′′). (ii) Let K ′′ = {β1, . . . , βp}. Con-
sider the sequence 〈K ′′j 〉j≥0 where K ′′0 = K ∪ K ′ and
K ′′j+1 = K ′′j ∪ {βj+1}. Clearly, K ′ 6` ⊥ and K ′ ` βj+1
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and K ′ ⊆ K ′′j . Hence, (An) can be applied to K ′′j and
this gives I(K ′′j ) = I(K ′′j ∪ {βj+1}) = I(K ′′j+1). Over-
all, I(K ′′0 ) = I(K ′′p ). I.e., I(K ∪K ′) = I(K ∪K ′ ∪K ′′).
Combining the equalities, I(K ∪K ′) = I(K ∪K ′′). That
is, the family (An)n≥1 entails (Exchange).
We now show that the family (An)n≥1 is entailed by the
second item in the statement of Proposition 6, denoted
(Exchange′), which is:

If K ′ 6` ⊥ and K ′ ≡ K ′′}
then I(K ∪K ′) = I((K \K ′) ∪K ′′)

Let {α1, . . . , αn} ⊆ K such that {α1, . . . , αn} 6` ⊥ and
{α1, . . . , αn} ` β. So, {α1, . . . , αn} ≡ {α1, . . . , αn, β}.
For K ′ = {α1, . . . , αn}, K ′′ = {α1, . . . , αn, β}
(Exchange) gives I(K) = I((K \ {α1, . . . , αn}) ∪
{α1, . . . , αn, β} = I(K ∪ {β}).
By transitivity, we have thus shown that (Exchange) is en-
tailed by (Exchange′). Since the converse is obvious, the
equivalence between (Exchange), (Exchange′) and the fam-
ily (An)n≥1 holds.

It is clear that the third item in the statement of Proposi-
tion 6 is equivalent with (Exchange).

Consider now (Exchange′′), the last item in the statement
of Proposition 6:

If {K1, . . . ,Kn} is a partition of K \K0 where
K0 = {α ∈ K | α ` ⊥} such that

Ki 6` ⊥ and K ′i ≡ Ki for i = 1..n then
I(K) = I(K0 ∪K ′1 ∪ · · · ∪K ′n).

(i) Assume (Exchange′). We now prove (Exchange′′). Let
{K1, . . . ,Kn} be a partition ofK \K0 satisfying the condi-
tions of (Exchange′′). Trivially, I(K) = I(K0 ∪K \K0) =
I(K0∪K1∪· · ·∪Kn). Then,Ki\Kn = Ki for i = 1..n−1.
Applying (Exchange′) yields I(K0 ∪ K1 ∪ · · · ∪ Kn) =
I(K0∪K1∪· · ·∪K ′n) hence I(K) = I(K0∪K1∪· · ·∪K ′n).
Applying (Exchange′) iteratively upon Kn−1, Kn−2, . . . ,
K1 gives I(K) = I(K0 ∪K ′1 ∪ · · · ∪K ′n).
(ii) Assume (Exchange′′). We now prove (Exchange′). Let
K ′ 6` ⊥ and K ′′ ≡ K ′. Clearly, (K ∪ K ′)0 = K0 and
(K ∪ K ′) \ (K ∪ K ′)0 = (K \ K0) ∪ K ′. As each for-
mula in K \K0 is consistent, K \K0 can be partitioned into
{K1, . . . ,Kn} such that Ki 6` ⊥ for i = 1..n (take n = 0 in
the case that K = K0). Then, {K1 \K ′, . . . ,Kn \K ′,K ′}
is a partition of (K \ K0) ∪ K ′ satisfying the conditions
in (Exchange′′). Now, I(K ∪ K ′) = I(K0 ∪ (K1 \ K ′) ∪
· · · ∪ (Kn \ K ′) ∪ K ′). Applying (Exchange′′) with each
Ki substituting itself and K ′′ substituting K ′, we obtain
I(K ∪K ′) = I(K0 ∪ (K1 \K ′)∪ · · · ∪ (Kn \K ′)∪K ′′).
That is, I(K ∪K ′) = I((K \K ′) ∪K ′′).

Proposition 7 (Exchange) entails (Swap).

Proof Taking advantage of transitivity of equality, it will be
sufficient to prove I(K ∪ {β1, . . . , βi−1, αi, . . . , αn}) =
I(K ∪ {β1, . . . , βi, αi+1, . . . , αn}) for i = 1..n. Due to
αi ≡ βi and βi 6` ⊥, it holds that {αi} 6` ⊥
and {αi} ≡ {αi, βi}. As a consequence, (Exchange)
can be applied to K ∪ {β1, . . . , βi−1, αi+1, . . . , αn} for
K ′ = {αi} and K ′′ = {αi, βi}. Accordingly, I(K ∪
{β1, . . . , βi−1, αi, . . . , αn}) is then equal to I(((K ∪

{β1, . . . , βi−1, αi+1, . . . , αn}) \ {αi}) ∪ {αi, βi}) and the
latter is I(K ∪ {β1, . . . , βi, αi+1, . . . , αn}).
That (Exchange) entails (Swap) is natural. Surprisingly,
(Exchange) also entails (Tautology Independence).
Proposition 8 (Exchange) gives (Tautology Independence).

Proof The non-trivial case is α 6∈ K. Apply (Exchange′) for
K ′ = {α} andK ′′ = ∅, so, I(K∪{α}) = I((K \{α})∪∅)
ensues. I.e., I(K ∪ {α}) = I(K).

The value of an adjunction postulate
In keeping with the meaning of the conjunction connective
in classical logic, consider a dedicated postulate in the form
- I(K ∪ {α, β}) = I(K ∪ {α ∧ β})

(Adjunction Invariancy)
Proposition 9 (Adjunction Invariancy) entails
- I(K ∪ {α, β}) = I((K \ {α, β}) ∪ {α ∧ β})

(Disjoint Adjunction Invariancy)
- I(K) = I({

∧
K}) (Full Adjunction Invariancy)

where
∧
K denotes α1 ∧ . . . ∧ αn for any enumeration

α1, . . . , αn of K.

Proof Let K = {α1, . . . , αn}. Apply iteratively (Adjunc-
tion Invariancy) as I({α1 ∧ . . . ∧ αi−1, αi, . . . , αn}) =
I({α1 ∧ . . . ∧ αi, αi+1, . . . , αn}) for i = 2..n.
Proposition 10 Assuming I({α∧(β∧γ)}) = I({(α∧β)∧
γ}) and I({α∧β}) = I({β ∧α}), (Disjoint Adjunction In-
variancy) and (Full Adjunction Invariancy) are equivalent.

Proof Assume (Full Adjunction Invariancy). K ∪ {α, β} =
(K \ {α, β}) ∪ {α, β} yields I(K ∪ {α, β}) = I((K \
{α, β})∪ {α, β}). By (Full Adjunction Invariancy), I((K \
{α, β}) ∪ {α, β}) = I({

∧
((K \ {α, β}) ∪ {α, β})}) and

the latter can be written I({γ1 ∧ . . . ∧ γn ∧ α ∧ β})
for some enumeration γ1, . . . , γn of K \ {α, β}. I.e.,
I(K ∪ {α, β}) = I({γ1 ∧ . . . ∧ γn ∧ α ∧ β}). By
(Full Adjunction Invariancy), I((K \ {α, β}) ∪ {α ∧
β}) = I({

∧
((K \ {α, β}) ∪ {α ∧ β})}) that can be writ-

ten I({γ1 ∧ . . . ∧ γn ∧ α ∧ β}) for the same enumeration
γ1, . . . , γn of K \ {α, β}. So, I(K ∪ {α, β}) = I((K \
{α, β}) ∪ {α ∧ β}). As to the converse, it is trivial to use
(Disjoint Adjunction Invariancy) iteratively to get (Full Ad-
junction Invariancy).
A counter-example to the purported equivalence of (Ad-
junction Invariancy) and (Full Adjunction Invariancy) is
as follows. Let K = {a, b,¬b ∧ ¬a}. Obviously, I(K ∪
{a, b}) = I(K) since {a, b} ⊆ K. (Full Adjunction In-
variancy) gives I(K) = I({

∧
γ∈K γ}) i.e. I(K ∪ {a, b}) =

I({
∧
γ∈K γ}) = I({a∧b∧¬b∧¬a}). A different case of ap-

plying (Full Adjunction Invariancy) gives I(K ∪{a∧ b}) =
I({

∧
γ∈K∪{a∧b} γ}) = I({a ∧ b ∧ ¬b ∧ ¬a ∧ a ∧ b}).

However, HK postulates do not provide grounds to infer
I({a ∧ b ∧ ¬b ∧ ¬a}) = I({a ∧ b ∧ ¬b ∧ ¬a ∧ a ∧ b})
hence (Adjunction Invariancy) may fail here.

(Adjunction Invariancy) provides a natural equivalence
between (Monotony) and a principle which expresses that
adding a conjunct cannot make the amount of inconsistency
to decrease:
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Proposition 11 Assuming (Consistency Null), (Adjunction
Invariancy) yields that (Monotony) is equivalent with
- I(K ∪ {α ∧ β}) ≥ I(K ∪ {α})

(Conjunction Dominance)
Proof Assume (Monotony), a simple instance of which is
I(K ∪ {α}) ≤ I(K ∪ {α, β}). (Adjunction Invariancy)
gives I(K ∪{α, β}) = I(K ∪{α∧ β}). As a consequence,
I(K ∪ {α}) ≤ I(K ∪ {α ∧ β}). This inequality shows that
(Conjunction Dominance) holds.
Assume (Conjunction Dominance). First, consider K 6= ∅.
Let α ∈ K. Thus, I(K ∪ {α}) ≤ I(K ∪ {α ∧ β} by
(Conjunction Dominance). (Adjunction Invariancy) gives
I(K ∪ {α, β}) = I(K ∪ {α ∧ β}). Hence, I(K ∪ {α}) ≤
I(K ∪ {α, β}). I.e., I(K) ≤ I(K ∪ {β}) because α ∈ K.
For K ′ ∈ KL, it is enough to iterate this finitely many times
(one for every β in K ′ \K) to obtain I(K) ≤ I(K ∪K ′).
Now, consider K = ∅. By (Consistency Null), I(K) = 0
hence I(K) ≤ I(K ∪K ′).
(Free Formula Independence) yields (Tautology Indepen-
dence) by Proposition 2 although a more general principle
(e.g., (>-conjunct Independence) or the like) ensuring that
I be independent of tautologies is to be expected. The next
result shows that (Adjunction Invariancy) is the way to get
both postulates at once.
Proposition 12 Assuming (Consistency Null), (Adjunction
Invariancy) yields that (>-conjunct Independence) and
(Tautology Independence) are equivalent.

Proof For α ≡ >, (Adjunction Invariancy) and (Tautology
Independence) give I(K ∪ {α ∧ β}) = I(K ∪ {α, β}) =
I(K ∪ {β}). As to the converse, let β ∈ K. Therefore,
I(K) = I(K∪{β}) = I(K∪{α∧β}) = I(K∪{α, β}) =
I(K ∪ {α}). At to the case K = ∅, it is settled by means of
(Consistency Null).
(Adjunction Invariancy) provides for free various principles
related to (idempotence, commutativity, and associativity of)
conjunction as follows.
Proposition 13 (Adjunction Invariancy) entails
- I(K ∪ {α ∧ α}) = I(K ∪ {α})
- I(K ∪ {α ∧ β}) = I(K ∪ {β ∧ α})
- I(K ∪ {α ∧ (β ∧ γ)}) = I(K ∪ {(α ∧ β) ∧ γ})
Proof (i) I(K ∪{α∧α}) = I(K ∪{α, α}) = I(K ∪{α}).
(ii) I(K ∪ {α ∧ β}) = I(K ∪ {α, β}) = I(K ∪ {β, α}) =
I(K ∪ {β ∧ α}). (iii) I(K ∪ {α ∧ (β ∧ γ)}) = I(K ∪
{α, β ∧ γ}) = I(K ∪ {α, β, γ}) = I(K ∪ {α ∧ β, γ}) =
I(K ∪ {(α ∧ β) ∧ γ}).
(Adjunction Invariancy) and (Exchange) are two principles
devoted to ensuring that replacing a subset of the knowledge
base with an equivalent subset does not change the value
given by the inconsistency measure. The contexts that these
two principles require for the replacement to be safe differ:

1. ForK ′ 6` ⊥, (Exchange) is more general than (Adjunction
Invariancy) since (Exchange) guarantees I(K ∪ K ′) =
I(K ∪ K ′′) for every K ′′ ≡ K ′ but (Adjunction In-
variancy) ensures it only for K ′′ = {

∧
K ′i | K =

{K ′1, ..,K ′n}} where K ranges over the partitions of K ′.

2. For α ` ⊥, (Adjunction Invariancy) is more general than
(Exchange) because (Adjunction Invariancy) guarantees
I(K ∪ {α, β}) = I(K ∪ {α ∧ β}) but (Exchange) does
not guarantee it.

Revisiting HK Postulates
Sticking with (Consistency Null) and (Monotony)
First, (Consistency Null) or a like postulate is indispensable
because there seems to be no way to have a sensible incon-
sistency measure that would not be able to always discrimi-
nate between consistency and inconsistency.

(Monotony) is to be kept since contradictions in classical
logic (and basically all logics) are monotone (Besnard 2010)
wrt information: That is, extra information cannot make a
contradiction to vanish.

We will not retain (Monotony) as an explicit postulate,
because it ensues from our schematic postulate (see later).

Intended postulates
(Tautology Independence) and (>-conjunct Independence)
are due postulates. More generally, it would make no sense,
when determining how inconsistent a theory is, to take into
account any inessential difference in which a formula can
be written (e.g., α ∨ β instead of β ∨ α). Define α′ to be
a prenormal form of α if α′ is obtained from α by applying
(posibly repeatedly) one or more of the following principles:
commutativity, associativity and distribution for ∧ and ∨,
De Morgan laws, double negation equivalence. Henceforth
the next4 postulate:

- If β is a prenormal form of α, I(K ∪ {α})=I(K ∪ {β})
(Rewriting)

As (Monotony) essentially means that extra information
cannot make amount of inconsistency to decrease, the same
idea must apply to conjunction because α∧β cannot involve
less information than α. Thus, another due postulate is:

- I(K ∪ {α ∧ β}) ≥ I(K ∪ {α})
(Conjunction Dominance)

Indeed, it does not matter whether α or β or both be incon-
sistent: It definitely cannot be rational to hold that there is
a case (even a single one) where extending K with a con-
junction would result in less inconsistency than extending
K with one of the conjuncts.

Taking care of disjunction
It is very difficult to assess how inconsistent a disjunction is,
but bounds can be set. Indeed, a disjunction expresses two
alternative possibilities; so, accrual across these would make
little sense. That is, amount of inconsistency in α∨β cannot
exceed amount of inconsistency in either α or β, depend-
ing on which one involves a higher amount of inconsistency.
Hence the following postulate.

4Insharp contrast to (Irrelevance of Syntax) that allows for de-
structive transformation from α to β when both are inconsistent,
(Rewriting) takes care of inhibiting purely deductive transforma-
tions (the most important one is presumably from α ∧ ⊥ to ⊥).
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- I(K ∪ {α ∨ β}) ≤ max(I(K ∪ {α}), I(K ∪ {β}))
(Disjunct Maximality)

Two alternative formulations for (Disjunct Maximality) are
as follows.
Proposition 14 Assume I(K∪{α∨β}) = I(K∪{β∨α}).
(Disjunct Maximality) is equivalent with each of
- if I(K ∪ {α}) ≥ I(K ∪ {β})

then I(K ∪ {α}) ≥ I(K ∪ {α ∨ β})
- either I(K ∪ {α ∨ β}) ≤ I(K ∪ {α})

or I(K ∪ {α ∨ β}) ≤ I(K ∪ {β})
Proof Let us prove that (Disjunct Maximality) entails the
first item. Assume I(K ∪ {α}) ≥ I(K ∪ {β}). I.e., I(K ∪
{α}) = max(I(K ∪ {α}), I(K ∪ {β})). Using (Disjunct
Maximality), I(K ∪ {α ∨ β}) ≤ max(I(K ∪ {α}), I(K ∪
{β})), i.e. I(K ∪ {α})) ≥ I(K ∪ {α ∨ β}). As to the con-
verse direction, assume that if I(K ∪ {α}) ≥ I(K ∪ {β})
then I(K ∪ {α}) ≥ I(K ∪ {α ∨ β}). Consider the case
max(I(K ∪ {α}), I(K ∪ {β})) = I(K ∪ {α}). Hence,
I(K ∪ {α}) ≥ I(K ∪ {β}). According to the assumption,
it follows that I(K ∪ {α}) ≥ I(K ∪ {α ∨ β}). That is,
max(I(K ∪ {α}), I(K ∪ {β})) ≥ I(K ∪ {α ∨ β}). Simi-
larly, the case max(I(K∪{α}), I(K∪{β})) = I(K∪{β})
gives I(K ∪{β}) ≥ I(K ∪{β ∨α}). Then, I(K ∪{β}) ≥
I(K∪{α∨β}) in view of the hypothesis in the statement of
Proposition 14. That is, max(I(K ∪ {α}), I(K ∪ {β})) ≥
I(K∪{α∨β}). Combining both cases, (Disjunct Maximal-
ity) holds.
The equivalence of (Disjunct Maximality) with the last item
is due to the fact that the codomain of I is totally ordered.
Although it is quite unclear how to weigh inconsistencies out
of a disjunction, they must weigh no more than out of both
disjuncts (whether tied together by a conjunction or not),
which is the reason for holding
- I(K ∪ {α ∧ β}) ≥ I(K ∪ {α ∨ β})

(∧-over-∨ Dominance)
and its conjunction-free counterpart
- I(K ∪ {α, β}) ≥ I(K ∪ {α ∨ β})
Proposition 15 Assume I(K∪{α∧β}) = I(K∪{β∧α}).
(Conjunction Dominance) and (Disjunct Maximality) entail
(∧-over-∨ Dominance).
Proof Given I(K∪{α∧β}) = I(K∪{β∧α}), (Conjunction
Dominance) gives I(K∪{α∧β}) ≥ I(K∪{α}) and I(K∪
{α∧β}) ≥ I(K∪{β}). Therefore, max(I(K∪{α}), I(K∪
{β})) ≤ I(K∪{α∧β}). In view of (Disjunct Maximality),
I(K ∪ {α ∨ β}) ≤ max(I(K ∪ {α}), I(K ∪ {β})), and it
accordingly follows that I(K ∪{α∨β}) ≤ I(K ∪{α∧β})
holds.
Proposition 16 (Monotony) and (Disjunct Maximality) en-
tail
- I(K ∪ {α, β}) ≥ I(K ∪ {α ∨ β})
Proof Due to (Monotony), I(K ∪ {α}) ≤ I(K ∪ {α, β})
and I(K ∪ {β}) ≤ I(K ∪ {α, β}). As a consequence,
max(I(K ∪ {α}), I(K ∪ {β})) ≤ I(K ∪ {α, β}). Then,
I(K ∪ {α ∨ β}) ≤ max(I(K ∪ {α}), I(K ∪ {β})) due to
(Disjunct Maximality). I(K ∪ {α, β}) ≥ I(K ∪ {α ∨ β})
easily ensues.

A schematic postulate
This is to be presented in two steps.

1. (Monotony) expresses that adding information cannot re-
sult in a decrease of the amount of inconsistency in the
knowledge base. Considering a notion of primitive con-
flicts that underlies amount of inconsistency, (Monotony)
is a special case of a postulate stating that amount of in-
consistency is monotone with respect to the set of primi-
tive conflicts C(K) of the knowledge base K: If C(K) ⊆
C(K ′) then I(K) ≤ I(K ′).
Clearly, I is to admit different postulates depending on
what features are required for primitive conflicts (see Ta-
ble 1).

2. Keep in mind that an inconsistency measure refers to
logical content of the knowledge base, not other aspects
whether subject matter of contradiction, source of infor-
mation,. . . This is because an inconsistency measure is
only concerned with quantity, i.e. amount of inconsis-
tency (of course, it is possible for example that a contra-
diction be more worrying than another -and so, making
more pressing to act (Gabbay and Hunter 1993) about it-
but this has nothing to do with amount of inconsistency).
Now, what characterizes logical content is uniform sub-
stitutivity. Hence a postulate called (Substitutivity Domi-
nance) stating that renaming cannot make the amount of
inconsistency to decrease: If σK = K ′ for some substi-
tution σ then I(K) ≤ I(K ′).

Combining these two ideas, we obtain the next postulate

- If C(σK)⊆C(K ′) for some substitution σ, I(K)≤I(K ′)
(Subsumption Orientation)

Fact 1 Every postulate of the form

- I(X) ≤ I(Y ) for all X ∈ KL and Y ∈ KL such that
condition CX,Y holds

or of the form

- I(X) = I(Y ) for all X ∈ KL and Y ∈ KL such that
condition CX,Y holds

is derived from (Subsumption Orientation) and from any
property of C ensuring that condition C holds.

Individual properties of C ensuring condition C for a
number of postulates, including all those previously men-
tioned in the paper, can be found in Table 1.

(Variant Equality) in Table 1 is named after the notion of
a variant (Church 1956):

- If σ and σ′ are substitutions s.t. σK = K ′ and σ′K ′ = K
then I(K) = I(K ′)

(Variant Equality)

New system of postulates (basic and strong versions)
All the above actually suggests a new system of postulates,
which consists simply of (Consistency Null) and (Sub-
sumption Orientation). The system is parameterized by the
properties imposed upon C in the latter. In the range induced
by C, a basic system emerges, which amounts to the next list:
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Specific property for C Specific postulate entailed by
(Subsumption Orientation)

No property needed (Variant Equality)
No property needed (Substitutivity Dominance)
C(K ∪ {α}) = C(K) for α ≡ > (Tautology Independence)
C(K ∪ {α ∧ β}) = C(K ∪ {β}) for α ≡ > (>-conjunct Independence)
C(K ∪ {α}) = C(K ∪ {α′}) for α′ prenormal form of α (Rewriting)
C(K) ⊆ C(K ∪ {α}) (Instance Low)
C(K) ⊆ C(K ∪ {α}) (Monotony)
C(K ∪ {α ∨ β}) ⊆ C(K ∪ {α ∧ β}) (∧-over-∨ Dominance)
C(K ∪ {α}) ⊆ C(K ∪ {α ∧ β}) (Conjunction Dominance)
C(K ∪ {α, β}) = C(K ∪ {α ∧ β}) (Adjunction Invariancy)
C(K ∪ {α ∨ β}) ⊆ C(K ∪ {α}) or C(K ∪ {β}) (Disjunct Maximality)
C(K ∪ {α ∨ β}) ⊇ C(K ∪ {α}) or C(K ∪ {β}) (Disjunct Minimality)
C(K ∪K ′) = C(K ∪K ′′) for K ′′ ≡ K ′ 6` ⊥ (Exchange)
C(K ∪ {α1, ..., αn}) = C(K ∪ {β1, .., βn}) if αi ≡ βi 6` ⊥ (Swap)
C(K ∪ {β}) ⊆ C(K ∪ {α}) for α ` β and α 6` ⊥ (Dominance)
C(K ∪ {α}) = C(K) for α free for K (Free Formula Independence)

Table 1: Conditions for postulates derived from (Subsumption Orientation).

Basic System
I(K) = 0 iff K 6` ⊥ (Consistency Null)
If α′ is a prenormal form of α

then I(K ∪ {α}) = I(K ∪ {α′}) (Rewriting)
If σK ⊆ K ′ for some substitution σ

then I(K) ≤ I(K ′) (Instance Low)
I(K ∪ {α ∨ β}) ≤ max(I(K ∪ {α}), I(K ∪ {β}))

(Disjunct Maximality)
If α ≡ > then I(K) = I(K ∪ {α})

(Tautology Independence)
If α ≡ > then I(K ∪ {α ∧ β}) = I(K ∪ {β})

(>-conjunct Independence)
I(K ∪ {α}) ≤ I(K ∪ {α ∧ β}) (Conjunction Dominance)

At the other end of the range is the strong system below
(except for (Dominance) and (Free Formula Independence),
it captures all postulates listed in Table 1).

Strong System
I(K) = 0 iff K 6` ⊥ (Consistency Null)
If α′ is a prenormal form of α

then I(K ∪ {α}) = I(K ∪ {α′}) (Rewriting)
If σK ⊆ K ′ for some substitution σ

then I(K) ≤ I(K ′) (Instance Low)
I(K ∪ {α ∨ β}) ≤ max(I(K ∪ {α}), I(K ∪ {β}))

(Disjunct Maximality)
I(K ∪ {α ∨ β}) ≥ min(I(K ∪ {α}), I(K ∪ {β}))

(Disjunct Minimality)
IfK ′′ ≡ K ′ 6` ⊥ then I(K∪K ′) = I(K∪K ′′) (Exchange)
I(K ∪ {α, β}) = I(K ∪ {α ∧ β}) (Adjunction Invariancy)

HK Postulates as (Subsumption Orientation)
Time has come to make sense5 of the HK choice of
(Free Formula Independence) together with (Monotony), by
means of Theorem 1 and Theorem 2.

5Still not defending the choice of (Free Formula Independence).

Theorem 1 Let C be such that for every K ∈ KL and for
every X ⊆ L which is minimal inconsistent, X ∈ C(K)
iff X ⊆ K. If I satisfies both (Monotony) and (Free For-
mula Independence) then I satisfies (Subsumption Orienta-
tion) restricted to its non-substitution part, namely

if C(K) ⊆ C(K ′) then I(K) ≤ I(K ′).

Proof Let C(K) ⊆ C(K ′). Should K be a subset of K ′,
(Monotony) yields I(K) ≤ I(K ′) as desired. So, let us turn
to K 6⊆ K ′. Consider ϕ ∈ K \ K ′. If ϕ were not free for
K, there would exist a minimal inconsistent subset X of K
such that ϕ ∈ X . Clearly, X 6⊆ K ′. The constraint imposed
on C in the statement of the theorem would then yield both
X ∈ C(K) and X 6∈ C(K ′), contradicting the assumption
C(K) ⊆ C(K ′). Hence, ϕ is free for K. In view of (Free
Formula Independence), I(K) = I(K \ {ϕ}). The same
reasoning applied to all the (finitely many) formulas in K \
K ′ gives I(K) = I(K ∩K ′). However, K ∩K ′ is a subset
of K ′ so that using (Monotony) yields I(K ∩K ′) ≤ I(K ′)
hence I(K) ≤ I(K ′).

Define Ξ = {X ∈ KL | ∀X ′ ⊆ X,X ′ ` ⊥ ⇔ X = X ′}.
Then, C is said to be governed by minimal inconsistency iff
C satisfies the following property

if C(K) ∩ Ξ ⊆ C(K ′) ∩ Ξ then C(K) ⊆ C(K ′).

It means that those Z in C(K) which are not minimal incon-
sistent cannot override set-inclusion induced by minimal in-
consistent subsets —i.e., no such Z can, individually or col-
lectively, turn C(K) ∩ Ξ ⊆ C(K ′) ∩ Ξ into C(K) 6⊆ C(K ′).
Theorem 2 Let C be governed by minimal inconsistency
and be such that for all K ∈ KL and all X ⊆ L which
is minimal inconsistent, X ∈ C(K) iff X ⊆ K. I satis-
fies (Monotony) and (Free Formula Independence) whenever
I satisfies (Subsumption Orientation) restricted to its non-
substitution part, namely

if C(K) ⊆ C(K ′) then I(K) ≤ I(K ′).
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Proof Trivially, if X ⊆ K then X ⊆ K ∪ {α}. By the
constraint imposed on C in the statement of the theorem, it
follows that if X ∈ C(K) then X ∈ C(K ∪ {α}). Since C
is governed by minimal inconsistency, C(K) ⊆ C(K ∪{α})
ensues and (Subsumption Orientation) yields (Monotony).
Let α be a free formula for K. By definition, α is in no
minimal inconsistent subset ofK∪{α}. So,X ⊆ K iffX ⊆
K ∪ {α} for all minimal inconsistent X . By the constraint
imposed on C in the statement of the theorem, X ∈ C(K)
iff X ∈ C(K ∪ {α}) ensues for all minimal inconsistent
X . In symbols, C(K) ∩ Ξ = C(K ∪ {α}) ∩ Ξ. Since C is
governed by minimal inconsistency, it follows that C(K) =
C(K ∪{α}). Thus, (Free Formula Independence) holds, due
to (Subsumption Orientation).

These theorems mean that, if substitutivity is left aside,
(Subsumption Orientation) is equivalent with (Free Formula
Independence) and (Monotony) when primitive conflicts are
essentially minimal inconsistent subsets. These postulates
form a natural pair if it is assumed that minimal inconsis-
tent subsets must be the basis for inconsistency measuring.

Conclusion
We have proposed a new system of postulates for inconsis-
tency measures, i.e.

I(K) = 0 iff K is consistent (Consistency Null)
If C(σK) ⊆ C(K ′) for a substitution σ then I(K) ≤ I(K ′)

(Subsumption Orientation)
parameterized by the requirements imposed on C.

Even in its strong version, the new system omits both (Dom-
inance) and (Free Formula Independence), which we have
argued against. We have investigated various postulates, ab-
sent from the HK set, giving grounds to include them in the
new system. We have shown that (Subsumption Orientation)
accounts for the other postulates and provides a justification
for (Free Formula Independence) together with (Monotony),
through focussing on minimal inconsistent subsets.

We do not hold that the new system, in basic or strong ver-
sion, captures all desirable cases, we more modestly claim
for improving over the original HK set. In particular, we be-
lieve that the HK postulates suffer from over-commitment
to minimal inconsistent subsets. Crucially, such a comment
applies to postulates (they would exclude all approaches that
are not based upon minimal inconsistent subsets) but it does
not apply to measures themselves: There are excellent rea-
sons to develop a specific measure (Knight 2002) (Mu, Liu
and Jin 2012) (Jabbour and Raddaoui 2013) . . .

As to future work, we must mention taking seriously be-
lief bases as multisets –giving a counterpart to the idea that
e.g. {a ∧ b ∧ ¬a ∧ ¬b ∧ a ∧ b ∧ ¬a ∧ ¬b} might be viewed
as more inconsistent than {a ∧ b ∧ ¬a ∧ ¬b}.
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