
1

Proof Complexity

Olaf Beyersdorff

School of Computing
University of Leeds, UK

RiSE Winter School, Vienna, 2018

2

Outline of the Course
Introduction to Propositional Proof Complexity

Proof Systems
The Cook-Reckhow Programme

Tree-Like Resolution
Tree-like Resolution and Satisfiability Algorithms
The Game of Pudlák and Impagliazzo

Separating Tree-like and DAG-like Resolution
Tree-like vs. DAG-like Proof Systems
Pebbling Games

DAG-like Resolution and Cutting Planes
Proof complexity of further logics

Modal and intuitionistic logics
QBF proof complexity

Frege and Stronger Systems
Bounded-Depth Frege and Frege
Extensions of Frege
Optimal Systems
Proof Search – Automatizability
Bounded Arithmetic
Relations to Circuit Complexity

3

Proof Systems

Definition (Cook, Reckhow 79)

A proof system for a language L is a function f with rng(f) = L.
If f (w) = x , then w is called an f -proof of x ∈ L.

I correctness: rng(f) ⊆ L

I completeness: L ⊆ rng(f)

I efficiency: proofs should be easy to check,
i.e. f should be easy to compute.

I Most research in proof complexity has studied propositional
proof systems where L = TAUT .

4

A First Example: Truth Tables

A proof system for TAUT

TT (α,ϕ) =

{
ϕ if α is a truth table for ϕ with all entries 1

p ∨ ¬p otherwise.

Why is this not a good proof system?

I Most proofs are exponentially long in the size of the formula.

I We look for proof systems with shorter proofs.

4

A First Example: Truth Tables

A proof system for TAUT

TT (α,ϕ) =

{
ϕ if α is a truth table for ϕ with all entries 1

p ∨ ¬p otherwise.

Why is this not a good proof system?

I Most proofs are exponentially long in the size of the formula.

I We look for proof systems with shorter proofs.

5

The Most Studied Proof System: Resolution

I Introduced by Blake 1937, Davis & Putnam 1960, and
Robinson 1965

I Resolution proofs operate with clauses.

I Resolution proofs are refutations.

Definition
Let C and D be clauses with p ∈ C and ¬p ∈ D.
The Resolution rule applied to C and D yields the clause
(C \ {p}) ∪ (D \ {¬p}).

Notation:
C D

(C \ {p}) ∪ (D \ {¬p})

5

The Most Studied Proof System: Resolution

I Introduced by Blake 1937, Davis & Putnam 1960, and
Robinson 1965

I Resolution proofs operate with clauses.

I Resolution proofs are refutations.

Definition
Let C and D be clauses with p ∈ C and ¬p ∈ D.
The Resolution rule applied to C and D yields the clause
(C \ {p}) ∪ (D \ {¬p}).

Notation:
C D

(C \ {p}) ∪ (D \ {¬p})

6

Resolution Derivations

Definition
Let Γ be a set of clauses. A Resolution derivation of a clause C
from Γ is a sequence

C1, . . . ,Ck = C

of clauses such that for all i = 1, . . . , k:

1. Ci ∈ Γ or

2. there exist 1 ≤ j1 ≤ j2 < i with

Cj1 Cj2

Ci
.

7

Resolution Refutations

Definition
A Resolution refutation of Γ is a Resolution derivation of the
empty clause � from Γ.

Example

Γ = {{p, q}, {p,¬q}, {¬p, q}, {¬p,¬q}}

A Resolution refutation of Γ is:

{p, q} {¬p, q}
{q}

{¬p,¬q} {p,¬q}
{¬q}

�

7

Resolution Refutations

Definition
A Resolution refutation of Γ is a Resolution derivation of the
empty clause � from Γ.

Example

Γ = {{p, q}, {p,¬q}, {¬p, q}, {¬p,¬q}}

A Resolution refutation of Γ is:

{p, q} {¬p, q}
{q}

{¬p,¬q} {p,¬q}
{¬q}

�

8

Resolution in the Cook-Reckhow Framework

Resolution is a proof system for tautologies in DNF

Res(C1, . . . ,Ck , ϕ) =


ϕ if C1, . . . ,Ck = � is a Resolution

refutation of the clause set for ¬ϕ
p ∨ ¬p otherwise.

Resolution can be extended to a proof system for all tautologies by
transforming formulas into DNF.

8

Resolution in the Cook-Reckhow Framework

Resolution is a proof system for tautologies in DNF

Res(C1, . . . ,Ck , ϕ) =


ϕ if C1, . . . ,Ck = � is a Resolution

refutation of the clause set for ¬ϕ
p ∨ ¬p otherwise.

Resolution can be extended to a proof system for all tautologies by
transforming formulas into DNF.

9

A Strong System: Frege

Axioms p1 → (p2 → p1)
(p1 → p2)→ (p1 → (p2 → p3))→ (p1 → p3)
p1 → p1 ∨ p2

p2 → p1 ∨ p2

(p1 → p3)→ (p2 → p3)→ (p1 ∨ p2 → p3)
(p1 → p2)→ (p1 → ¬p2)→ ¬p1

¬¬p1 → p1

p1 ∧ p2 → p1

p1 ∧ p2 → p2

p1 → p2 → p1 ∧ p2

Modus Ponens
p1 p1 → p2

p2

10

Frege Proofs

A Frege proof of a formula ϕ is a sequence

(ϕ1, . . . , ϕn = ϕ)

of propositional formulas such that for i = 1, . . . , n:

I ϕi is a substitution instance of an axiom, or

I ϕi was derived by modus ponens from ϕj , ϕk with j , k < i .

11

Restrictions and Extensions of Frege Systems

Bounded-depth Frege

Allow only formulas of logical depth d in the proof for a given
constant d .

Extended Frege EF

Abbreviations for complex formulas: p ≡ ϕ,
where p is a new propositional variable.

Frege systems with substitution SF

Substitution rule: ϕ
σ(ϕ)

for arbitrary substitutions σ

Extensions of EF
Let Φ be a polynomial-time computable set of tautologies.
EF + Φ: Φ as axiom schemes

12

Reductions between Proof Systems

Definition (Cook, Reckhow 79, Kraj́ıček, Pudlák 89)

Let f and g be proof systems for L.

I f simulates g , if for any g -proof w there is an f -proof w ′ of
length |w ′| = |w |O(1) s.t. f (w ′) = g(w).

I If w ′ is computable from w in polynomial time, then f
p-simulates g .

I f and g are (p-)equivalent if they (p-)simulate each other.

Definition (Kraj́ıček, Pudlák 89)

A proof system f for L is (p)-optimal if f (p-)simulates every proof
system for L.

12

Reductions between Proof Systems

Definition (Cook, Reckhow 79, Kraj́ıček, Pudlák 89)

Let f and g be proof systems for L.

I f simulates g , if for any g -proof w there is an f -proof w ′ of
length |w ′| = |w |O(1) s.t. f (w ′) = g(w).

I If w ′ is computable from w in polynomial time, then f
p-simulates g .

I f and g are (p-)equivalent if they (p-)simulate each other.

Definition (Kraj́ıček, Pudlák 89)

A proof system f for L is (p)-optimal if f (p-)simulates every proof
system for L.

13

Simulations Between Proof Systems

Theorem (Cook, Reckhow 79)

All Frege systems are polynomially equivalent.

Theorem (Kraj́ıček, Pudlák 89)

Every proof system is simulated by a proof system of the form
EF + Φ.

Problem (Kraj́ıček, Pudlák 89)

Do optimal proof systems exist?

14

The Propositional Sequent Calculus

I Historically one of the first and best analyzed proof systems
[Gentzen 35]

I Widely used for propositional and first-order logic

I We describe the propositional sequent calculus LK .

I The basic objects of the sequent calculus are sequents

ϕ1, . . . , ϕm ` ψ1, . . . , ψk .

I Formally, these are ordered pairs of two sequences of
propositional formulas separated by the symbol `.

I The sequence ϕ1, . . . , ϕm is called the antecedent and
ψ1, . . . , ψk is called the succedent.

15

Sequents

I An assignment α satisfies a sequent Γ ` ∆ if

α |=
∨
ϕ∈Γ

¬ϕ ∨
∨
ψ∈∆

ψ .

I ` ∆ abbreviates ∅ ` ∆.

I Γ ` abbreviates Γ ` ∅.
I Sequents of the form

A ` A, 0 `, ` 1

are called initial sequents.

16

Rules of LK

Γ ` ∆
A, Γ ` ∆

Γ ` ∆ (weakening)
Γ ` ∆,A

Γ1,A,B, Γ2 ` ∆

Γ1,B,A, Γ2 ` ∆

Γ ` ∆1,A,B,∆2 (exchange)
Γ ` ∆1,B,A,∆2

Γ1,A,A, Γ2 ` ∆

Γ1,A, Γ2 ` ∆

Γ ` ∆1,A,A,∆2 (contraction)
Γ ` ∆1,A,∆2

Γ ` ∆,A

¬A, Γ ` ∆

A, Γ ` ∆
(¬ introduction)

Γ ` ∆,¬A

17

Rules of LK (cont’d.)

∧ introduction rules:

A, Γ ` ∆

A ∧ B, Γ ` ∆

A, Γ ` ∆

B ∧ A, Γ ` ∆

Γ ` ∆,A Γ ` ∆,B

Γ ` ∆,A ∧ B

∨ introduction rules:

A, Γ ` ∆ B, Γ ` ∆

A ∨ B, Γ ` ∆

Γ ` ∆,A

Γ ` ∆,A ∨ B

Γ ` ∆,A

Γ ` ∆,B ∨ A

Γ ` ∆,A A, Γ ` ∆
(cut rule)

Γ ` ∆

18

Derivations

Definition
As in Frege systems, an LK -proof of a propositional formula ϕ is a
derivation of the sequent

` ϕ

from initial sequents by the above rules.

Proposition (Cook, Reckhow 79)

Frege systems and the propositional sequent calculus LK are
polynomially equivalent.

18

Derivations

Definition
As in Frege systems, an LK -proof of a propositional formula ϕ is a
derivation of the sequent

` ϕ

from initial sequents by the above rules.

Proposition (Cook, Reckhow 79)

Frege systems and the propositional sequent calculus LK are
polynomially equivalent.

19

Polynomially Bounded Proof Systems

Polynomial Bounds on Proofs

A proof system f for L is polynomially bounded if there exists a
polynomial p such that every x ∈ L has an f -proof of size ≤ p(|x |).

Examples

I The standard proof system for SAT is polynomially bounded:

sat(α,ϕ) =

{
ϕ if α is a satisfying assignment for ϕ

p otherwise.

I The truth-table system is not a polynomially bounded proof
system for TAUT.

19

Polynomially Bounded Proof Systems

Polynomial Bounds on Proofs

A proof system f for L is polynomially bounded if there exists a
polynomial p such that every x ∈ L has an f -proof of size ≤ p(|x |).

Examples

I The standard proof system for SAT is polynomially bounded:

sat(α,ϕ) =

{
ϕ if α is a satisfying assignment for ϕ

p otherwise.

I The truth-table system is not a polynomially bounded proof
system for TAUT.

20

The Cook-Reckhow Theorem

Question
Is there a polynomially bounded proof system for TAUT?

Theorem (Cook, Reckhow 79)

A language L has a polynomially bounded proof system
if and only if L ∈ NP.

20

The Cook-Reckhow Theorem

Question
Is there a polynomially bounded proof system for TAUT?

Theorem (Cook, Reckhow 79)

A language L has a polynomially bounded proof system
if and only if L ∈ NP.

21

The Cook-Reckhow Theorem

Theorem (Cook, Reckhow 79)

A language L has a polynomially bounded proof system
if and only if L ∈ NP.

Proof. ⇒
Let P be a polynomially bounded proof system with bounding
polynomial p. Consider the following algorithm:

1 Input: a string x

2 guess π ∈ Σ≤p(|x |)

3 IF P(π) = x THEN accept ELSE reject

22

The Cook-Reckhow Theorem

Theorem (Cook, Reckhow 79)

A language L has a polynomially bounded proof system
if and only if L ∈ NP.

Proof. ⇐
Let L ∈ NP and let M be a nondeterministic polynomial time
Turing machine M that accepts L. Let the polynomial p bound the
running time of M. Then

P(π) =

{
x if π codes an accepting computation of M(x)
x0 otherwise

with fixed x0 ∈ L is a proof system for L which is polynomially
bounded by p.

23

The Cook-Reckhow Theorem

Question
Is there a polynomially bounded proof system for TAUT?

Theorem (Cook, Reckhow 79)

A language L has a polynomially bounded proof system
if and only if L ∈ NP.

For propositional proof systems

TAUT has a polynomially bounded proof system
if and only if NP = coNP.

23

The Cook-Reckhow Theorem

Question
Is there a polynomially bounded proof system for TAUT?

Theorem (Cook, Reckhow 79)

A language L has a polynomially bounded proof system
if and only if L ∈ NP.

For propositional proof systems

TAUT has a polynomially bounded proof system
if and only if NP = coNP.

24

The Cook-Reckhow Programme
Separate NP from coNP (and hence P and NP) by showing
super-polynomial lower bounds to the size of proofs in all
propositional proof systems.

Showing lower bounds for a system P means

finding an infinite family θn of propositional tautologies s.t.

I |θn| = nO(1);
I θn requires super-polynomial size proofs in P.

I Better: . . . exponential size proofs.

Even better

I Find a sequence of polynomially constructible formulas which
require long proofs.

I This is usually the case: take θn as the propositional
formalization of some combinatorial principle.

I Find a large set of formulas (e.g. random 3-CNF) which
require long proofs.

24

The Cook-Reckhow Programme
Separate NP from coNP (and hence P and NP) by showing
super-polynomial lower bounds to the size of proofs in all
propositional proof systems.

Showing lower bounds for a system P means

finding an infinite family θn of propositional tautologies s.t.

I |θn| = nO(1);
I θn requires super-polynomial size proofs in P.

I Better: . . . exponential size proofs.

Even better

I Find a sequence of polynomially constructible formulas which
require long proofs.

I This is usually the case: take θn as the propositional
formalization of some combinatorial principle.

I Find a large set of formulas (e.g. random 3-CNF) which
require long proofs.

24

The Cook-Reckhow Programme
Separate NP from coNP (and hence P and NP) by showing
super-polynomial lower bounds to the size of proofs in all
propositional proof systems.

Showing lower bounds for a system P means

finding an infinite family θn of propositional tautologies s.t.

I |θn| = nO(1);
I θn requires super-polynomial size proofs in P.

I Better: . . . exponential size proofs.

Even better

I Find a sequence of polynomially constructible formulas which
require long proofs.

I This is usually the case: take θn as the propositional
formalization of some combinatorial principle.

I Find a large set of formulas (e.g. random 3-CNF) which
require long proofs.

24

The Cook-Reckhow Programme
Separate NP from coNP (and hence P and NP) by showing
super-polynomial lower bounds to the size of proofs in all
propositional proof systems.

Showing lower bounds for a system P means

finding an infinite family θn of propositional tautologies s.t.

I |θn| = nO(1);
I θn requires super-polynomial size proofs in P.

I Better: . . . exponential size proofs.

Even better

I Find a sequence of polynomially constructible formulas which
require long proofs.

I This is usually the case: take θn as the propositional
formalization of some combinatorial principle.

I Find a large set of formulas (e.g. random 3-CNF) which
require long proofs.

25

The Cook-Reckhow Programme

Separate NP from coNP (and hence P and NP) by showing
super-polynomial lower bounds to the size of proofs in all
propositional proof systems.

Progress in this programme

I Haken (1985): exponential lower bound to the proof size in
Resolution for the pigeonhole principle

I Ajtai (1988): Super-polynomial lower bound for
bounded-depth Frege systems (Improved by Beame,
Impagliazzo, Kraj́ıček, Pitassi, Pudlák, Woods)

I Lower bounds for algebraic and geometric proof systems:
I Cutting Planes
I Polynomial Calculus
I Nullstellensatz

25

The Cook-Reckhow Programme

Separate NP from coNP (and hence P and NP) by showing
super-polynomial lower bounds to the size of proofs in all
propositional proof systems.

Progress in this programme

I Haken (1985): exponential lower bound to the proof size in
Resolution for the pigeonhole principle

I Ajtai (1988): Super-polynomial lower bound for
bounded-depth Frege systems (Improved by Beame,
Impagliazzo, Kraj́ıček, Pitassi, Pudlák, Woods)

I Lower bounds for algebraic and geometric proof systems:
I Cutting Planes
I Polynomial Calculus
I Nullstellensatz

26

Techniques and Barriers

Techniques for lower bounds

I feasible interpolation [Kraj́ıček 97]

I size-width trade-offs [Ben-Sasson, Wigderson 01]

I game-theoretic techniques [Pudlák, Buss, Impagliazzo,. . .]

I proof complexity generators [Kraj́ıček, Alekhnovich et al.]

The current barrier
Show lower bounds for Frege systems

27

Cutting Planes

I Cutting Planes uses the idea of linear programming.

I As in Resolution, CP is a refutation system that works with
clauses.

I Clauses are translated into linear inequalities.

28

The Translation
I Clauses are translated into linear inequalities

a1p1 + · · ·+ anpn ≥ b (1)

with integer coefficients a1, . . . , an and b.
I Propositional variables p are identically represented by integer

variables p.
I ¬p is translated to 1− p.
I A clause

C = {l1, . . . , ln}
with literals li = pi or li = ¬pi is translated into

f1 + · · ·+ fn ≥ 1

with

fi =

{
pi if li = pi

1− pi if li = ¬pi
for i = 1, . . . , n.

I To get an inequality of the form (1), constants are moved to
the right hand side.

29

Axioms of CP

1. Let Γ = {C1, . . . ,Ck} be a set of clauses in variables
p1, . . . , pn.

2. As axioms in CP we use the translations of clauses C1, . . . ,Ck

together with

pi ≥ 0, −pi ≥ −1 i = 1, . . . , n .

30

Rules of CP

1. Addition:

a1p1 + · · ·+ anpn ≥ b a′1p1 + · · ·+ a′npn ≥ b′

(a1 + a′1)p1 + · · ·+ (an + a′n)pn ≥ b + b′

2. Multiplication:

a1p1 + · · ·+ anpn ≥ b

ca1p1 + · · ·+ canpn ≥ cb

with an arbitrary integer c > 0.

3. Division:
ca1p1 + · · ·+ canpn ≥ b

a1p1 + · · ·+ anpn ≥
⌈
b

c

⌉
with an arbitrary integer c > 0.

31

CP Refutations

I A CP refutation of a set of clauses Γ is a CP derivation of

0 ≥ 1

from the axioms corresponding to Γ.

I Easy to see: CP p-simulates Resolution.

I The converse is false.

I Frege systems p-simulate CP [Goerdt 91].

32

Simulations between important propositional proof systems

Truth table

Tree-Resolution

Resolution

Cutting PlanesAC0-Frege

Nullstellensatz

Polynomial Calculus

PCR

Frege

Extended Frege

optimal proof system?

not polynomially bounded

33

Summary

Proof Complexity

I is at the intersection of logic and complexity.

I uses concepts and intuition from algebra, geometry, . . .

Main Objective

study lengths of proofs

Connections to other areas

I Separation of complexity classes

I Analysis of SAT algorithms

I Proof search – Automatizability

I First-Order Logic – Bounded Arithmetic

I Proving lower bounds is hard!

34

Tree-like Resolution

35

Tree-like Resolution

Refutational system for unsatisfiable CNF

I Resolution rule
C ∪ {x} D ∪ {¬x}

C ∪ D
I tree-like refutations: each derived clause is used at most once

{x1, x2} {¬x1, x2}
{x2}

{¬x1,¬x2} {x1,¬x2}
{¬x2}

�

Proof size

I Number of clauses in the proof, i.e. nodes in the trees

I DPLL algorithms on unsatisfiable CNF produce tree-like
Resolution refutations.

I Tree-like Resolution is not polynomially bounded.

36

Tree-like Resolution

I A Resolution refutation of F can be depicted as a directed
graph were vertices are labeled with the clauses of the
refutation and a Resolution step

C D

E

yields edges (C ,E) and (D,E).

I As this graph is acyclic, we also refer to the general
Resolution system as dag-like Resolution.

I If the graph is a tree we call the refutation tree like.
When we allow only tree-like refutations we get the tree-like
Resolution system.

I In tree-like Resolution, each derived clause can be used at
most once as a prerequisite of the Resolution rule.

37

An Equivalent Model: Boolean Decision Trees

Definition

I A boolean decision tree for F is a binary tree where inner
nodes are labeled with variables from F and leafs are labeled
with clauses from F .

I Each path in the tree corresponds to a partial assignment
where a variable x gets value 0 or 1 according to whether the
path branches left or right at the node labeled with x .

I In the tree, each path α must lead to a clause which is
falsified by the assignment corresponding to α.

38

Boolean Decision Trees and the Search Problem

I A boolean decision tree solves the search problem for F :

I given an assignment α,
I find a clause from F falsified by α.

I Each tree-like Resolution refutation of F yields a boolean
decision tree for F and vice versa, where the size of the
Resolution proof equals the number of nodes in the decision
tree.

39

DPLL Algorithms

The DPLL algorithm was developed by Davis, Logemann and
Loveland using an earlier algorithm of Davis and Putnam.

Notation

I Let F be a formula and α a partial assignment.

I By F |α we denote the simplified formula which results from
substituting constants 0/1 for variables in the domain of α.

40

Idea of the DPLL Algorithm

I Input: Formula F as a set of clauses

I Check if F is trivially satisfiable (F is the empty clause set)
or trivially unsatisfiable (F contains the empty clause)

I Choose a variable x

I Consider F |x=0 and F |x=1

I If F is satisfiable, then at least one of the formulas F |x=0 or
F |x=1 is satisfiable.

I Alternatively: F is unsatisfiable if both formulas F |x=0 and
F |x=1 are unsatisfiable.

41

The DPLL Algorithm

1 DPLL(F , α)
2 IF F |α = 0 THEN Return unsatisfiable
3 IF F |α = 1 THEN Return α
4 choose a variable x in F |α and a ∈ {0, 1}
5 β := DPLL(F , α ∪ [x := a])
6 IF β 6= “unsatisfiable” THEN Return β
7 ELSE Return DPLL(F , α ∪ [x := (1− a)])

42

Improvements of the DPLL algorithm

Unit propagation

If a clause is a unit clause, i.e. it contains only a single unassigned
literal, this clause can only be satisfied by assigning the necessary
value to make this literal true. Thus, no choice is necessary.
In practice, this often leads to deterministic cascades of units, thus
avoiding a large part of the naive search space.

Example

I p ∨ q,¬p ∨ r ,¬r ∨ ¬s, p
I set p = 1 and obtain r ,¬r ∨ ¬s
I set r = 1 and obtain ¬s
I set s = 0 and obtain the empty clause set which is trivially

satisfiable

43

Improvements of the DPLL algorithm

Pure literal elimination
If a propositional variable occurs with only one polarity in the
formula, it is called pure. Pure literals can always be assigned in a
way that makes all clauses containing them true. Thus, these
clauses do not constrain the search anymore and can be deleted.

Example

I p ∨ q,¬p ∨ r ,¬r ∨ ¬s, p
I q occurs only positively, set q = 1 and obtain
¬p ∨ r ,¬r ∨ ¬s, p

I s occurs only negatively, set s = 0 and obtain ¬p ∨ r , p

I r occurs only positively, set r = 1 and obtain p

I p occurs only positively, set p = 1 and obtain the empty
clause set which is trivially satisfiable

44

The DPLL Algorithm

1 DPLL(F)
2 IF F is empty THEN Return satisfiable
3 IF F contains the empty clause THEN Return unsatisfiable
4 for every unit clause l in F

F := unit-propagate(l, F)
5 for every literal l that occurs pure in F

F:= pure-literal-assign(l, F)
6 choose a variable x in F and a ∈ {0, 1}
7 IF DPLL(F |x :=a) = “satisfiable” THEN Return satisfiable
8 ELSE Return DPLL(F |x :=(1−a))

45

Modern SAT solvers

build on DPLL and enhance it by further features

I backjumping: non-chronological backtracking

I clause learning: adding new clauses from conflicts

I restarts

I different heuristics for choosing the branching literals and for
learning clauses

I implementation tuning

Active community

yearly SAT competitions, affiliated with the SAT conference

46

SAT Solvers

I DPLL algorithms (combined with further techniques and
heuristics) are the basis for most modern SAT solvers.

I What is the running time of these algorithms?

I The worst-case running time of DPLL algorithms is
exponential in the length of the formula.

I Why?

I On unsatisfiable formulas, the DPLL algorithm produces a
Boolean decision tree (e.g. a tree-like Resolution refutation)
of the formula.

I We show a lower bound for tree-like Resolution.

46

SAT Solvers

I DPLL algorithms (combined with further techniques and
heuristics) are the basis for most modern SAT solvers.

I What is the running time of these algorithms?

I The worst-case running time of DPLL algorithms is
exponential in the length of the formula.

I Why?

I On unsatisfiable formulas, the DPLL algorithm produces a
Boolean decision tree (e.g. a tree-like Resolution refutation)
of the formula.

I We show a lower bound for tree-like Resolution.

46

SAT Solvers

I DPLL algorithms (combined with further techniques and
heuristics) are the basis for most modern SAT solvers.

I What is the running time of these algorithms?

I The worst-case running time of DPLL algorithms is
exponential in the length of the formula.

I Why?

I On unsatisfiable formulas, the DPLL algorithm produces a
Boolean decision tree (e.g. a tree-like Resolution refutation)
of the formula.

I We show a lower bound for tree-like Resolution.

46

SAT Solvers

I DPLL algorithms (combined with further techniques and
heuristics) are the basis for most modern SAT solvers.

I What is the running time of these algorithms?

I The worst-case running time of DPLL algorithms is
exponential in the length of the formula.

I Why?

I On unsatisfiable formulas, the DPLL algorithm produces a
Boolean decision tree (e.g. a tree-like Resolution refutation)
of the formula.

I We show a lower bound for tree-like Resolution.

46

SAT Solvers

I DPLL algorithms (combined with further techniques and
heuristics) are the basis for most modern SAT solvers.

I What is the running time of these algorithms?

I The worst-case running time of DPLL algorithms is
exponential in the length of the formula.

I Why?

I On unsatisfiable formulas, the DPLL algorithm produces a
Boolean decision tree (e.g. a tree-like Resolution refutation)
of the formula.

I We show a lower bound for tree-like Resolution.

46

SAT Solvers

I DPLL algorithms (combined with further techniques and
heuristics) are the basis for most modern SAT solvers.

I What is the running time of these algorithms?

I The worst-case running time of DPLL algorithms is
exponential in the length of the formula.

I Why?

I On unsatisfiable formulas, the DPLL algorithm produces a
Boolean decision tree (e.g. a tree-like Resolution refutation)
of the formula.

I We show a lower bound for tree-like Resolution.

47

A Game for Tree-like Resolution

Prover-Delayer games [Pudlák & Impagliazzo 00]

I Let F be a set of clauses in n variables x1, . . . , xn.

I Prover and Delayer build a (partial) assignment to x1, . . . , xn.

I The game is over as soon as the partial assignment falsifies a
clause from F .

I In each round, Prover suggests a variable xi , and Delayer
either chooses a value 0/1 for xi or leaves the choice to
Prover.

I If Prover sets the value, then Delayer gets 1 point.

I Prover can always win the game on unsatisfiable formulas, but
how many points can Delayer earn?

48

Scores and Lengths of Proofs

Idea
Good strategies for Delayer for a unsatisfiable CNF F yield lower
bounds for tree-like Resolution refutations of F .

Theorem (Pudlák & Impagliazzo 00)

Let F be an unsatisfiable formula in CNF.
If F has a tree-like Resolution refutation of size at most S,
then Delayer gets at most log S points in each Prover-Delayer
game played on F .

Corollary

If Delayer scores p points during a game on F , then tree-like
Resolution refutations of F are of size 2Ω(p).

49

The Proof

I Let F be an unsatisfiable CNF in variables x1, . . . , xn and let
Π be a tree-like Resolution refutation of F .

I Prover and Delayer play a game on F where they successively
construct an assignment α.

I Let αi be the partial assignment constructed after i rounds of
the game.

I By pi we denote the number of Delayer’s points after i rounds.

I Let Παi be the sub-tree of Π which has as its root the node
reached in Π along the path specified by αi .

Invariant during the game

|Παi | ≤
|Π|
2pi

for any round i .

50

Invariant during the game

Invariant

|Παi | ≤
|Π|
2pi

for any round i .

The invariant yields the theorem

I At the end of the game a contradiction has been reached and
the size of Πα is 1.

I By the invariant

1 ≤ |Π|
2pα

,

yielding pα ≤ log |Π|.

51

Invariant during the game

Invariant

|Παi | ≤
|Π|
2pi

for any round i .

Beginning

In the beginning of the game, Πα0 is the full tree and the Delayer
has 0 points. Therefore the invariant holds.

Inductive step

If the Delayer chooses the value, then pi+1 = pi and hence

|Παi+1 | ≤ |Παi | ≤
|Π|
2pi

=
|Π|

2pi+1
.

52

Invariant during the game

Inductive step

I If Delayer defers the choice to Prover, then Prover chooses
the value x which leads to the smaller subtree, i. e. Prover
sets x = 0 if

|Παi∪{x=0}| ≤
|Παi |

2
,

otherwise he sets x = 1.

I Thus, if Prover’s choice is x = j with j ∈ {0, 1}, then

|Παi+1 | = |Παi∪{x=j}| ≤
|Παi |

2
≤ |Π|

2 · 2pi
=
|Π|

2pi+1
=
|Π|

2pi+1
.

53

The Pigeonhole Principle

I PHPm
n with m > n uses variables xi ,j with i ∈ [m] and j ∈ [n],

I xi ,j indicates that pigeon i goes into hole j .

I PHPm
n consists of the clauses∨

j∈[n]

xi ,j for all pigeons i ∈ [m]

and
¬xi1,j ∨ ¬xi2,j

for all choices of distinct pigeons i1, i2 ∈ [m] and holes j ∈ [n].

54

Tree-like Resolution Lower Bounds for PHP

I We prove that PHPn+1
n is hard for tree-like Resolution.

I Showing the lower bound by the Prover-Delayer game requires
a suitable Delayer strategy.

Theorem
Any tree-like Resolution refutation of PHPm

n for m > n has size
2Ω(n).

54

Tree-like Resolution Lower Bounds for PHP

I We prove that PHPn+1
n is hard for tree-like Resolution.

I Showing the lower bound by the Prover-Delayer game requires
a suitable Delayer strategy.

Theorem
Any tree-like Resolution refutation of PHPm

n for m > n has size
2Ω(n).

55

Delayer’s Strategy

Let us say that a hole j is occupied if there exists i ∈ [m] such that
xi ,j was assigned to 1 in the game.

Delayer’s strategy

If Prover asks variable xi ,j , then Delayer answers 0 if hole j is
already occupied, otherwise she leaves the decision to Prover.

Observation

I The game never ends by falsifying a clause ¬xi1,j ∨ ¬xi2,j .
I Therefore the game stops at one of the big clauses

∨
j∈[n] xi ,j ,

i. e., for some i ∈ [m] all variables xi ,j with j ∈ [n] have been
assigned to 0 by either Prover or Delayer.

55

Delayer’s Strategy

Let us say that a hole j is occupied if there exists i ∈ [m] such that
xi ,j was assigned to 1 in the game.

Delayer’s strategy

If Prover asks variable xi ,j , then Delayer answers 0 if hole j is
already occupied, otherwise she leaves the decision to Prover.

Observation

I The game never ends by falsifying a clause ¬xi1,j ∨ ¬xi2,j .
I Therefore the game stops at one of the big clauses

∨
j∈[n] xi ,j ,

i. e., for some i ∈ [m] all variables xi ,j with j ∈ [n] have been
assigned to 0 by either Prover or Delayer.

55

Delayer’s Strategy

Let us say that a hole j is occupied if there exists i ∈ [m] such that
xi ,j was assigned to 1 in the game.

Delayer’s strategy

If Prover asks variable xi ,j , then Delayer answers 0 if hole j is
already occupied, otherwise she leaves the decision to Prover.

Observation

I The game never ends by falsifying a clause ¬xi1,j ∨ ¬xi2,j .
I Therefore the game stops at one of the big clauses

∨
j∈[n] xi ,j ,

i. e., for some i ∈ [m] all variables xi ,j with j ∈ [n] have been
assigned to 0 by either Prover or Delayer.

56

Number of Points for Delayer

I For some i ∈ [m], all variables xi ,j with j ∈ [n] have been
assigned to 0 by either Prover or Delayer.

I We claim that Delayer earns at least n points in the game.

I If xi ,j was set to 0 by Prover, then Delayer earns 1 point.

I If xi ,j was set to 0 by Delayer, then according to Delayer’s
strategy, there was some other pigeon i ′ 6= i sitting in hole j ,
i. e., xi ′,j was assigned to 1. This decision was made by
Prover, as Delayer never sets a variable to 1.

I In total Delayer earns a point for each variable xi ,j with j ∈ [n].

I The lower bound follows by the previous theorem.

57

The Complexity of the Pigeonhole Principle

Theorem
Any tree-like Resolution refutation of PHPm

n for m > n has size
2Ω(n).

This is not the optimal lower bound.

I Showing lower bounds by the PD-game only works
if (the graph of) every tree-like Resolution refutation contains
a balanced sub-tree as a minor.

I The height of that sub-tree gives the size lower bound.

Theorem (Iwama & Miyazaki 99)

Any tree-like Resolution refutation of PHPm
n has size 2Ω(n log n).

57

The Complexity of the Pigeonhole Principle

Theorem
Any tree-like Resolution refutation of PHPm

n for m > n has size
2Ω(n).

This is not the optimal lower bound.

I Showing lower bounds by the PD-game only works
if (the graph of) every tree-like Resolution refutation contains
a balanced sub-tree as a minor.

I The height of that sub-tree gives the size lower bound.

Theorem (Iwama & Miyazaki 99)

Any tree-like Resolution refutation of PHPm
n has size 2Ω(n log n).

58

Asymmetric Prover-Delayer Games

For a partial assignment α and a variable x , let c0(x , α) and
c1(x , α) be functions such that

1

c0(x , α)
+

1

c1(x , α)
= 1

The asymmetric (c0, c1)-game

Assume α is the partial assignment built so far in the game and
Prover queries x . Then Delayer gets

0 points if Delayer chooses the value
log c0(x , α) points if Prover sets x to 0
log c1(x , α) points if Prover sets x to 1.

59

A Generalization

I The same lower bound holds for the functional pigeonhole
principle.

I In addition to the clauses from PHPm
n we also include

¬xi ,j1 ∨ ¬xi ,j2

for all pigeons i ∈ [m] and distinct holes j1, j2 ∈ [n].

60

Tree-like vs. DAG-like Resolution

61

Tree-like Resolution

I A Resolution refutation of F can be depicted as a directed
graph were vertices are labeled with the clauses of the
refutation and a Resolution step

C D

E

yields edges (C ,E) and (D,E).

I As this graph is acyclic, we also refer to the general
Resolution system as dag-like Resolution.

I If the graph is a tree we call the refutation tree like.
When we allow only tree-like refutations we get the tree-like
Resolution system.

I In tree-like Resolution, each derived clause can be used at
most once as a prerequisite of the Resolution rule.

62

Tree-like vs. DAG-like Proof Systems

A general question

Are dag-like proof systems more powerful than tree-like systems?
Is the dag-like proof system simulated by the corresponding
tree-like proof system?

The answer depends on the proof system.

I For Resolution: Dag-like systems are more powerful
(exponential separation).

I For Frege systems: dag-like and tree-like versions are
equivalent.

63

Tree-like vs. DAG-like Proof Systems

Theorem (Kraj́ıček 95)

Tree-like Frege systems p-simulate (dag-like) Frege.

Proof.

I Let A1, . . . ,Am be a proof in (dag-like) Frege.

I Let
Bi = A1 ∧ · · · ∧ Ai

for i = 1, . . . ,m.

I We get linear-size tree-like Frege proofs of

Bi → Bi+1

for i = 1, . . . ,m − 1.

I m − 1 applications of Modus Ponens give Am.

I The proof is tree-like.

64

Tree-like vs. DAG-like Proof Systems

The result
There is a family of unsatisfiable CNF that have polynomial-size
dag-like Resolution refutations, but require exponential-size
tree-like Resolution refutations.

History

I Goerdt 92: first separation: example with poly-size dag-like
refutations, but only quasi-polynomial tree-like refutations
(modification of PHP).

I Bonet, Galesi, Esteban, Johannsen 98: first exponential
separation

I Ben-Sasson, Impagliazzo, Wigderson 04: simplified and
improved separation by using games

65

Separation of Tree-like and DAG-like Resolution

I separating formulas: pebbling formulas

I derived from a pebbling game

I proof method: Prover-Delayer games

I we follow Ben-Sasson, Impagliazzo, Wigderson 04

66

Pebbling Games

I pebbling games are played on DAGs

I source nodes: in-degree 0

I target nodes: out-degree 0

I game: place pebbles on nodes according to rules

I aim: place a pebble at some target node

Rules

1. Source nodes can be pebbled freely.

2. All other nodes can be pebbled if all their parents are pebbled.

3. Pebbles can be removed at any time.

67

Pebbling Number

Complexity measure

Maximal number of pebbles placed simultaneously on the graph.

Pebbling number of a strategy to pebble a graph

I Let S be a strategy to pebble the dag G .

I P(G , S) = max # of pebbles placed simultaneously on G
while following strategy S

Pebbling number of G

P(G) = min{P(G ,S) | S is a strategy to pebble G }

68

Graphs with High Pebbling Numbers

Theorem (Celoni, Paul, Tarjan 77)

There exist graphs G with n vertices such that

P(G) = Ω

(
n

log n

)
.

I The proof is constructive.

I Example: pyramidal graphs

69

Pebbling Formulas

DAG G = (V ,E)

Propositional variables

I xv for all v ∈ V

I Meaning: xv = 1 if v has been pebbled

Clauses in Peb0(G)

xv for any source node v
(
∧

u∈N−(v) xu)→ xv for all nodes v

where N−(v) are the parents of v
¬xv for any target node v

70

Complexity of Peb0

I Peb0(G) is unsatisfiable.

I But: They have polynomial-size tree-like Resolution
refutations.

I Idea: Start from the bottom and explore the graph in a
breadth-first fashion.

71

Adding Complexity to Peb0(G)

Idea

I Use pebbles of two different colors: black and white

I Consider a node pebbled if it has a black or white pebble on it

The new principle

I Source nodes can always be pebbled black or white.

I For an internal node v , if all its parents are pebbled black or
white, then v can be pebbled either black or white.

I No target node is pebbled black or white.

72

The New Pebbling Formulas

DAG G = (V ,E) with in-degree ≤ 2

Propositional variables

I xv ,c for all v ∈ V and c ∈ {B,W }
I Meaning: xv ,B = 1 if v has been pebbled black

xv ,W = 1 if v has been pebbled white

Clauses in Peb(G)

xv ,B ∨ xv ,W for any source node v
xu,a ∧ xw ,b → xv ,B ∨ xv ,W for all nodes v ∈ V , a, b ∈ {B,W }

where u and w are the parents of v
¬xv ,B ,¬xv ,W for any target node v

73

Complexity of Peb(G)

I Peb(G) is unsatisfiable.

I Proof strategy as for Peb0 does not work anymore.

I But: They have polynomial-size dag-like Resolution
refutations.

I Our aim: Show a lower bound for tree-like Resolution

74

The Pebbling Formulas in Tree-like Resolution

Main Theorem
Let G be a DAG with in-degree ≤ 2. Then Delayer has a strategy
to win P(G)− 3 points in any PD-game played on Peb(G).

Theorem (Celoni, Paul, Tarjan 77)

There exist graphs G with n vertices such that

P(G) = Ω

(
n

log n

)
.

Corollary

There exist graphs G with n vertices for which Peb(G) requires

tree-like Resolution refutations of size 2
Ω
(

n
log n

)
.

75

Proof of Main Theorem

Let G be the DAG with source nodes S and target nodes T .

Strategy of Delayer

I Keep two sets S ′ and T ′.

I In the beginning, set S ′ = S and T ′ = T .

I Denote by P(G ,S ′,T ′) the pebbling number of G with source
nodes S ′ and target nodes T ′.

I If Prover asks variable xv ,· belonging to node v , then Delayer
reacts as follows

1. If v ∈ S ′, then answer 1.
2. If v ∈ T ′, then answer 0.
3. If v 6∈ S ′ ∪ T ′ and P(G , S ′,T ′ ∪ {v}) = P(G , S ′,T ′),

then answer 0 and set T ′ = T ′ ∪ {v}.
4. If v 6∈ S ′ ∪ T ′ and P(G , S ′,T ′ ∪ {v}) < P(G , S ′,T ′),

then leave decision to Prover and set S ′ = S ′ ∪ {v}.

76

Intuition for the Strategy

If Prover asks variable xv ,· belonging to node v , then Delayer
reacts as follows

1. If v ∈ S ′, then answer 1.
Source nodes are always pebbled.

2. If v ∈ T ′, then answer 0.
Target nodes are never pebbled.

3. If v 6∈ S ′ ∪ T ′ and P(G ,S ′,T ′ ∪ {v}) = P(G ,S ′,T ′), then
answer 0 and set T ′ = T ′ ∪ {v}.
If pebbling number remains the same, v is added to T ′ and is
not pebbled.

4. If v 6∈ S ′ ∪ T ′ and P(G ,S ′,T ′ ∪ {v}) < P(G ,S ′,T ′), then
leave decision to Prover and set S ′ = S ′ ∪ {v}.
If pebbling number decreases, v is added to S ′ and Prover has
to pay. But he can only choose the color of v .

77

How many points does Delayer earn?

Intuition

I Whenever the pebbling number decreases, Delayer gets a
point.

I Hence Delayer scores according to the pebbling number of G .

Lemma
When the game terminates, P(G , S ′,T ′) ≤ 3.

Lemma
For any node v and sets S ,T

P(G , S ,T) ≤ max{P(G ,S ,T ∪ {v}),P(G ,S ∪ {v},T) + 1}.

78

How many points does Delayer earn?

Lemma
When the game terminates, P(G , S ′,T ′) ≤ 3.

Lemma
For any node v and sets S ,T

P(G , S ,T) ≤ max{P(G ,S ,T ∪ {v}),P(G ,S ∪ {v},T) + 1}.

Lemma
After any round, if Delayer has earned p points, then
P(G , S ′,T ′) ≥ P(G ,S ,T)− p.

Corollary

Delayer scores at least P(G ,S ,T)− 3 points.

79

The Result

Theorem
There exists an infinite family of explicitly constructible formulas
θn s.t.

1. |θn| = O(n);

2. θn require tree-like Resolution refutations of size 2
Ω
(

n
log n

)
;

3. θn have Resolution refutations of size O(n).

80

Linear Resolution Refutations of Pebbling Formulas

I Fix a topological sort of G .

I In order of this sort we inductively derive xv ,B ∨ xv ,W .

I If v has no predecessors, then v ∈ S and xv ,B ∨ xv ,W is an
axiom.

I If v has 2 predecessors u,w , then we have inductively derived
xu,B ∨ xu,W and xw ,B ∨ xw ,W .

I Together with the four pebbling axioms for v , these formulas
imply xv ,B ∨ xv ,W .

I By completeness of Resolution, we have a Resolution
derivation of xv ,B ∨ xv ,W from these clauses.

I The derivation is of constant size as only it only contains 6
variables.

I Thus we derive xt,B ∨ xt,W for some target t ∈ T in linear size.

I Using the target axioms, we get a contradiction.

81

DAG-like Resolution

82

Boolean Circuits

Definition
A Boolean circuit is a directed acyclic graph where

I nodes with in-degree 0 are labeled with variables x1, x2, . . . or
constants 0/1;

I nodes with in-degree ≥ 1 are gates labeled with ¬, ∧, or ∨;

I nodes with out-degree 0 are called output gates.

83

Non-uniform Complexity Classes

Functions computed by Boolean circuits

I Let Cn be a Boolean circuit in n input variables x1, . . . , xn and
one output gate.

I Then Cn computes a Boolean function {0, 1}n 7→ {0, 1}.
I The family (Cn)n≥1 computes a function {0, 1}∗ 7→ {0, 1}.
I Non-uniformity: for each input length we use a different

algorithm.

Definition
The class P/poly contains all languages L for which the
characteristic function is computable by a family of Boolean
circuits.

84

Lower Bounds

Lower bounds are hard
We do not know any specific function which cannot be computed
by linear size Boolean circuits.

A restricted model

I A monotone Boolean circuit is a circuit without ¬ gates.

I In this model we know exponential lower bounds
[Alon & Boppana 87].

84

Lower Bounds

Lower bounds are hard
We do not know any specific function which cannot be computed
by linear size Boolean circuits.

A restricted model

I A monotone Boolean circuit is a circuit without ¬ gates.

I In this model we know exponential lower bounds
[Alon & Boppana 87].

84

Lower Bounds

Lower bounds are hard
We do not know any specific function which cannot be computed
by linear size Boolean circuits.

A restricted model

I A monotone Boolean circuit is a circuit without ¬ gates.

I In this model we know exponential lower bounds
[Alon & Boppana 87].

85

Clique-Colour Formulas

Clique-Colour Formulas

I Idea: a graph with a k + 1-clique is not k-colourable.

I Let Cliquek+1
n (p̄, r̄) be a propositional formula expressing that

the graph of size n encoded in the variables p̄ contains a
clique of size k + 1.

I Similarly, Colourkn(p̄, s̄) expresses that the graph specified by
p̄ is k-colourable.

I Cliquek+1
n (p̄, r̄)→ ¬Colourkn(p̄, s̄) are propositional

tautologies.

86

A Lower Bound for Monotone Circuits

Definition
A Boolean circuit C (p̄) interpolates the Clique-Colour formulas if

I the graph p̄ contains a k + 1-clique ⇒ C (p̄) = 1;

I the graph p̄ is k-colourable ⇒ C (p̄) = 0.

Theorem (Alon, Boppana 87)

For k =
√
n, the Clique-Colour formulas require monotone

interpolating circuits of size 2Ω(n
1
4).

86

A Lower Bound for Monotone Circuits

Definition
A Boolean circuit C (p̄) interpolates the Clique-Colour formulas if

I the graph p̄ contains a k + 1-clique ⇒ C (p̄) = 1;

I the graph p̄ is k-colourable ⇒ C (p̄) = 0.

Theorem (Alon, Boppana 87)

For k =
√
n, the Clique-Colour formulas require monotone

interpolating circuits of size 2Ω(n
1
4).

87

Craig’s Interpolation Theorem

Theorem (Craig’s Interpolation Theorem)

Let ϕ(x̄ , ȳ) and ψ(x̄ , z̄) be propositional formulas with all variables
displayed. Let ȳ and z̄ be distinct tuples of variables such that x̄
are the common variables of ϕ and ψ. If

ϕ(x̄ , ȳ)→ ψ(x̄ , z̄)

is a tautology, then there exists a propositional formula θ(x̄) using
only the common variables of ϕ and ψ such that

ϕ(x̄ , ȳ)→ θ(x̄) and θ(x̄)→ ψ(x̄ , z̄)

are tautologies.

88

A Key Technique – Feasible Interpolation

Definition (Kraj́ıček 97)

A proof system P has feasible interpolation if there exists a
polynomial time procedure that takes as input an implication
ϕ(x̄ , ȳ)→ ψ(x̄ , z̄) and a P-proof π of ϕ(x̄ , ȳ)→ ψ(x̄ , z̄) and
outputs a Boolean circuit C (x̄) such that C computes an
interpolant of ϕ and ψ.

89

Conditional Lower Bounds

Theorem
Let P be a proof system with feasible interpolation.
If NP ∩ coNP 6⊆ P/poly, then P is not polynomially bounded.

Proof idea

I Suppose we know that a sequence of formulas ϕn
0 ∨ ϕn

1 cannot
be interpolated by polynomial-size circuits as above.

I Then ϕn
0 ∨ ϕn

1 do not have polynomial-size proofs in any proof
system which has feasible interpolation.

I Such formulas ϕn
0 ∨ ϕn

1 are easy to construct under suitable
assumptions.

I For instance, the formulas could express that factoring
integers is not possible in polynomial time (which implies
NP ∩ coNP 6⊆ P/poly).

90

Unconditional Lower Bounds

Theorem (Kraj́ıček 97)

Resolution has the monotone feasible interpolation property, i.e.
there exist monotone interpolating circuits.

Theorem (Alon, Boppana 87)

For k =
√
n, the Clique-Colour formulas require monotone

interpolating circuits of size 2Ω(n
1
4).

Theorem
For k =

√
n, the clause sets expressing the negation of the

Clique-Colour formulas require Resolution refutations of size

2Ω(n
1
4).

91

Lower Bounds for Cutting Planes

Theorem (Pudlák 97)

Cutting Planes has the monotone feasible interpolation property.

Corollary

For k =
√
n, the clause sets expressing the negation of the

Clique-Colour formulas require Cutting Planes refutations of size

2Ω(n
1
4).

92

Feasible Interpolation for Stronger Systems?

Theorem (Kraj́ıček & Pudlák 98)

Extended Frege systems do not have feasible interpolation unless
RSA is insecure.

Theorem (Bonet, Pitassi, Raz 00)

Frege systems do not have feasible interpolation unless Blum
integers can be factored in polynomial time
(a Blum integer is the product of two primes which are both
congruent 3 modulo 4).

Theorem (Bonet, Domingo, Gavaldà, Maciel, Pitassi 04)

Bounded-depth Frege systems do not have feasible interpolation
under cryptographic assumptions.

93

Proof complexity of modal and
intuitionistic logics

94

Proof Complexity of Non-classical Logics

In the last decade
Intense research on complexity of proofs in non-classical logics

Why non-classical logics?

I Non-classical logics such as modal logics, tree logics, or
non-monotonic logics have numerous applications, e. g.
verification, model checking, expert systems, or modeling
common sense reasoning.

I Yields better understanding of propositional proofs – we see
new phenomena which do not appear in classical logic.

I Separation of complexity classes.

95

Separation of Complexity Classes

I Non-classical logics are often more expressive than
propositional logic.

I They are associated with large complexity classes.

I Satisfiability of the modal logic K is PSPACE-complete
[Ladner 77].

I As in the Cook-Reckhow programme, proving lower bounds to
the lengths of proofs in non-classical logics aims to separate
NP from PSPACE.

I Intuitively, lower bounds to the lengths of proofs in
non-classical logic should be easier to obtain
(NP 6= coNP =⇒ NP 6= PSPACE)

I In contrast to classical logic, we have exponential lower
bounds for modal and intuitionistic Frege systems [Hrubeš 07,
Jěrábek 09]

96

A Classical Frege System

Axioms p1 → (p2 → p1)
(p1 → p2)→ (p1 → (p2 → p3))→ (p1 → p3)
p1 → p1 ∨ p2

p2 → p1 ∨ p2

(p1 → p3)→ (p2 → p3)→ (p1 ∨ p2 → p3)
(p1 → p2)→ (p1 → ¬p2)→ ¬p1

¬¬p1 → p1

p1 ∧ p2 → p1

p1 ∧ p2 → p2

p1 → p2 → p1 ∧ p2

Modus Ponens
p1 p1 → p2

p2

97

Frege Systems for Modal Logics

Modal language

In addition to the propositional connectives the modal language
contains the unary connective �.

New axioms and rules

I Axiom of distributivity �(p → q)→ (�p → �q)

I Rule of necessitation
p

�p

Modal logics

The modal logic K is defined as the set of all modal formulas
derivable in this Frege system.

98

Further Modal Logics

Other modal logics can be obtained by adding further axioms:

modal logic axioms

K4 K + �p → ��p
KB K + p → �¬�¬p
GL K + �(�p → p)→ �p
S4 K4 + �p → p
S4Grz S4 + �(�(p → �p)→ p)→ �p

99

Frege Systems for Intuitionistic Logic

While modal logics extend the classical propositional calculus,
intuitionistic logics are restrictions thereof.

Axioms p1 → (p2 → p1)
(p1 → p2)→ (p1 → (p2 → p3))→ (p1 → p3)
p1 → p1 ∨ p2

p2 → p1 ∨ p2

(p1 → p3)→ (p2 → p3)→ (p1 ∨ p2 → p3)
⊥ → p1

p1 ∧ p2 → p1

p1 ∧ p2 → p2

p1 → p2 → p1 ∧ p2

Modus Ponens
p1 p1 → p2

p2

100

Lower Bounds for Clique-Colour Tautologies

I In order to prove lower bounds for the Clique-Colour
tautologies we need a monotone feasible interpolation
theorem where the interpolating circuits are monotone.

I Such a result is known for Resolution and Cutting Planes, but
does not hold for Frege systems under reasonable assumptions
(factoring integers is not possible in polynomial time)
[Kraj́ıček, Pudlák 98, Beame, Pitassi, Raz 00]

I Therefore we cannot expect a full version of monotone
feasible interpolation for modal extensions of classical Frege.

101

The Idea of the Lower Bound for K -Frege

Hrubeš modified the Clique-Colouring formulas in a clever way by
introducing � in appropriate places:

Cliquek+1
n (�p̄, r̄)→ �(¬Colourkn(p̄, s̄)) (2)

with k =
√
n. Hrubeš showed

I the formulas (2) are modal tautologies;

I if the formulas (2) are provable in K with m(n) distributivity
axioms, then the original Clique-Colour formulas can be
interpolated by monotone circuits of size O(m(n)2).

Theorem (Hrubeš 09)

The formulas (2) are K-tautologies. Every K-Frege proof of the

formulas (2) uses 2n
Ω(1)

steps.

102

A Version of Monotone Interpolation for K

Theorem
Let π be a proof of the formula

ϕ→ �ψ

in the Frege system for K which uses n modal rules.
Let �A1, . . . ,�Ak be the immediate modal subformulas of ϕ.
Then there exists a monotone circuit C of size O(n2) in k variables
such that

I ϕ(�A1, . . . ,�Ak , s̄)→ C (�A1, . . . ,�Ak) and

I C (�A1, . . . ,�Ak)→ �ψ
are K-tautologies.

103

The Lower Bound for K

Theorem (Hrubeš 09)

Every K-Frege proof of the formulas

Clique
√
n+1

n (�p̄, r̄)→ �(¬Colour
√
n

n (p̄, s̄))

uses 2n
Ω(1)

steps.

104

Lower Bounds for Intuitionistic Logic

Along the same lines, Hrubeš proved lower bounds for intuitionistic
Frege systems. For this he modified the Clique-Colour formulas to
the intuitionistic version

n∧
i=1

(pi ∨ qi)→
(
¬Colourkn(p̄, s̄) ∨ ¬Cliquek+1

n (¬q̄, r̄)
)

(3)

where again k =
√
n.

Theorem (Hrubeš 09)

The formulas (3) are intuitionistic tautologies and require

intuitionistic Frege proofs with 2n
Ω(1)

steps.

The lower bounds were extended by Jěrábek (2009) to all modal
and superintuitionistic logics with infinite branching.

104

Lower Bounds for Intuitionistic Logic

Along the same lines, Hrubeš proved lower bounds for intuitionistic
Frege systems. For this he modified the Clique-Colour formulas to
the intuitionistic version

n∧
i=1

(pi ∨ qi)→
(
¬Colourkn(p̄, s̄) ∨ ¬Cliquek+1

n (¬q̄, r̄)
)

(3)

where again k =
√
n.

Theorem (Hrubeš 09)

The formulas (3) are intuitionistic tautologies and require

intuitionistic Frege proofs with 2n
Ω(1)

steps.

The lower bounds were extended by Jěrábek (2009) to all modal
and superintuitionistic logics with infinite branching.

105

QBF proof complexity

106

Quantified Boolean Formulas (QBF)

I QBFs are propositional formulas with boolean quantifiers
ranging over 0,1.

I Deciding QBF is PSPACE complete.

106

Quantified Boolean Formulas (QBF)

I QBFs are propositional formulas with boolean quantifiers
ranging over 0,1.

I Deciding QBF is PSPACE complete.

106

Quantified Boolean Formulas (QBF)

I QBFs are propositional formulas with boolean quantifiers
ranging over 0,1.

I Deciding QBF is PSPACE complete.

106

Quantified Boolean Formulas (QBF)

I QBFs are propositional formulas with boolean quantifiers
ranging over 0,1.

I Deciding QBF is PSPACE complete.

P

ΣP
1 = NP ΠP

1 = co-NP

ΣP
2 ΠP

2

ΣP
3 ΠP

3

106

Quantified Boolean Formulas (QBF)

I QBFs are propositional formulas with boolean quantifiers
ranging over 0,1.

I Deciding QBF is PSPACE complete.

P

ΣP
1 = NP ΠP

1 = co-NP

ΣP
2 ΠP

2

ΣP
3 ΠP

3

∃X . φ ∀X . φ

∃Y ∀X . φ ∀Y ∃X . φ

∃Z∀Y ∃X . φ ∀Z∃Y ∀X . φ

107

Quantified Boolean Formulas (QBF)

What’s different in QBF from propositional proof complexity?

I Quantification!

I Boolean quantifiers ranging over 0/1

Why QBF proof complexity?

I driven by QBF solving

I shows different effects from propositional proof complexity

I connects to circuit complexity, bounded arithmetic, . . .

107

Quantified Boolean Formulas (QBF)

What’s different in QBF from propositional proof complexity?

I Quantification!

I Boolean quantifiers ranging over 0/1

Why QBF proof complexity?

I driven by QBF solving

I shows different effects from propositional proof complexity

I connects to circuit complexity, bounded arithmetic, . . .

107

Quantified Boolean Formulas (QBF)

What’s different in QBF from propositional proof complexity?

I Quantification!

I Boolean quantifiers ranging over 0/1

Why QBF proof complexity?

I driven by QBF solving

I shows different effects from propositional proof complexity

I connects to circuit complexity, bounded arithmetic, . . .

107

Quantified Boolean Formulas (QBF)

What’s different in QBF from propositional proof complexity?

I Quantification!

I Boolean quantifiers ranging over 0/1

Why QBF proof complexity?

I driven by QBF solving

I shows different effects from propositional proof complexity

I connects to circuit complexity, bounded arithmetic, . . .

108

QBF proof complexity vs solving

Impact for proof complexity

different resolution systems defined that capture ideas in solving:

I CDCL

I expansion of universal variables

I dependency schemes

Impact for solving

I proves soundness of new algorithmic approaches

I upper/lower bounds suggest new directions in solving

109

Interesting test case for algorithmic progress

SAT revolution

SAT NP main breakthrough late 90s
QBF PSPACE reaching industrial applicability now
DQBF EXPTIME very early stage

110

QBF proof systems

I There are two main paradigms in QBF solving: Expansion
based solving and CDCL solving.

I Various QBF proof systems model these different solvers.

Tree-Q-Res

Q-Res∀Exp+Res

LD-Q-Res QU-Res

LQU+-Res

IR-calc

IRM-calc

expansion solving

CDCL solving

I Various sequent calculi exist as well.
[Kraj́ıček & Pudlák 90], [Cook & Morioka 05], [Egly 12]

111

QBF proof systems at a glance

Tree-Q-Res

Q-Res∀Exp+Res

LD-Q-Res QU-Res

LQU+-Res

IR-calc

IRM-calc

expansion solving

CDCL solving

Q-Resolution (Q-Res)

I QBF analogue of Resolution (?)

I introduced by [Kleine Büning, Karpinski, Flögel 95]

I Tree-Q-Res: tree-like version

112

Q-resolution

Q-resolution = resolution rule +∀-reduction

Resolution

l ∨ C1 ¬l ∨ C2 (l existentially quantified)
C1 ∨ C2

Tautologous resolvents are generally unsound and not allowed.

∀-reduction

C ∨ k (k ∈ C is universal with innermost quant. level in C)
C

113

Q-resolution Example

∀u∃e. (u ∨ ¬e) ∧ (u ∨ e)

u ∨ eu ∨ ¬e

113

Q-resolution Example

∀u∃e. (u ∨ ¬e) ∧ (u ∨ e)

u ∨ eu ∨ ¬e
e

u

113

Q-resolution Example

∀u∃e. (u ∨ ¬e) ∧ (u ∨ e)

u ∨ eu ∨ ¬e
e

u

⊥
∀u

114

Further systems at a glance

Tree-Q-Res

Q-Res∀Exp+Res

LD-Q-Res QU-Res

LQU+-Res

IR-calc

IRM-calc

expansion solving

CDCL solving

Long-distance resolution (LD-Q-Res)

I allows certain resolution steps forbidden in Q-Res

I merges universal literals u and ¬u in a clause to u∗

I introduced by [Zhang & Malik 02] [Balabanov & Jiang 12]

115

QBF proof systems at a glance

Tree-Q-Res

Q-Res∀Exp+Res

LD-Q-Res QU-Res

LQU+-Res

IR-calc

IRM-calc

expansion solving

CDCL solving

Universal resolution (QU-Res)

I allows resolution over universal pivots

I introduced by [Van Gelder 12]

116

QBF proof systems at a glance

Tree-Q-Res

Q-Res∀Exp+Res

LD-Q-Res QU-Res

LQU+-Res

IR-calc

IRM-calc

expansion solving

CDCL solving

LQU+-Res

I combines long-distance and universal resolution

I introduced by [Balabanov, Widl, Jiang 14]

117

Expansion based calculi

Tree-Q-Res

Q-Res∀Exp+Res

LD-Q-Res QU-Res

LQU+-Res

IR-calc

IRM-calc

expansion solving

CDCL solving

∀Exp+Res

I expands universal variables (for one or both values 0/1)

I introduced by [Janota & Marques-Silva 13]

118

∀Exp+Res

Annotated literals
couple together existential and universal literals: lα, where

I l is an existential literal.

I α is a partial assignment to universal literals.

Rules of ∀Exp+Res

C in matrix (Axiom){
l [τ] | l ∈ C , l is existential

}
- τ is a complete assignment to universal variables

s.t. there is no universal literal u ∈ C with τ(u) = 1.

- [τ] takes only the part of τ that is < l .

xτ ∨ C1 ¬xτ ∨ C2 (Resolution)
C1 ∪C2

119

Example proof in ∀Exp+Res

∃e1∀u∃e2

e1 ∨ u ∨ e2 ¬e1 ∨ ¬u ∨ e2

e1 ∨ e
0/u
2 ¬e1 ∨ e

1/u
2

0/u 1/u

¬e2

¬e0/u
2 ¬e1/u

2

0/u 1/u

119

Example proof in ∀Exp+Res

∃e1∀u∃e2

e1 ∨ u ∨ e2 ¬e1 ∨ ¬u ∨ e2

e1 ∨ e
0/u
2 ¬e1 ∨ e

1/u
2

0/u 1/u

¬e2

¬e0/u
2 ¬e1/u

2

0/u 1/u

e
0/u
2 ∨ e

1/u
2

119

Example proof in ∀Exp+Res

∃e1∀u∃e2

e1 ∨ u ∨ e2 ¬e1 ∨ ¬u ∨ e2

e1 ∨ e
0/u
2 ¬e1 ∨ e

1/u
2

0/u 1/u

¬e2

¬e0/u
2 ¬e1/u

2

0/u 1/u

e
0/u
2 ∨ e

1/u
2

e
1/u
2

⊥

120

Further expansion-based systems at a glance

Tree-Q-Res

Q-Res∀Exp+Res

LD-Q-Res QU-Res

LQU+-Res

IR-calc

IRM-calc

expansion solving

CDCL solving

IR-calc

I Instantiation + Resolution

I ‘delayed’ expansion

I introduced by [B., Chew, Janota 14]

121

Further expansion-based systems at a glance

Tree-Q-Res

Q-Res∀Exp+Res

LD-Q-Res QU-Res

LQU+-Res

IR-calc

IRM-calc

expansion solving

CDCL solving

IRM-calc

I Instantiation + Resolution + Merging

I allows merged universal literals u∗

I introduced by [B., Chew, Janota 14]

122

From propositional proof systems to QBF

A general ∀red rule

I Fix a prenex QBF Φ.

I Let F (x̄ , u) be a propositional line in a refutation of Φ,
where u is universal with innermost quant. level in F

F (x̄ , u)

F (x̄ , 0)

F (x̄ , u)

F (x̄ , 1)

New QBF proof systems

For any ‘natural’ line-based propositional proof system P define
the QBF proof system P + ∀red by adding ∀red to the rules of P.

Proposition (B., Bonacina & Chew 16)

P + ∀red is sound and complete for QBF.

123

Genuine QBF lower bounds

Propositional hardness transfers to QBF

I If φn(~x) is hard for P, then ∃~x φn(~x) is hard for P + ∀red.

I propositional hardness: not the phenomenon we want to study.

Genuine QBF hardness

I in P + ∀red: just count the number of ∀red steps

I can be modelled precisely by allowing NP oracles in QBF
proofs [Chen 16; B., Hinde & Pich 17]

124

QBF systems with only genuine lower bounds

A relaxation of a quantifier prefix

I can turn ∀ into ∃
I move ∀ to the left

The QBF system P +∀red Σp
k has the rules:

I of the propositional system P

I ∀-reduction

I
C1 . . . Cl

D
for any l ,

where the quantifier prefix Π is relaxed to a Σb
k -prefix Π′

such that Π′.
∧l

i=1 Ci |= Π′.D ∧
∧l

i=1 Ci

125

Genuine hardness results

Theorem [B., Hinde, Pich 17]

I For every odd k there exist QBFs that are easy in Res +∀red
Σp

k , but require exponential-size proofs in Res + ∀red Σp
k−1 .

I There exist QBFs that require exponential-size proofs in
Res + ∀red Σp

k for all k .

Theorem [B., Blinkhorn, Hinde 18]

Random QBFs (in a suitable random model) require
exponential-size proofs in Res +∀red NP, CP + ∀red NP and
PC + ∀red NP.

Theorem [B., Bonacina, Chew 16]

There exist QBFs that require exponential-size proofs in
AC0[p]-Frege +∀red NP.

126

Characterisations

Theorem [B. & Pich 16]

I super-polynomial lower bounds for Frege +∀red NP iff
PSPACE 6⊆ NC1

I super-polynomial lower bounds for EF +∀red NP iff
PSPACE 6⊆ P/poly

127

The current research frontier

Resolution

AC0-Frege

AC0[p]-Frege

TC0-Frege

Frege

Cutting Planes

Frege systems use:

I axiom schemas

I rules, e.g. modus ponens A A→B
B

127

The current research frontier

Resolution

AC0-Frege

AC0[p]-Frege

TC0-Frege

Frege

formulas of constant depth

constant depth with mod p gates

constant depth with counting gates

Frege systems use:

I axiom schemas

I rules, e.g. modus ponens A A→B
B

127

The current research frontier

Resolution

AC0-Frege

AC0[p]-Frege

TC0-Frege

Frege

exp. lower bounds (propositional)

[Ajtai 88] [Pitassi, Beame & Impagliazzo 93]

[Kraj́ıček, Pudlák & Woods 95]

[Haken 85]

Frege systems use:

I axiom schemas

I rules, e.g. modus ponens A A→B
B

127

The current research frontier

Resolution

AC0-Frege

AC0[p]-Frege

TC0-Frege

Frege

exp. lower bounds (propositional)

[Ajtai 88] [Pitassi, Beame & Impagliazzo 93]

[Kraj́ıček, Pudlák & Woods 95]

[Haken 85]

exp. lower bounds (QBF)

[B., Bonacina & Chew (ITCS’16)]

Frege systems use:

I axiom schemas

I rules, e.g. modus ponens A A→B
B

128

Semantics via a two-player game

I We consider QBFs in prenex form

Example: ∀y1y2∃x1x2. (¬y1 ∨ x1) ∧ (y2 ∨ ¬x2)

I Two-player game between ∃ and ∀.

I ∃ wins a game if the matrix becomes true.

I ∀ wins a game if the matrix becomes false.

I A QBF is true iff there exists a winning strategy for ∃.

I A QBF is false iff there exists a winning strategy for ∀.

129

Response map

A response map R for a proof system P +∀red is a function

R : (L, α) 7→ β where

I L is a line in P +∀red

I α is a total assignment to the existential variables of L

I β is a total assignment to the universal variables in L

such that if L|α is not a tautology, then L|α∪β is false.

Example: Resolution

I lines are clauses, e.g. L = x1 ∨ ¬x2︸ ︷︷ ︸
existential

∨ u1 ∨ u2︸ ︷︷ ︸
universal

I map (L, α) to (u1/0, u2/0).

I Response is independent of α.

130

Strategy extraction algorithm

Round-based strategy extraction

I Fix a response map R for P + ∀red.

I Let π a P +∀red refutation for Φ = ∃E1∀U1 · · · ∃En∀Un φ.

I ∃ player chooses an assignment α1 for E1.

I ∀ player searches for the first line L in π which only contains
variables from E1 ∪ U1 and is not a tautology under α1.

I ∀ responds by R(L, α1).

I iteratively continue with E2, U2 . . .

131

The cost of strategies

Definition

I Fix a winning strategy S for a QBF Φ and consider the size of
its range (in each universal block).

I The cost of Φ is the minimum of this range size over all
winning strategies.

Intuition
Strategies that require many responses of the universal player (in
one block) are costly.

132

Example

Equality formulas

∃x1 · · · xn∀u1 · · · un∃t1 · · · tn(
n∧

i=1

(xi ∨ ui ∨ ¬ti) ∧ (¬xi ∨ ¬ui ∨ ¬ti)

)
∧

(
n∨

i=1

ti

)
.

I The only winning strategy for these formulas is ui = xi for
i = 1, . . . , n.

I The cost (=size of the range of the winning strategy) is 2n.

133

Capacity

Capacity of lines and proofs

I Let L be a line in P + ∀red.

I The capacity of a line L is the size of the minimal range of
R(L, .) over all response maps R for P +∀red.

I The capacity of a P + ∀red proof is the maximum of the
capacity of its lines.

Example

I Clauses have capacity 1 (require only one response).

I Resolution proofs have always capacity 1.

134

The central connection

The Size-Cost-Capacity Theorem [B., Blinkhorn, Hinde 18]

For each P + ∀red NP proof π of a QBF φ we have

|π| ≥ cost(φ)

capacity(π)
.

Example: Equality formulas in resolution

∃x1 · · · xn∀u1 · · · un∃t1 · · · tn
[
∧n

i=1(xi ∨ ui ∨ ¬ti) ∧ (¬xi ∨ ¬ui ∨ ¬ti)] ∧
∨n

i=1 ti
I cost = 2n

I capacity = 1

I ⇒ proofs in Res + ∀red are of size 2n.

134

The central connection

The Size-Cost-Capacity Theorem [B., Blinkhorn, Hinde 18]

For each P + ∀red NP proof π of a QBF φ we have

|π| ≥ cost(φ)

capacity(π)
.

Intuition on the proof

I cost counts the number of necessary responses of universal
winning strategies

I these can be extracted from the proof (by the round-based
strategy extraction algorithm)

I capacity gives an upper bound on how many responses can be
extracted per line

134

The central connection

The Size-Cost-Capacity Theorem [B., Blinkhorn, Hinde 18]

For each P + ∀red NP proof π of a QBF φ we have

|π| ≥ cost(φ)

capacity(π)
.

Remarks

I lower bound technique with semantic flavour

I works for all base systems P (under very mild assumptions)

I always produces ‘genuine’ QBF lower bounds on the number
of ∀-reduction steps

135

In other QBF systems

Cutting planes

I capacity of lines is still 1

I the best response for a line

a1x1 + . . . amxm︸ ︷︷ ︸
existential

+ b1u1 + . . . bnun︸ ︷︷ ︸
universal

≥ C

is to play ui = 0 if bi > 0 and 1 otherwise

Corollaries

I For each CP + ∀red proof π of a QBF φ we have
|π| ≥ cost(φ).

I Equality formulas require CP + ∀red proofs of size 2n.

136

Polynomial Calculus (with Resolution)

Capacity is non-constant

I consider x(1− u) + (1− x)u = 0

I winning strategy is u = 1− x .

I requires 2 responses, hence capacity of the line is 2.

Lemma
If π is a PC +∀red proof where each line contains at most M
monomials, then capacity(π) ≤ M.

Corollary

For each PC +∀red proof π of a QBF φ we have |π| ≥
√
cost(φ).

137

Frege

Capacity can be exponential

I Consider
∨n

i=1 [(xi ∨ ui) ∧ (¬xi ∨ ¬ui)].

I The unique winning response is to play ui = xi for all i ∈ [n].

I Capacity of this line is 2n.

Proposition

Equality formulas are easy in Frege + ∀red.

138

Application: Hard random formulas in QBF

Random QBFs

I Pick clauses C 1
i , . . . ,C

cn
i uniformly at random

I for each C j
i choose 1 literal from the set Xi = {x1

i , . . . , x
m
i }

and 2 literals from Yi = {y1
i , . . . , y

n
i }.

I Define Q(n,m, c) as

∃Y1 . . .Yn∀X1 . . .Xn∃t1 . . . tn.
n∧

i=1

cn∧
j=1

(
¬ti ∨ C j

i

)
∧

n∨
i=1

ti

Remarks

I All clauses contain existential and universal literals.

I Rightmost quantifier block is existential.

139

Hardness of the random QBFs

Q(n,m, c) = ∃Y1 . . .Yn∀X1 . . .Xn∃t1 . . . tn.
n∧

i=1

cn∧
j=1

(
¬ti ∨ C j

i

)
∧

n∨
i=1

ti

Theorem
Let 1 < c < 2 and m ≤ (1− ε) log2(n) for some ε > 0.
With high probability, Q(n,m, c) is false and requires size 2Ω(nε)

in QU-Resolution, CP + ∀red, and PCR + ∀red.

Proof idea
Q(n,m, c) is false iff all QBFs Ψi = ∃Yi∀Xi

∧cn
j=1 C

j
i are false.

1. Show that Ψi is false whp.

2. Show that Ψi requires non-constant winning strategies whp.

140

Proof sketch

Ψi = ∃Yi∀Xi
∧cn

j=1 C
j
i

1. Ψi is false whp.

I each clause contains 2 existential and 1 universal variable

I the formula is true iff the ∃ player can satisfy at least one
variable in each clause

I we therefore reduce the problem to 2-SAT and can use results
of [Chvatal and Reed 92, Bollobás et al. 01 . . .]

140

Proof sketch

Ψi = ∃Yi∀Xi
∧cn

j=1 C
j
i

2. Ψi requires non-constant winning strategies whp.

I use a result of [Creignou et al. 15] on satisfiability of random
(1,2)-QBFs

I (1,2)-QBFs use clauses with 1 universal and 2 existential
variables each and prefix ∀X∃Y

I Then ∃Yi∀Xi
∧cn

j=1 C
j
i is false whp and ∀Xi∃Yi

∧cn
j=1 C

j
i is true

whp.

I Therefore, winning strategies are non-constant whp.

141

Frege and Stronger Systems

142

Frege Systems

I Frege systems derive formulas using axioms and rules.

I Usually called Hilbert-style systems in texts on classical logic.

Definition
A Frege rule is a (k + 1)-tuple (ϕ0, ϕ1 . . . , ϕk)
of propositional formulas such that

{ϕ1, ϕ2, . . . , ϕk} |= ϕ0 .

The standard notation for rules is

ϕ1 ϕ2 . . . ϕk

ϕ0
.

A Frege rule with k = 0 is called a Frege axiom.

143

Frege Proofs

I A formula ψ0 can be derived from formulas ψ1, . . . , ψk by a
Frege rule (ϕ0, ϕ1 . . . , ϕk) if there exists a substitution σ such
that

σ(ϕi) = ψi for i = 0, . . . , k .

I Let F be a finite set of Frege rules.
I An F-proof of a formula ϕ from a set of propositional

formulas Φ is a sequence ϕ1, . . . , ϕl = ϕ of propositional
formulas such that for all i = 1, . . . , l one of the following
holds:

1. ϕi ∈ Φ or
2. there exist numbers 1 ≤ i1 ≤ · · · ≤ ik < i such that ϕi

can be derived from ϕi1 , . . . , ϕik by a Frege rule from F .

I Notation: F : Φ ` ϕ

144

Frege Systems

I F is called complete if for all formulas ϕ

|= ϕ ⇐⇒ F : ∅ ` ϕ .

I F is called implicationally complete if for all formulas ϕ and
sets of formulas Φ

Φ |= ϕ ⇐⇒ F : Φ ` ϕ .

I F is a Frege system if F is implicationally complete.

145

Example of a Frege System

Axioms p1 → (p2 → p1)
(p1 → p2)→ (p1 → (p2 → p3))→ (p1 → p3)
p1 → p1 ∨ p2

p2 → p1 ∨ p2

(p1 → p3)→ (p2 → p3)→ (p1 ∨ p2 → p3)
(p1 → p2)→ (p1 → ¬p2)→ ¬p1

¬¬p1 → p1

p1 ∧ p2 → p1

p1 ∧ p2 → p2

p1 → p2 → p1 ∧ p2

Modus Ponens
p1 p1 → p2

p2

146

Simulations Between Proof Systems

Definition (Cook, Reckhow 79)

I A proof system Q p-simulates a proof system P (P ≤p Q) if
there exists a poly-time function f such that P(π) = Q(f (π))
for all π.

I P and Q are p-equivalent (P ≡p Q) if
P ≤p Q and Q ≤p P.

147

Equivalence of Classical Frege Systems

Theorem (Cook, Reckhow 79)

All Frege systems are polynomially equivalent.

Sketch of Proof

1. If F1 and F2 are Frege systems over distinct propositional
languages L1 and L2, respectively, then we have to translate
L1-formulas into L2-formulas.
To obtain polynomial size formulas after the translation, we
rebalance the formulas to logarithmic logical depth.
This is possible by Spira’s theorem.

2. Let F1 and F2 be two Frege systems using the same
propositional language. Then the equivalence of F1 and F2

can be shown by deriving every F1-rule in F2 and vice
versa.

148

A Game for Frege Systems

I developed by Pudlák and Buss 94

I played between Prover and Spoiler

Pudlák-Buss games

I Aim: prove that ϕ is a tautology.

I Spoiler claims that he knows a falsifying assignment α for ϕ.

I Prover asks the value of arbitrary formulas under α.

I Spoiler answers 0 or 1.

I Prover wins if he finds an immediate contradiction, e.g. he
got answer 0 for θ1 ∧ θ2 and answer 1 for both θ1 and θ2.

149

Proofs and Games

Theorem
The minimal number of rounds in the game to prove ϕ is
proportional to the logarithm of the minimal number of steps in a
Frege proof of ϕ.

Proof

I We only show one direction.

I Let ϕ1, . . . , ϕk be a Frege proof of ϕ.

I Prover first asks ϕ = ϕk and gets answers 0.

I Prover then asks
∧k

i=1 ϕi .

I If Spoiler answers 1, this immediately contradicts the previous
answer.

I If Spoiler answers 0, Prover uses binary search to find the
smallest i such that Spoiler answers 1 to

∧i
i=1 ϕi and 0 to∧i+1

i=1 ϕi .

150

Proof (cont’d)

I Prover uses binary search to find the smallest i such that
Spoiler answers 1 to

∧i
i=1 ϕi and 0 to

∧i+1
i=1 ϕi .

I Case 1: If no such i exists, Spoiler answered 0 to ϕ1 which is
an axiom, i.e. a substitution of a constant-size tautology like
A ∨ ¬A.

I Then Prover can find a contradiction in a constant number of
queries.

151

Proof (cont’d)

I Prover uses binary search to find the smallest i such that
Spoiler answers 1 to

∧i
i=1 ϕi and 0 to

∧i+1
i=1 ϕi .

I Case 2: If this minimal i exists, then ϕi+1 was derived by a
Frege rule (e.g. Modus Ponens) from a constant number of
formulas ϕi1 , . . . , ϕis with i1 < · · · < is < i + 1.

I Prover asks the formulas ϕi1 , . . . , ϕis .

I If Spoiler answered 0 to any of these queries, this contradicts
the answer to

∧i
i=1 ϕi .

I If Spoiler answered 1 to ϕi1 , . . . , ϕis , then Prover finds a
contradiction in a constant number of rounds, because a
Frege rule is a substitution of a constant-size tautology.

152

Lower Bounds by Games

Theorem
The minimal number of rounds in the game to prove ϕ is
proportional to the logarithm of the minimal number of steps in a
Frege proof of ϕ.

Strategy

Show lower bounds for Frege by devising good strategies for
Spoiler.

Problem
Has not been done successfully for Frege systems.

153

Bounded-Depth Frege

The logical depth of a formula

is defined as the maximal number of alternations of logical
operators in the formula.

Example

I Clauses have depth 1.

I Formulas in DNF or CNF have depth 2.

Bounded-depth Frege

Allow only formulas of logical depth d in the proof for a given
constant d .

154

One of the strongest current lower bounds

Theorem
For any Frege system F and any integer d, there exists a constant
δ > 0 such that for large enough n, the size of a depth d F -proof
of PHPn+1

n is at least 2n
δ
.

History

I Ajtai (1988): First super-polynomial lower bound for PHP in
bounded-depth Frege systems

I Uses the connection to bounded arithmetic

I Improved to exponential lower bounds
by Pitassi, Beame & Impagliazzo 92 and independently
by Kraj́ıček, Pudlák & Woods 92

I Simplified proof by Ben-Sasson & Harsha 2010 using
Pudlák-Buss games

155

Hard Formulas for Frege Systems?

Theorem (Buss 87)

The pigeonhole principle has polynomial-size proofs in Frege
systems.

The search for hard formulas

I A number of combinatorial principles have been suggested,
but most have poly-size Frege proofs.

I A good candidate from logic: reflection principles

I Problem: hard to analyze

I A promising approach: formulas from pseudo-random
generators (Kraj́ıček, Razborov)

156

Beyond Frege

157

Bounds on Proof Systems

Size of proofs

Let f be a proof system.

I sf (x) = min{|w | | f (w) = x}
I sf (n) = max{sf (x) | |x | ≤ n}
I f is t-bounded if sf (n) ≤ t(n) for all n ∈ N.

I If t is a polynomial, then f is called polynomially bounded.

Number of steps

I This measure only makes sense for proof systems where proofs
consist of lines containing formulae or sequents.

I tf (ϕ) = min{k | f (π) = ϕ and π uses k steps}
I tf (n) = max{tf (ϕ) | |ϕ| ≤ n}
I Obviously, it holds that tf (n) ≤ sf (n).

157

Bounds on Proof Systems

Size of proofs

Let f be a proof system.

I sf (x) = min{|w | | f (w) = x}
I sf (n) = max{sf (x) | |x | ≤ n}
I f is t-bounded if sf (n) ≤ t(n) for all n ∈ N.

I If t is a polynomial, then f is called polynomially bounded.

Number of steps

I This measure only makes sense for proof systems where proofs
consist of lines containing formulae or sequents.

I tf (ϕ) = min{k | f (π) = ϕ and π uses k steps}
I tf (n) = max{tf (ϕ) | |ϕ| ≤ n}
I Obviously, it holds that tf (n) ≤ sf (n).

158

Extensions of Frege Systems

Extended Frege EF

Abbreviations for complex formulas: q ↔ ψ,
where q is a new propositional variable.

More precisely

An extended Frege proof of ϕ is a sequence (ϕ1, . . . , ϕl = ϕ) of
propositional formulas such that for each i = 1, . . . , l one of the
following holds:

1. ϕi has been derived by a Frege rule or axiom;

2. ϕi = q ↔ ψ where ψ is an arbitrary propositional formula and
q is a new propositional variable that does not occur in ϕ, ψ
and ϕj for 1 ≤ j < i .

158

Extensions of Frege Systems

Extended Frege EF

Abbreviations for complex formulas: q ↔ ψ,
where q is a new propositional variable.

More precisely

An extended Frege proof of ϕ is a sequence (ϕ1, . . . , ϕl = ϕ) of
propositional formulas such that for each i = 1, . . . , l one of the
following holds:

1. ϕi has been derived by a Frege rule or axiom;

2. ϕi = q ↔ ψ where ψ is an arbitrary propositional formula and
q is a new propositional variable that does not occur in ϕ, ψ
and ϕj for 1 ≤ j < i .

159

Extensions of Frege Systems

Frege systems with substitution SF

Substitution rule: ϕ
σ(ϕ)

for arbitrary substitutions σ

The picture

I All Frege systems are p-equivalent.

I Frege ≤p EF ≡p SF .

160

The Picture for Extensions of Frege

Current barrier

I lower bounds to size in Frege systems.

The following measures are equivalent

I number of steps in Frege;

I size in EF ;

I number of steps in EF ;

I size of SF .

We can exponentially separate

I number of steps in EF ;

I number of steps in SF .

160

The Picture for Extensions of Frege

Current barrier

I lower bounds to size in Frege systems.

The following measures are equivalent

I number of steps in Frege;

I size in EF ;

I number of steps in EF ;

I size of SF .

We can exponentially separate

I number of steps in EF ;

I number of steps in SF .

160

The Picture for Extensions of Frege

Current barrier

I lower bounds to size in Frege systems.

The following measures are equivalent

I number of steps in Frege;

I size in EF ;

I number of steps in EF ;

I size of SF .

We can exponentially separate

I number of steps in EF ;

I number of steps in SF .

161

Frege and EF

The following measures are equivalent

I number of steps in Frege;

I size in EF .

Corollary

Proving lower bounds on the number of steps in Frege systems
means proving lower bounds on the size of EF .

161

Frege and EF

The following measures are equivalent

I number of steps in Frege;

I size in EF .

Corollary

Proving lower bounds on the number of steps in Frege systems
means proving lower bounds on the size of EF .

162

Intermezzo: Arithmetic Formulas

The language of arithmetic uses the symbols

0, S , +, ∗, ≤ . . .

I Σb
1-formulas are formulas in prenex normal form with only

bounded ∃-quantifiers, i.e. (∃x ≤ t(y))ψ(x , y).

I Σb
1-formulas describe NP-sets.

I Πb
1-formulas: (∀x ≤ t(y))ψ(x , y) ⇒ coNP-sets

163

Translating Πb
1-Formulas into Propositional Formulas

Definition (Cook 75, Kraj́ıček & Pudlák 90)

Let ϕ ∈ Πb
1. Then there are propositional formulas ‖ϕ‖n, n ∈ N

such that:

I ‖ϕ‖n can be constructed in polynomial time from 1n.

I ‖ϕ‖n is a tautology ⇐⇒ N |= ϕ(a) for all a ∈ N of length
≤ n

164

The Reflection Principle

Definition
The reflection principle of a propositional proof system P is defined
by the arithmetic formula

RFN(P) = (∀π)(∀ϕ)Prf P(π, ϕ)→ Taut(ϕ)

where

I Prf P is a Σb
1-formula formalizing P-proofs

I Taut is a Πb
1-formula for propositional tautologies.

165

Very Strong Proof Systems

Theorem (Kraj́ıček, Pudlák 89)

Every proof system P is simulated by a proof system of the form
EF + Φ.

Sketch of Proof

I Take as Φ the translations of the reflection principle of P.

I Let π be a P-proof of ϕ.

I Substituting the bits of π and ϕ into the reflection principle
yields

‖PrfP(π, ϕ)‖ → ‖Taut(ϕ)‖

I Prove ‖PrfP(π, ϕ)‖ in EF .

I Prove ‖Taut(ϕ)‖ → ϕ in EF .

I Obtain an EF + Φ proof of ϕ which is poly-size in |π|, |ϕ|.

166

Simulations between important propositional proof systems

Truth table

Tree-Resolution

Resolution

Cutting PlanesAC0-Frege

Nullstellensatz

Polynomial Calculus

PCR

Frege

Extended Frege

optimal proof system?

not polynomially bounded

167

Does TAUT have Optimal Proof Systems?

Question (Krajiček, Pudlák 89)

Does TAUT have an optimal proof system?

Some partial answers

I If NE = coNE, then TAUT has optimal proof systems.
[Krajiček, Pudlák 89]

I Optimal proof systems for TAUT imply complete sets for
promise classes (e.g. NP ∩ Sparse, UP, disjoint NP-pairs).

[Köbler, Messner, Torán 03]

167

Does TAUT have Optimal Proof Systems?

Question (Krajiček, Pudlák 89)

Does TAUT have an optimal proof system?

Some partial answers

I If NE = coNE, then TAUT has optimal proof systems.
[Krajiček, Pudlák 89]

I Optimal proof systems for TAUT imply complete sets for
promise classes (e.g. NP ∩ Sparse, UP, disjoint NP-pairs).

[Köbler, Messner, Torán 03]

168

Optimal Proof Systems and Easy Subsets

Definition
A class C of languages has a recursive P-presentation if there
exists a recursively enumerable list N1,N2, . . . of deterministic
polynomial-time clocked Turing machines such that L(Ni) ∈ C for
i ∈ N, and, conversely, for each A ∈ C there exists an index i with
A ⊆ L(Ni).

Theorem (Sadowski 02)

TAUT has a p-optimal proof system if and only if
the class of all P-subsets of TAUT has a recursive P-presentation.

169

Proof Systems that Take Advice

Cook & Krajiček (JSL 07) consider non-uniform Frege proofs.

Definition (Karp, Lipton 80)

I An advice function is a mapping h : N→ Σ∗.

I h(n) is the advice string provided by h for input length n.

I For a language L, L/h = {x | 〈x , h(|x |)〉 ∈ L}.
I For a complexity class C and a length bound k : N→ N,

C/k = {L/h | L ∈ C, |h(n)| ≤ k(n) for all n}.
I C/log =

⋃
{C/k | k(n) = O(log n)}.

I C/poly =
⋃
{C/k | k(n) = nO(1)}.

Proposition (Pippenger 79)

L ∈ P/poly iff L has poly-size circuits.

169

Proof Systems that Take Advice

Cook & Krajiček (JSL 07) consider non-uniform Frege proofs.

Definition (Karp, Lipton 80)

I An advice function is a mapping h : N→ Σ∗.

I h(n) is the advice string provided by h for input length n.

I For a language L, L/h = {x | 〈x , h(|x |)〉 ∈ L}.

I For a complexity class C and a length bound k : N→ N,
C/k = {L/h | L ∈ C, |h(n)| ≤ k(n) for all n}.

I C/log =
⋃
{C/k | k(n) = O(log n)}.

I C/poly =
⋃
{C/k | k(n) = nO(1)}.

Proposition (Pippenger 79)

L ∈ P/poly iff L has poly-size circuits.

169

Proof Systems that Take Advice

Cook & Krajiček (JSL 07) consider non-uniform Frege proofs.

Definition (Karp, Lipton 80)

I An advice function is a mapping h : N→ Σ∗.

I h(n) is the advice string provided by h for input length n.

I For a language L, L/h = {x | 〈x , h(|x |)〉 ∈ L}.
I For a complexity class C and a length bound k : N→ N,

C/k = {L/h | L ∈ C, |h(n)| ≤ k(n) for all n}.

I C/log =
⋃
{C/k | k(n) = O(log n)}.

I C/poly =
⋃
{C/k | k(n) = nO(1)}.

Proposition (Pippenger 79)

L ∈ P/poly iff L has poly-size circuits.

169

Proof Systems that Take Advice

Cook & Krajiček (JSL 07) consider non-uniform Frege proofs.

Definition (Karp, Lipton 80)

I An advice function is a mapping h : N→ Σ∗.

I h(n) is the advice string provided by h for input length n.

I For a language L, L/h = {x | 〈x , h(|x |)〉 ∈ L}.
I For a complexity class C and a length bound k : N→ N,

C/k = {L/h | L ∈ C, |h(n)| ≤ k(n) for all n}.
I C/log =

⋃
{C/k | k(n) = O(log n)}.

I C/poly =
⋃
{C/k | k(n) = nO(1)}.

Proposition (Pippenger 79)

L ∈ P/poly iff L has poly-size circuits.

169

Proof Systems that Take Advice

Cook & Krajiček (JSL 07) consider non-uniform Frege proofs.

Definition (Karp, Lipton 80)

I An advice function is a mapping h : N→ Σ∗.

I h(n) is the advice string provided by h for input length n.

I For a language L, L/h = {x | 〈x , h(|x |)〉 ∈ L}.
I For a complexity class C and a length bound k : N→ N,

C/k = {L/h | L ∈ C, |h(n)| ≤ k(n) for all n}.
I C/log =

⋃
{C/k | k(n) = O(log n)}.

I C/poly =
⋃
{C/k | k(n) = nO(1)}.

Proposition (Pippenger 79)

L ∈ P/poly iff L has poly-size circuits.

170

All languages have optimal proof systems with advice

Theorem (Cook, Kraj́ıček 07, B, Köbler, Müller 11)

Every language L has an optimal proof system f in FP/1.

Proof.

I Let 〈·, . . . , ·〉 be a polynomial-time computable tupling
function on Σ∗ which is length injective.

I f -proofs are of the form w = 〈u, 1T , 1m〉 with u,T ∈ Σ∗ and
m ∈ N.

I The advice bit h(|w |) indicates whether the transducer T only
outputs elements from L for inputs of length |u|.

I Now, if h(|w |) = 1 and T (u) outputs y after at most m steps,
then f (w) = y . Otherwise, f (w) = >.

I If g is a proof system computed by a p-time transducer T ,
then f p-simulates g via the FP function u 7→

〈
u, 1T , 1p(|u|)〉.

171

Summary

Lower Bounds

I Shown for bounded-depth Frege

I Open for Frege and stronger systems

Optimal proof systems

I Existence is open

I We have a number of interesting characterizations and
consequences.

I They exist for stronger models of proof systems.

172

Proof Complexity – Further
Connections

173

Motivations in Proof Complexity

Major motivations

I Separation of complexity classes

I Satisfiability algorithms (SAT-Solver)

I Proof Search – Automatizability

I Relations to bounded arithmetic

I Proving lower bounds is very challenging and
interesting in its own right

174

Digression – Disjoint NP-Pairs

Definition (Grollmann, Selman 88)

(A,B) is a disjoint NP-Pair (DNPP) if A,B ∈ NP and A ∩ B = ∅.

Example

Clique-Colouring pair (CC0,CC1)
CC0 = {(G , k) | G contains a clique of size k}
CC1 = {(G , k) | G can be coloured with k − 1 colours }

Definition (Grollmann, Selman 88)

(A,B) ≤p (C ,D)
df⇐⇒ there exists a polynomial time computable

function f such that f (A) ⊆ C and f (B) ⊆ D.

175

P-Separable Pairs

Definition (Grollmann, Selman 88)

(A,B) is p-separable, if there exists a set C ∈ P such that A ⊆ C
and B ∩ C = ∅.

Theorem (Lovász 79)

(CC0,CC1) is p-separable.

176

A Pair from Cryptography

The RSA pair

RSA0 = {(n, e, y , i) | (n, e) is a valid RSA key, ∃x xe ≡ y mod n
and the i-th bit of x is 0}

RSA1 = {(n, e, y , i) | . . . is 1 }

Fact
If RSA is secure then (RSA0,RSA1) is not p-separable.

177

Canonical NP-Pairs

Definition (Razborov 94)

To a proof system P we associate a canonical pair:

Ref (P) = {(ϕ, 1m) | P `≤m ϕ}
Sat∗ = {(ϕ, 1m) | ¬ϕ is satisfiable}

Proposition

If P and S are proof systems with P ≤ S, then
(Ref (P), Sat∗) ≤p (Ref (S),Sat∗).

Proof.
(ϕ, 1m) 7→ (ϕ, 1p(m)) where p is the polynomial from P ≤ S .

The converse does not hold.

177

Canonical NP-Pairs

Definition (Razborov 94)

To a proof system P we associate a canonical pair:

Ref (P) = {(ϕ, 1m) | P `≤m ϕ}
Sat∗ = {(ϕ, 1m) | ¬ϕ is satisfiable}

Proposition

If P and S are proof systems with P ≤ S, then
(Ref (P), Sat∗) ≤p (Ref (S),Sat∗).

Proof.
(ϕ, 1m) 7→ (ϕ, 1p(m)) where p is the polynomial from P ≤ S .

The converse does not hold.

178

Automatizability of proof systems

Definition
P is automatizable if there exists a deterministic algorithm with

input: a formula ϕ
output: a P-proof of ϕ (if it exists)
time: polynomial in the length of the shortest P-proof of ϕ

Alternative characterization
P is automatizable if and only if there exists a polynomial time
algorithm with

input: (ϕ, 1m)
output: a P-proof of ϕ if (ϕ, 1m) ∈ Ref (P)

Corollary

If P is automatizable then (Ref (P),SAT ∗) is p-separable.

179

Automatizability of proof systems

Proposition (B. 07)

There exists a proof system P that has a p-separable canonical
pair. But P is not automatizable unless P = NP.

Proof.
Define the proof system P as:

P(π) =

{
ϕ if π = (ϕ,T) where T is a truth table of ϕ

ϕ ∨ > if π = (ϕ, α) and α is a satisfying assignment for ϕ

The following algorithm separates the canonical pair of P:

1 Input: (ϕ, 1m)
2 IF ϕ = ψ ∨ > or ϕ = > THEN output 1

3 IF m ≥ 2‖Var(ϕ)‖ THEN

4 IF ϕ ∈ TAUT THEN output 1
5 output 0

180

Automatizability of proof systems

Proposition (Pudlák 03)

(Ref (P), SAT ∗) is p-separable iff there exists an automatizable
proof system Q ≥p P.

Proof.
Let (Ref (P),SAT ∗) be separated by f ∈ FP, i.e.

(ϕ, 1m) ∈ Ref (P) =⇒ f (ϕ, 1m) = 1

(ϕ, 1m) ∈ SAT ∗ =⇒ f (ϕ, 1m) = 0 .

Define the system Q by

Q(π) =

{
ϕ if π = (ϕ, 1m) and f (ϕ, 1m) = 1
> otherwise .

181

Weak Automatizability

Proposition (Pudlák 03)

(Ref (P), SAT ∗) is p-separable iff there exists an automatizable
proof system Q ≥p P.

Definition
A proof system P is weakly automatizable if there exists a proof
system Q ≥p P such that Q is automatizable.

Corollary

A proof system P is weakly automatizable iff the canonical pair of
P is p-separable.

182

Which Proof Systems are Automatizable?

A trivial positive example

The truth-table system is automatizable.

What about interesting systems?

Theorem (Kraj́ıček & Pudlák 98)

Extended Frege systems are not weakly automatizable unless RSA
is insecure.

Theorem (Bonet, Pitassi, Raz 00)

Frege systems are not weakly automatizable unless Blum integers
can be factored in polynomial time
(a Blum integer is the product of two primes which are both
congruent 3 modulo 4).

Theorem (Bonet, Domingo, Gavaldà, Maciel, Pitassi 04)

Bounded-depth Frege systems are not weakly automatizable under
cryptographic assumptions.

183

Automatizability of Resolution

Theorem (Beame, Karp, Pitassi, Saks 02)

Tree-like Resolution is automatizable in quasi-polynomial time.
(Quasi-polynomial time = nO(log n))

Theorem (Alekhnovich & Razborov 01,
Eickmeyer, Grohe & Grübner 08)

Resolution is not automatizable unless FPT = W [P].

Open problem

Is Resolution weakly automatizable?

184

Motivations in Proof Complexity

Major motivations

I Separation of complexity classes

I Satisfiability algorithms (SAT-Solver)

I Proof Search – Automatizability

I Relations to bounded arithmetic

I Proving lower bounds is very challenging and
interesting in its own right

185

Bounded Arithmetic

I first-order arithmetic theories

I weak subsystems of Peano arithmetic
I axiomatized by

I a number of basic axioms describing the interplay of
+, ·,≤, 0, 1, . . . and

I some controlled amount of induction

Most important examples

I I∆0 (induction for all bounded formulas)

I PV (formalizes poly-time computations) [Cook 75]

I S1
2 ⊆ T 1

2 ⊆ S2
2 ⊆ T 2

2 ⊆ · · · ⊆ S2 = T2 [Buss 86]

186

Propositional Translations

Bounded formulas

I A bounded universal quantifier is of the form
(∀x)(|x | ≤ t → . . .) with some term t.

I Πb
1-formulas only contain bounded universal quantifiers.

I Πb
1-formulas describe coNP-sets.

From first-order to propositional formulas

A Πb
1-formula ϕ(x) can be translated into a sequence of

propositional formulas ‖ϕ‖n such that

I ‖ϕ‖n has polynomial size in n;

I for each a ∈ N, N |= ϕ(a) iff ‖ϕ‖|a|(a) ∈ TAUT .

187

Bounded Arithmetic and Propositional Proof Systems

The correspondence

An arithmetic theory T corresponds to a propositional proof
system P if the following conditions are satisfied:

I For ϕ ∈ Πb
1, if T ` (∀x)ϕ, then there are poly-size P-proofs of

‖ϕ‖n.

I T proves the correctness of P, i.e. T ` RFN(P).

Example

S1
2 corresponds to extended Frege EF.

This correspondence can be applied to

I construct short P-proofs (upper bounds);

I show lower bounds to the proof size for P [Ajtai 94];

I show simulations between proof systems.

188

Uniform vs. Non-uniform Concepts

Complexity Logic

uniform P, NP, coNP, . . . arithmetic theories
Turing machines Πb

1 formulas

non-uniform AC0, P/poly, NP/poly, . . . proof systems
Boolean circuits propositional formulas

Our experience

Lower bounds in the non-uniform models are very hard.

189

Motivations in Proof Complexity

Major motivations

I Separation of complexity classes

I Satisfiability algorithms (SAT-Solver)

I Proof Search – Automatizability

I Relations to bounded arithmetic

I Proving lower bounds is very challenging and
interesting in its own right

190

Summary

Proof Complexity

I is at the intersection of logic and complexity.

I uses concepts and intuition from algebra, geometry, . . .

Main Objective

study lengths of proofs

Connections to other areas

I Separation of complexity classes

I Analysis of SAT algorithms

I Proof search – Automatizability

I First-Order Logic – Bounded Arithmetic

I Proving lower bounds is hard!

	Introduction to Propositional Proof Complexity
	Proof Systems
	The Cook-Reckhow Programme

	Tree-Like Resolution
	Tree-like Resolution and Satisfiability Algorithms
	The Game of Pudlák and Impagliazzo

	Separating Tree-like and DAG-like Resolution
	Tree-like vs. DAG-like Proof Systems
	Pebbling Games

	DAG-like Resolution and Cutting Planes
	Proof complexity of further logics
	Modal and intuitionistic logics
	QBF proof complexity

	Frege and Stronger Systems
	Bounded-Depth Frege and Frege
	Extensions of Frege
	Optimal Systems
	Proof Search – Automatizability
	Bounded Arithmetic
	Relations to Circuit Complexity

