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Laura Kovács and Andrei Voronkov

TU Wien and University of Manchester



Schedule

Today

Session 1 - Getting Started with Vampire

Session 2 - Overview on First-Order Theorem Proving

Vampire in Practice

Session 3 - Cookies

Session 4 - Interpolation



Schedule

Today

Session 1 - Getting Started with Vampire

Session 2 - Overview on First-Order Theorem Proving

Vampire in Practice

Session 3 - Cookies

Session 4 - Interpolation



Outline
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Getting Started with Vampire



Automated Reasoning and Rigorous Systems Engineering

In a vague sense, automated reasoning involves

1. Representing a problem as a mathematical/logical statement

2. Automatically checking this statement’s consistency or truth

In rigorous systems engineering there are lots of places where we
can apply this reasoning. For example,

I Proving partial correctness properties

I Generating loop invariants

I Synthesis

I Model checking

I Your idea?



Kinds of Reasoning

Given a statement S we can establish different conclusions about it

I Consistency - there is a way of making it true

I Inconsistency - there is no way of making it true

I Validity - it is always true

We can look at these three notions from two different views.

Semantic view Syntactic view

S is consistent A model No proof of ⊥ from S
S is inconsistent No model A proof of ⊥ from S
S is valid True in all models A proof of ⊥ from ¬S

Notes

1. Here we have focussed only on proofs of inconsistency.

2. Consistency is commonly referred to as satisfiability



Models and Proofs

Models
A model is a structure that can be used to interpret the symbols in
a logical statement making the statement semantically true.
S can have 0, 1, n, or ∞ models. A model may be infinite.
New expressions can be evaluated in a model.
If our statement is of the form ¬S then we have a countermodel.

Proofs (in our context)
A proof is a sequence of derived statements that follow logically
from the input, ending in a contradiction.
Steps may preserve validity, satisfiability, or models.
A proof may only use part of S and may introduce new symbols.



Kinds of Reasoners

Input Example(s)

SAT Solvers Propositional formulae MiniSat

Constraint Solvers Conjunction of theory constraints

SMT Solvers (First-order) formulae + theories Z3,CVC4

Theorem Provers First-order formulae (+ theories) Vampire,E

Proof Assistants High-order formulae Isabelle,Coq
(interactive)

Above the line focus on models and might be decidable. Below the
line focus on proofs and are rarely decidable.



More about Logics

Propositional Logic
Propositions and boolean constructors e.g. p ∧ q, good→ ¬bad
Common normal forms (CNF, DNF). Models are assignments of
true/false to propositions. SAT solvers. QBF.

First-Order or Predicate Logic
Adds predicates, functions, quantifiers, equality e.g. ∃x : f (x) 6= x ,
∀x : man(x)→ human(x). Skolemisation can remove ∃. Models
interpret each predicate and function symbol.

Theories
Fix a class of interpretations for a subset of the signature e.g. +.

Higher-Order Logic
Allow quantification over functions.

Other Logics (live inside one of the above)
Modal logics (e.g. LTL). Description logics. Seperation Logic.



What is Vampire?

An automated theorem prover for first-order logic and theories

. It produces detailed proofs but also supports finite model finding

. It is very fast (44 trophies from CASC over the last 18 years)

. It competes with SMT solvers on their problems

. In normal operation it is saturation-based - it saturates a clausal
form with respect to an inference system

. It is portfolio-based - it works best when you allow it to try lots
of strategies

. It has unique proof search features such as LRS and AVATAR

. It supports lots of extra features helpful for rigorous systems
engineering
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Issues to Consider when using Reasoners in Rigorous
Systems Engineering

(that we won’t necessarily be addressing)

Representing Programs

I How do we encode a program’s behaviour in logic
I What abstraction do we want for different types of data
I How do we handle modularity, non-determinism etc

Representing Queries

I Is your query a traditional does C follow from A?
I or something else? e.g. which statements among S1, . . . ,Sn

are redundant (implied by other statements)
I How do you turn what you want into a first-order query?

Handling Query Answers

I Is it just a yes/no answer you want?
I Or do you need a model or proof to extract further

information from
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Download and Install

Go to

https://vprover.github.io/download.html

and pick the route most suitable to you.

Notes:

I For Linux users, a binary is probably the easiest route
I For Mac users, you need to build from source

I run make vampire rel

I For Windows users, the easiest route for this tutorial is a
virtual machine and then use Linux

https://vprover.github.io/download.html


The TPTP Library

The TPTP library (Thousands of Problems for Theorem Provers),
http://www.tptp.org contains a large collection of first-order problems.
For representing these problems it uses the TPTP syntax, which is
understood by all modern theorem provers, including Vampire.

http://www.tptp.org


Hello World in TPTP (hello-world-1.p)

In this example:

I logic(name,type,formula) syntax

I Predicates (hello) and constants (world)

I Logical operators: => but also |,~,&

We have three axioms giving some rules and a conjecture that we
want to show follows from these axioms.

fof(a1,axiom,hello(world) => hello(austria)).

fof(a2,axiom,hello(austria) => hello(vienna)).

fof(a3,axiom,hello(vienna) => hello(riseWS)).

fof(con,conjecture,hello(world) => hello(riseWS)).
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Hello World (a proof)

fof(a1,axiom,hello(world) => hello(austria)).

fof(a2,axiom,hello(austria) => hello(viennna)).

fof(a3,axiom,hello(vienna) => hello(riseWS)).

fof(con,conjecture,hello(world) => hello(riseWS)).

vampire -av off hello_world-1.p

10. ~hello(world) | hello(austria) [cnf transformation 6]

11. ~hello(austria) | hello(vienna) [cnf transformation 7]

12. ~hello(vienna) | hello(riseWS) [cnf transformation 8]

13. hello(world) [cnf transformation 9]

14. ~hello(riseWS) [cnf transformation 9]

15. hello(austria) [resolution 10,13]

16. hello(vienna) [resolution 15,11]

17. hello(riseWS) [resolution 16,12]

18. $false [subsumption resolution 17,14]
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Hello World Again, more on TPTP (hello-world-2.p)

In this example

I Variables (upper case)

I Quantification (! for ∀, ? for ∃)

We can rewrite the previous problem to axiomatise the idea that
saying hello to something means saying hello to its parts.

fof(a1,axiom, ![X,Y] : (

(has_part(X,Y) & hello(X)) => hello(Y)

)).

fof(f1,axiom, has_part(world,austria)).

fof(f1,axiom, has_part(austria,vienna)).

fof(f1,axiom, has_part(vienna,riseWS)).

fof(con,conjecture,hello(world) => hello(riseWS)).



Hello World Again, more on TPTP (hello-world-2.p)

In this example

I Variables (upper case)

I Quantification (! for ∀, ? for ∃)

We can rewrite the previous problem to axiomatise the idea that
saying hello to something means saying hello to its parts.

fof(a1,axiom, ![X,Y] : (

(has_part(X,Y) & hello(X)) => hello(Y)

)).

fof(f1,axiom, has_part(world,austria)).

fof(f1,axiom, has_part(austria,vienna)).

fof(f1,axiom, has_part(vienna,riseWS)).

fof(con,conjecture,hello(world) => hello(riseWS)).



Hello World Again, more on TPTP (hello-world-2.p)

In this example

I Variables (upper case)

I Quantification (! for ∀, ? for ∃)

We can rewrite the previous problem to axiomatise the idea that
saying hello to something means saying hello to its parts.

fof(a1,axiom, ![X,Y] : (

(has_part(X,Y) & hello(X)) => hello(Y)

)).

fof(f1,axiom, has_part(world,austria)).

fof(f1,axiom, has_part(austria,vienna)).

fof(f1,axiom, has_part(vienna,riseWS)).

fof(con,conjecture,hello(world) => hello(riseWS)).



Group Theory (group.p)

Group theory theorem: if a group satisfies the identity x2 = 1, then it
is commutative.

More formally: in a group “assuming that x2 = 1 for all x prove that
x · y = y · x holds for all x , y .”
What is implicit: axioms of the group theory.

∀x(1 · x = x)
∀x(x−1 · x = 1)
∀x∀y∀z((x · y) · z = x · (y · z))
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Group Theory (group.p)

Formulation in First-Order Logic:

∀x(1 · x = x)
Axioms (of group theory): ∀x(x−1 · x = 1)

∀x∀y∀z((x · y) · z = x · (y · z))

Assumptions: ∀x(x · x = 1)
Conjecture: ∀x∀y(x · y = y · x)



Group Theory (group.p) – in TPTP

%---- 1 * x = x
fof(left identity,axiom,

! [X] : mult(e,X) = X).
%---- i(x) * x = 1
fof(left inverse,axiom,

! [X] : mult(inverse(X),X) = e).
%---- (x * y) * z = x * (y * z)
fof(associativity,axiom,

! [X,Y,Z] : mult(mult(X,Y),Z) = mult(X,mult(Y,Z))).
%---- x * x = 1
fof(group of order 2,hypothesis,

! [X] : mult(X,X) = e).
%---- prove x * y = y * x
fof(commutativity,conjecture,

! [X] : mult(X,Y) = mult(Y,X)).



First-Order Logic and TPTP

FOL TPTP
⊥, > $false, $true
¬a ˜a

a1 ∧ . . . ∧ an a1 & ... & an
a1 ∨ . . . ∨ an a1 | ... | an

a1 → a2 a1 => a2
(∀x1) . . . (∀xn)a ! [X1,...,Xn] : a
(∃x1) . . . (∃xn)a ? [X1,...,Xn] : a



More on the TPTP Syntax

I Comments;
I Input formula names;
I Input formula roles (very important);
I Equality

%---- 1 * x = x
fof(left identity,axiom,(
! [X] : mult(e,X) = X )).

%---- i(x) * x = 1
fof(left inverse,axiom,(
! [X] : mult(inverse(X),X) = e )).

%---- (x * y) * z = x * (y * z)
fof(associativity,axiom,(

! [X,Y,Z] :
mult(mult(X,Y),Z) = mult(X,mult(Y,Z)) )).

%---- x * x = 1
fof(group of order 2,hypothesis,

! [X] : mult(X,X) = e ).
%---- prove x * y = y * x
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%---- (x * y) * z = x * (y * z)
fof(associativity,axiom,(

! [X,Y,Z] :
mult(mult(X,Y),Z) = mult(X,mult(Y,Z)) )).

%---- x * x = 1
fof(group of order 2,hypothesis,

! [X] : mult(X,X) = e ).
%---- prove x * y = y * x
fof(commutativity,conjecture,

! [X,Y] : mult(X,Y) = mult(Y,X) ).
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Proof by Vampire (Slightliy Modified)
Refutation found.
270. $false [trivial inequality removal 269]
269. mult(sk0,sk1) != mult (sk0,sk1) [superposition 14,125]
125. mult(X2,X3) = mult(X3,X2) [superposition 21,90]
90. mult(X4,mult(X3,X4)) = X3 [forward demodulation 75,27]
75. mult(inverse(X3),e) = mult(X4,mult(X3,X4)) [superposition 22,19]
27. mult(inverse(X2),e) = X2 [superposition 21,11]
22. mult(inverse(X4),mult(X4,X5)) = X5 [forward demodulation 17,10]
21. mult(X0,mult(X0,X1)) = X1 [forward demodulation 15,10]
19. e = mult(X0,mult(X1,mult(X0,X1))) [superposition 12,13]
17. mult(e,X5) = mult(inverse(X4),mult(X4,X5)) [superposition 12,11]
15. mult(e,X1) = mult(X0,mult(X0,X1)) [superposition 12,13]
14. mult(sK0,sK1) != mult(sK1,sK0) [cnf transformation 9]
13. e = mult(X0,X0) [cnf transformation 4]
12. mult(X0,mult(X1,X2)) = mult(mult(X0,X1),X2) [cnf transformation 3]
11. e = mult(inverse(X0),X0) [cnf transformation 2]
10. mult(e,X0) = X0 [cnf transformation 1]
9. mult(sK0,sK1) != mult(sK1,sK0) [skolemisation 7,8]
8. ?[X0,X1]: mult(X0,X1) != mult(X1,X0) <=> mult(sK0,sK1) != mult(sK1,sK0)

[choice axiom]
7. ?[X0,X1]: mult(X0,X1) != mult(X1,X0) [ennf transformation 6]
6. ˜![X0,X1]: mult(X0,X1) = mult(X1,X0) [negated conjecture 5]
5. ![X0,X1]: mult(X0,X1) = mult(X1,X0) [input]
4. ![X0]: e = mult(X0,X0)[input]
3. ![X0,X1,X2]: mult(X0,mult(X1,X2)) = mult(mult(X0,X1),X2) [input]
2. ![X0]: e = mult(inverse(X0),X0) [input]
1. ![X0]: mult(e,X0) = X0 [input]

I Each inference derives a formula from zero or more other formulas;
I Input, preprocessing, new symbols introduction, superposition calculus
I Proof by refutation, generating and simplifying inferences, unused formulas . . .
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269. mult(sk0,sk1) != mult (sk0,sk1) [superposition 14,125]
125. mult(X2,X3) = mult(X3,X2) [superposition 21,90]
90. mult(X4,mult(X3,X4)) = X3 [forward demodulation 75,27]
75. mult(inverse(X3),e) = mult(X4,mult(X3,X4)) [superposition 22,19]
27. mult(inverse(X2),e) = X2 [superposition 21,11]
22. mult(inverse(X4),mult(X4,X5)) = X5 [forward demodulation 17,10]
21. mult(X0,mult(X0,X1)) = X1 [forward demodulation 15,10]
19. e = mult(X0,mult(X1,mult(X0,X1))) [superposition 12,13]
17. mult(e,X5) = mult(inverse(X4),mult(X4,X5)) [superposition 12,11]
15. mult(e,X1) = mult(X0,mult(X0,X1)) [superposition 12,13]
14. mult(sK0,sK1) != mult(sK1,sK0) [cnf transformation 9]
13. e = mult(X0,X0) [cnf transformation 4]
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[choice axiom]
7. ?[X0,X1]: mult(X0,X1) != mult(X1,X0) [ennf transformation 6]
6. ˜![X0,X1]: mult(X0,X1) = mult(X1,X0) [negated conjecture 5]
5. ![X0,X1]: mult(X0,X1) = mult(X1,X0) [input]
4. ![X0]: e = mult(X0,X0)[input]
3. ![X0,X1,X2]: mult(X0,mult(X1,X2)) = mult(mult(X0,X1),X2) [input]
2. ![X0]: e = mult(inverse(X0),X0) [input]
1. ![X0]: mult(e,X0) = X0 [input]

I Each inference derives a formula from zero or more other formulas;

I Input, preprocessing, new symbols introduction, superposition calculus
I Proof by refutation, generating and simplifying inferences, unused formulas . . .
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269. mult(sk0,sk1) != mult (sk0,sk1) [superposition 14,125]
125. mult(X2,X3) = mult(X3,X2) [superposition 21,90]
90. mult(X4,mult(X3,X4)) = X3 [forward demodulation 75,27]
75. mult(inverse(X3),e) = mult(X4,mult(X3,X4)) [superposition 22,19]
27. mult(inverse(X2),e) = X2 [superposition 21,11]
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7. ?[X0,X1]: mult(X0,X1) != mult(X1,X0) [ennf transformation 6]
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I Proof by refutation, generating and simplifying inferences, unused formulas . . .
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75. mult(inverse(X3),e) = mult(X4,mult(X3,X4)) [superposition 22,19]
27. mult(inverse(X2),e) = X2 [superposition 21,11]
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19. e = mult(X0,mult(X1,mult(X0,X1))) [superposition 12,13]
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269. mult(sk0,sk1) != mult (sk0,sk1) [superposition 14,125]
125. mult(X2,X3) = mult(X3,X2) [superposition 21,90]
90. mult(X4,mult(X3,X4)) = X3 [forward demodulation 75,27]
75. mult(inverse(X3),e) = mult(X4,mult(X3,X4)) [superposition 22,19]
27. mult(inverse(X2),e) = X2 [superposition 21,11]
22. mult(inverse(X4),mult(X4,X5)) = X5 [forward demodulation 17,10]
21. mult(X0,mult(X0,X1)) = X1 [forward demodulation 15,10]
19. e = mult(X0,mult(X1,mult(X0,X1))) [superposition 12,13]
17. mult(e,X5) = mult(inverse(X4),mult(X4,X5)) [superposition 12,11]
15. mult(e,X1) = mult(X0,mult(X0,X1)) [superposition 12,13]
14. mult(sK0,sK1) != mult(sK1,sK0) [cnf transformation 9]
13. e = mult(X0,X0) [cnf transformation 4]
12. mult(X0,mult(X1,X2)) = mult(mult(X0,X1),X2) [cnf transformation 3]
11. e = mult(inverse(X0),X0) [cnf transformation 2]
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9. mult(sK0,sK1) != mult(sK1,sK0) [skolemisation 7,8]
8. ?[X0,X1]: mult(X0,X1) != mult(X1,X0) <=> mult(sK0,sK1) != mult(sK1,sK0)

[choice axiom]
7. ?[X0,X1]: mult(X0,X1) != mult(X1,X0) [ennf transformation 6]
6. ˜![X0,X1]: mult(X0,X1) = mult(X1,X0) [negated conjecture 5]
5. ![X0,X1]: mult(X0,X1) = mult(X1,X0) [input]
4. ![X0]: e = mult(X0,X0)[input]
3. ![X0,X1,X2]: mult(X0,mult(X1,X2)) = mult(mult(X0,X1),X2) [input]
2. ![X0]: e = mult(inverse(X0),X0) [input]
1. ![X0]: mult(e,X0) = X0 [input]

I Each inference derives a formula from zero or more other formulas;
I Input, preprocessing, new symbols introduction, superposition calculus
I Proof by refutation, generating and simplifying inferences, unused formulas . . .
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Refutation found.
270. $false [trivial inequality removal 269]
269. mult(sk0,sk1) != mult (sk0,sk1) [superposition 14,125]
125. mult(X2,X3) = mult(X3,X2) [superposition 21,90]
90. mult(X4,mult(X3,X4)) = X3 [forward demodulation 75,27]
75. mult(inverse(X3),e) = mult(X4,mult(X3,X4)) [superposition 22,19]
27. mult(inverse(X2),e) = X2 [superposition 21,11]
22. mult(inverse(X4),mult(X4,X5)) = X5 [forward demodulation 17,10]
21. mult(X0,mult(X0,X1)) = X1 [forward demodulation 15,10]
19. e = mult(X0,mult(X1,mult(X0,X1))) [superposition 12,13]
17. mult(e,X5) = mult(inverse(X4),mult(X4,X5)) [superposition 12,11]
15. mult(e,X1) = mult(X0,mult(X0,X1)) [superposition 12,13]
14. mult(sK0,sK1) != mult(sK1,sK0) [cnf transformation 9]
13. e = mult(X0,X0) [cnf transformation 4]
12. mult(X0,mult(X1,X2)) = mult(mult(X0,X1),X2) [cnf transformation 3]
11. e = mult(inverse(X0),X0) [cnf transformation 2]
10. mult(e,X0) = X0 [cnf transformation 1]
9. mult(sK0,sK1) != mult(sK1,sK0) [skolemisation 7,8]
8. ?[X0,X1]: mult(X0,X1) != mult(X1,X0) <=> mult(sK0,sK1) != mult(sK1,sK0)

[choice axiom]
7. ?[X0,X1]: mult(X0,X1) != mult(X1,X0) [ennf transformation 6]
6. ˜![X0,X1]: mult(X0,X1) = mult(X1,X0) [negated conjecture 5]
5. ![X0,X1]: mult(X0,X1) = mult(X1,X0) [input]
4. ![X0]: e = mult(X0,X0)[input]
3. ![X0,X1,X2]: mult(X0,mult(X1,X2)) = mult(mult(X0,X1),X2) [input]
2. ![X0]: e = mult(inverse(X0),X0) [input]
1. ![X0]: mult(e,X0) = X0 [input]

I Each inference derives a formula from zero or more other formulas;
I Input, preprocessing, new symbols introduction, superposition calculus
I Proof by refutation, generating and simplifying inferences, unused formulas . . .
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Refutation found.
270. $false [trivial inequality removal 269]
269. mult(sk0,sk1) != mult (sk0,sk1) [superposition 14,125]
125. mult(X2,X3) = mult(X3,X2) [superposition 21,90]
90. mult(X4,mult(X3,X4)) = X3 [forward demodulation 75,27]
75. mult(inverse(X3),e) = mult(X4,mult(X3,X4)) [superposition 22,19]
27. mult(inverse(X2),e) = X2 [superposition 21,11]
22. mult(inverse(X4),mult(X4,X5)) = X5 [forward demodulation 17,10]
21. mult(X0,mult(X0,X1)) = X1 [forward demodulation 15,10]
19. e = mult(X0,mult(X1,mult(X0,X1))) [superposition 12,13]
17. mult(e,X5) = mult(inverse(X4),mult(X4,X5)) [superposition 12,11]
15. mult(e,X1) = mult(X0,mult(X0,X1)) [superposition 12,13]
14. mult(sK0,sK1) != mult(sK1,sK0) [cnf transformation 9]
13. e = mult(X0,X0) [cnf transformation 4]
12. mult(X0,mult(X1,X2)) = mult(mult(X0,X1),X2) [cnf transformation 3]
11. e = mult(inverse(X0),X0) [cnf transformation 2]
10. mult(e,X0) = X0 [cnf transformation 1]
9. mult(sK0,sK1) != mult(sK1,sK0) [skolemisation 7,8]
8. ?[X0,X1]: mult(X0,X1) != mult(X1,X0) <=> mult(sK0,sK1) != mult(sK1,sK0)

[choice axiom]
7. ?[X0,X1]: mult(X0,X1) != mult(X1,X0) [ennf transformation 6]
6. ˜![X0,X1]: mult(X0,X1) = mult(X1,X0) [negated conjecture 5]
5. ![X0,X1]: mult(X0,X1) = mult(X1,X0) [input]
4. ![X0]: e = mult(X0,X0)[input]
3. ![X0,X1,X2]: mult(X0,mult(X1,X2)) = mult(mult(X0,X1),X2) [input]
2. ![X0]: e = mult(inverse(X0),X0) [input]
1. ![X0]: mult(e,X0) = X0 [input]

I Each inference derives a formula from zero or more other formulas;
I Input, preprocessing, new symbols introduction, superposition calculus
I Proof by refutation, generating and simplifying inferences, unused formulas . . .



Celsius to Fahrenheit (MSC023=2.p)

I tff form and type definition

I Typed quantification

I built-in theory symbols

tff(convertt,type,convert: ( $real * $real ) > $o ).

tff(convert,axiom,(

! [C: $real,F: $real] :

( $sum($product(1.8,C),32.0) = F => convert(C,F) )

)).

tff(fahrenheit_451_to_celsius,conjecture,(

? [C: $real] : convert(C,451.0) )).
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Celsius to Fahrenheit (MSC023=2.p)
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I built-in theory symbols
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Celsius to Fahrenheit (proof)
I Equality resolution
I Constrained resolution
I Evaluation
I We get a solution

./vampire MSC023=2.p -uwa all

23. convert(X0,X1) | $sum($product(1.8,X0),32.0) != X1

24. ~convert(X0,451.0)

26. convert(X0,$sum($product(1.8,X0),32.0)) [eq res 23]

27. convert(X0,$sum(32.0,$product(1.8,X0))) [demod 26,4]

64. $sum(32.0,$product(1.8,X0)) != 451.0 [con res 27,24]

76. $quotient($sum(451.0,-32.0),1.8) != X0 [evaluation 64]

77. $quotient(419.0,1.8) != X0 [evaluation 76]

78. 232.778 != X0 [evaluation 77]

86. $false [equality resolution 78]
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The same in SMTLIB (MSC023=2.smt2)

I SMTLIB is a Lisp-like syntax

I We only support declare/assert commands

I Although support for incrementality is being added

(declare-fun convert (Real Real) Bool)

(assert (forall ((c Real) (f Real))

(=> (= (+ (* 1.8 c) 32.0) f) (convert c f))))

(assert (not (exists ((c Real)) (convert c 451.0))))

./vampire -uwa all --input_syntax smtlib2 MSC023=2.smt2
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Arbitrary First-Order Formulas

I A first-order signature (vocabulary): function symbols (including
constants), predicate symbols. Equality is part of the language.

I A set of variables.
I Terms are built using variables and function symbols. For

example, f (x) + g(x).
I Atoms, or atomic formulas are obtained by applying a predicate

symbol to a sequence of terms. For example, p(a, x) or
f (x) + g(x) ≥ 2.

I Formulas: built from atoms using logical connectives ¬, ∧, ∨,→,
↔ and quantifiers ∀, ∃. For example, (∀x)x = 0 ∨ (∃y)y > x .



Clauses

I Literal: either an atom A or its negation ¬A.
I Clause: a disjunction L1 ∨ . . . ∨ Ln of literals, where n ≥ 0.

I Empty clause, denoted by �: clause with 0 literals, that is, when
n = 0.

I A formula in Clausal Normal Form (CNF): a conjunction of
clauses.

I A clause is ground if it contains no variables.
I If a clause contains variables, we assume that it implicitly

universally quantified. That is, we treat p(x) ∨ q(x) as
∀x(p(x) ∨ q(x)).



Clauses

I Literal: either an atom A or its negation ¬A.
I Clause: a disjunction L1 ∨ . . . ∨ Ln of literals, where n ≥ 0.
I Empty clause, denoted by �: clause with 0 literals, that is, when

n = 0.

I A formula in Clausal Normal Form (CNF): a conjunction of
clauses.

I A clause is ground if it contains no variables.
I If a clause contains variables, we assume that it implicitly

universally quantified. That is, we treat p(x) ∨ q(x) as
∀x(p(x) ∨ q(x)).



Clauses

I Literal: either an atom A or its negation ¬A.
I Clause: a disjunction L1 ∨ . . . ∨ Ln of literals, where n ≥ 0.
I Empty clause, denoted by �: clause with 0 literals, that is, when

n = 0.
I A formula in Clausal Normal Form (CNF): a conjunction of

clauses.

I A clause is ground if it contains no variables.
I If a clause contains variables, we assume that it implicitly

universally quantified. That is, we treat p(x) ∨ q(x) as
∀x(p(x) ∨ q(x)).



Clauses

I Literal: either an atom A or its negation ¬A.
I Clause: a disjunction L1 ∨ . . . ∨ Ln of literals, where n ≥ 0.
I Empty clause, denoted by �: clause with 0 literals, that is, when

n = 0.
I A formula in Clausal Normal Form (CNF): a conjunction of

clauses.
I A clause is ground if it contains no variables.
I If a clause contains variables, we assume that it implicitly

universally quantified. That is, we treat p(x) ∨ q(x) as
∀x(p(x) ∨ q(x)).



Outline

Preliminaries

Theorem-Proving Workflow

A Static View: Inferences, Soundness, and Completeness

A Dynamic View: Saturation

Making It Fast in Practice



What an Automatic Theorem Prover is Expected to Do

Input:

I a set of axioms (first order formulas) or clauses;
I a conjecture (first-order formula or set of clauses).

Output:

I proof (hopefully).



Proof by Refutation

Given a problem with axioms and assumptions F1, . . . ,Fn and
conjecture G,

1. negate the conjecture;
2. establish unsatisfiability of the set of formulas F1, . . . ,Fn,¬G.

Thus, we reduce the theorem proving problem to the problem of
checking unsatisfiability.

In this formulation the negation of the conjecture ¬G is treated like
any other formula. In fact, Vampire (and other provers) internally treat
conjectures differently, to make proof search more goal-oriented.
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General Scheme in One Slide

I Read a problem P
I Preprocess the problem: P =⇒ P ′

I Convert P ′ into Clause Normal Form N
I replacing connectives, formula naming, distributive laws
I Skolemisation

I Run a saturation algorithm on it, try to derive �.
I computes a closure of N with respect to an inference system
I logical calculus: resolution + superposition

I If � is derived, report the result, maybe including a refutation.

Trying to derive � using a saturation algorithm is the hardest part,
which in practice may not terminate or run out of memory.
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A Bit More on the CNF Transformation
I replacing unwanted connectives:

A↔ B =⇒ (A→ B) ∧ (B → A)
A→ B =⇒ ¬A ∨ B
¬(A ∨ B) =⇒ ¬A ∧ ¬B

. . .

I distributive laws:

(A ∧ B) ∨ (C ∧ D) =⇒ (A ∨ C) ∧ (A ∨ D) ∧ (B ∨ C) ∧ (B ∨ D)

I formula naming (recall Tseitin / Pleisted-Greenbaum):

(A ∧ B) ∨ (C ∧ D) =⇒ (FAB ∨ (C ∧ D)) ∧ (FAB → A) ∧ (FAB → B)

I Skolemisation on an example

∀x [x 6= 0→ ∃y(x · y = 1)] =⇒ x 6= 0→ x · sky (x) = 1
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Lets quickly have a look

./vampire --mode clausify PUZ031+1.p
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Inference System

‘
I An inference has the form

F1 . . . Fn

G
,

where n ≥ 0 and F1, . . . ,Fn,G are formulas.
I The formula G is called the conclusion of the inference;
I The formulas F1, . . . ,Fn are called its premises.
I An inference rule R is a set of inferences.
I Every inference I ∈ R is called an instance of R.
I An Inference system I is a set of inference rules.



Derivation, Proof

I Derivation in an inference system I:
a DAG built from inferences in I.

I Derivation of E from E1, . . . ,Em: a finite derivation of E whose
every leaf is one of the expressions E1, . . . ,Em and the root of
which is is E .

I A refutation is a derivation of the empty clause �.



Binary Resolution Inference System

The binary resolution inference system, denoted by BR is an
inference system on propositional clauses (or ground clauses).
It consists of two inference rules:

I Binary resolution, denoted by BR:

p ∨ C1 ¬p ∨ C2

C1 ∨ C2
(BR).

I Factoring, denoted by Fact:

L ∨ L ∨ C
L ∨ C

(Fact).



Soundness

I An inference is sound if the conclusion of this inference is a
logical consequence of its premises.

I An inference system is sound if every inference rule in this
system is sound.

BR is sound.

Consequence of soundness: let S be a set of clauses. If � can be
derived from S in BR, then S is unsatisfiable.
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Example

Consider the following set of clauses

{¬p ∨ ¬q, ¬p ∨ q, p ∨ ¬q, p ∨ q}.

The following derivation derives the empty clause from this set:

p ∨ q p ∨ ¬q
p ∨ p (BR)

p (Fact)

¬p ∨ q ¬p ∨ ¬q
¬p ∨ ¬p (BR)

¬p (Fact)

�
(BR)

Hence, this set of clauses is unsatisfiable.



Can this be used for checking (un)satisfiability?

1. What if the empty clause cannot be derived from S?
2. How can one systematically search for possible derivations of the

empty clause?

Completeness.
Let S be an unsatisfiable set of clauses. Then there exists a
derivation of � from S in BR.

In other words, BR is complete.
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Idea of Saturation

Completess is formulated in terms of derivability of the empty clause
� from a set S0 of clauses in an inference system I. However, this
formulations gives no hint on how to search for such a derivation.

Idea:

I Take a set of clauses S (the search space), initially S = S0.
Repeatedly apply inferences in I to clauses in S and add their
conclusions to S, unless these conclusions are already in S.

I If, at any stage, we obtain �, we terminate and report
unsatisfiability of S0.
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Saturation Algorithm

A saturation algorithm tries to saturate a set of clauses with respect to
a given inference system.
In theory there are three possible scenarios:

1. At some moment the empty clause � is generated, in this case
the input set of clauses is unsatisfiable.

2. Saturation will terminate without ever generating �, in this case
the input set of clauses in satisfiable.

3. Saturation will run forever, but without generating �. In this case
the input set of clauses is satisfiable.



Saturation Algorithm in Practice

In practice there are three possible scenarios:

1. At some moment the empty clause � is generated, in this case
the input set of clauses is unsatisfiable.

2. Saturation will terminate without ever generating �, in this case
the input set of clauses in satisfiable.

3. Saturation will run until we run out of resources, but without
generating �. In this case it is unknown whether the input set is
unsatisfiable.



Inference Selection by Clause Selection
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Saturation with the Given-Clause Algorithm
Even when we implement inference selection by clause selection,
there are too many inferences, especially when the search space
grows.

Solution: only apply inferences to the selected clause and the
previously selected clauses.

Active b Passive

U
n
p
ro
ce
ss
ed

Thus, the search space is divided in two parts:
I active clauses, that participate in inferences;
I passive clauses, that do not participate in inferences.

Observation: the set of passive clauses is usually considerably larger
than the set of active clauses, often by 2-4 orders of magnitude
(depending on the saturation algorithm and the problem).
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Making It Fast in Practice

I Literal selection and ordering constraints
I Redundancy elimination and simplifications
I Saturation loop variants
I Clause selection heuristics
I The AVATAR architecture
I Portfolio mode
I Efficient data structures: term sharing, indexing, ...
I . . .



Selection Function

A literal selection function selects literals in a clause.

I If C is non-empty, then at least one literal is selected in C.

We denote selected literals by underlining them, e.g.,

p ∨ ¬q

Note: selection function does not have to be a function. It can be any
oracle that selects literals.
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Binary Resolution with Selection

We introduce a family of inference systems, parametrised by a literal
selection function σ.
The binary resolution inference system, denoted by BRσ, consists of
two inference rules:

I Binary resolution, denoted by BR

p ∨ C1 ¬p ∨ C2

C1 ∨ C2
(BR).

I Positive factoring, denoted by Fact:

p ∨ p ∨ C

p ∨ C
(Fact).

Completeness considerations!
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The Main Rule for Dealing with Equality

Superposition:

l = r ∨ C s[l ′] = t ∨ D

(s[r ] = t ∨ C ∨ D)θ
(Sup),

l = r ∨ C s[l ′] 6= t ∨ D

(s[r ] 6= t ∨ C ∨ D)θ
(Sup),

where

1. θ is an mgu of l and l ′;
2. l ′ is not a variable;
3. rθ 6� lθ;
4. tθ 6� s[l ′]θ.
5. . . .



Subsumption and Tautology Deletion

A clause is a propositional tautology if it is of the form p ∨ ¬p ∨ C,
that is, it contains a pair of complementary literals.

There are also equational tautologies, for example
a 6= b ∨ b 6= c ∨ f (c, c) ' f (a,a).

A clause C subsumes clause D
if there is a substitution σ such that Cσ ⊂ D

It was known since 1965 that
Subsumed clauses and tautologies can be removed from
the search space.

State of the art:
I they fall under the general notion of redundancy
I redundant clauses can be removed without compromising

completeness
I substantial part of prover’s work spent on redundancy elimination
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Generating and Simplifying Inferences

An inference

C1 . . . Cn

C
.

is called simplifying if at least one premise Ci becomes redundant
after the addition of the conclusion C to the search space. We then
say that Ci is simplified into C.
A non-simplifying inference is called generating.

Note. The property of being simplifying is undecidable. So is the
property of being redundant. So in practice we employ sufficient
conditions for simplifying inferences and for redundancy.

Idea: try to search eagerly for simplifying inferences bypassing the
strategy for inference selection.
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Generating and Simplifying Inferences

Two main implementation principles:

apply simplifying inferences
eagerly;

apply generating inferences
lazily.

checking for simplifying
inferences should pay off;

so it must be cheap.



Redundancy Checking

Redundancy-checking occurs upon addition of a new child C. It
works as follows

I Retention test: check if C is redundant.
I Forward simplification: check if C can be simplified using a

simplifying inference.
I Backward simplification: check if C simplifies or makes

redundant an old clause.



Examples

Retention test:

I tautology-check;
I subsumption.

(A clause C subsumes a clause D if there exists a substitution θ such
that Cθ is a submultiset of D.)

Simplification:

I demodulation (forward and backward);
I subsumption resolution (forward and backward).



Some redundancy criteria are expensive

I Tautology-checking is based on congruence closure.
I Subsumption and subsumption resolution are NP-complete.



Observations

I There may be chains (repeated applications) of forward
simplifications.

I After a chain of forward simplifications another retention test can
(should) be done.

I Backward simplification is often expensive.
I In practice, the retention test may include other checks, resulting

in the loss of completeness, for example, we may decide to
discard too heavy clauses.
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How to Design a Good Saturation Algorithm?

A saturation algorithm must be fair: every possible generating
inference must eventually be selected.

Two main implementation principles:

apply simplifying inferences
eagerly;

apply generating inferences
lazily.

checking for simplifying
inferences should pay off;

so it must be cheap.



Given Clause Algorithm (no Simplification)

input: init : set of clauses;
var active, passive, queue: sets of clauses;
var current : clauses ;
active := ∅;
passive := init;
while passive 6= ∅ do

* current := select(passive); (* clause selection *)
move current from passive to active;

* queue:=infer(current , active); (* generating inferences *)
if � ∈ queue then return unsatisfiable;
passive := passive ∪ queue

od;
return satisfiable



Given Clause Algorithm (with Simplification)

In fact, there is more than one . . .

unprocessed clauses and kept (active and passive) clauses

--saturation algorithm {lrs,otter,discount}
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Otter vs. Discount Saturation

Otter saturation algorithm:

I active clauses participate in generating and simplifying
inferences;

I passive clauses participate in simplifying inferences.

Discount saturation algorithm:

I active clauses participate in generating and simplifying
inferences;

I passive clauses do not participate in inferences.



Otter vs. Discount Saturation, Newly Generated
Clauses

Otter saturation algorithm:

I active clauses participate in generating and simplifying
inferences;

I new clauses participate in simplifying inferences;
I passive clauses participate in simplifying inferences.

Discount saturation algorithm:

I active clauses participate in generating and simplifying
inferences;

I new clauses participate in simplifying inferences;
I passive clauses do not participate in inferences.



Age-Weight Ratio

How to select nice clauses?

I Small clauses are nice.
I Selecting only small clauses can postpone the selection of an old

clause (e.g., input clause) for too long, in practice resulting in
incompleteness.

Solution:

I A fixed percentage of clauses is selected by weight, the rest are
selected by age.

I So we use an age-weight ratio a : w : of each a + w clauses
select a oldest and w smallest clauses.
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unreachable by the end of the time limit and remove them from the
search space.
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Vampire – Portfolio mode (a.k.a. CASC mode)

I a conditional portfolio mode
I a cocktail of a strategies optimized for good general performance
I incomplete strategies in the mix; complementarity for coverage
I --mode casc (there is also --mode casc_sat)
I The schedule is 5+ minutes long (use with -t 5m)
I --cores <number> for executing in parallel
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Making It Fast in Practice

I Literal selection and ordering constraints
I Redundancy elimination and simplifications
I Saturation loop variants
I Clause selection heuristics
I The AVATAR architecture
I Portfolio mode
I Efficient data structures: term sharing, indexing, ...
I . . .
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that is, it contains a pair of complementary literals.
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if there is a substitution σ such that Cσ ⊂ D
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is called simplifying if at least one premise Ci becomes redundant
after the addition of the conclusion C to the search space. We then
say that Ci is simplified into C.
A non-simplifying inference is called generating.

Note. The property of being simplifying is undecidable. So is the
property of being redundant. So in practice we employ sufficient
conditions for simplifying inferences and for redundancy.

Idea: try to search eagerly for simplifying inferences bypassing the
strategy for inference selection.
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Generating and Simplifying Inferences

Two main implementation principles:

apply simplifying inferences
eagerly;
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checking for simplifying
inferences should pay off;

so it must be cheap.



Redundancy Checking

Redundancy-checking occurs upon addition of a new child C. It
works as follows
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I There may be chains (repeated applications) of forward
simplifications.

I After a chain of forward simplifications another retention test can
(should) be done.

I Backward simplification is often expensive.
I In practice, the retention test may include other checks, resulting

in the loss of completeness, for example, we may decide to
discard too heavy clauses.
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AVATAR

Laura Kovacs and Andrei Voronkov
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AVATAR

Advanced
Vampire
Architecture for
Theories
And
Resolution

Definitions of Avatar (from various dictionaries):

Science Fiction: a hybrid creature, composed of
human and alien DNA and remotely controlled
by the mind of a genetically matched human
being

Hindu Mythology: the descent of a deity to the
earth in an incarnate form or some manifest
shape; the incarnation of a god

Automated Reasoning: a SAT solver embodied
in a first-order theorem prover and in fact
controlling its behaviour
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Summary

I Original motivation: problems having clauses containing
propositional variables and other clauses that can be split into
components with disjoint sets of variables.

I Previously: splitting.
I New architecture: a superposition theorem prover tightly

integrated with a SAT or an SMT solver.
I Emerging: reasoning with both quantifiers and theories.

Laura Kovacs and Andrei Voronkov AVATAR
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Superposition Provers vs. SAT solvers
(Saturation Algorithms vs. DPLL)

Resolution Prover:

A ∨ B

subsumption

A ∨ ¬B
¬A ∨ B

subsumption

¬A ∨ ¬B

subsumption
A (resolution)
B (resolution)
¬B (resolution)
� (resolution)

SAT solver:

A ∨ B
A ∨ ¬B
¬A ∨ B
¬A ∨ ¬B

A (decision)
� (unit propagation)
¬A (learned clause)
� (unit propagation, UNSAT!)
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Search Space in Saturation Algorithms
Illustrated using bacteria.

In the beginning . . .

precisionnutrition.com
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After a few steps . . .

and notice long clauses

urbanext.illinois.edu
Laura Kovacs and Andrei Voronkov AVATAR



6

Search Space in Saturation Algorithms
After a few steps . . . and notice long clauses

a
∨

b
∨

c
∨

d
∨

e
∨

f

u
∨

v ∨
x ∨

y ∨
z

urbanext.illinois.edu
Laura Kovacs and Andrei Voronkov AVATAR



6

Search Space in Saturation Algorithms
After a few steps . . . and notice long clauses
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∨
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∨
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Available RAM
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Search Space in Saturation Algorithms
After a few more steps . . .

Out of memory and notice the CPU
temperature . . .
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Reality of Superposition Theorem Proving

I Growing search spaces.
I Repeated applications of algorithms whose complexity depends

on clause sizes: resolution, superposition, demodulation, KBO
comparison, subsumption.

I Long clauses are a problem (produce even longer clauses,
(subsumption is NP-complete).

Laura Kovacs and Andrei Voronkov AVATAR
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Long Clauses

Example: resolving
p(x, f (y)) ∨ p(f (x), y) ∨ p(g(x, z), f (f (y))) ∨ ¬p(g(z, z), g(y, f (x))) ∨
p(f (a, x), g(z, g(y, z))) ∨ ¬p(x, y) ∨ p(f (y), z)
against
¬p(f (w), v) ∨ p(f (v),w) ∨ p(g(v, u), f (f (w))) ∨ ¬p(g(u, u), g(w, f (v))) ∨
p(f (a, v), g(u, g(w, u))) ∨ ¬p(v,w) ∨ p(f (w), u)

gives
p(f (f (w)), y) ∨ p(g(f (w), z), f (f (y))) ∨ ¬p(g(z, z), g(y, f (f (w)))) ∨
p(f (a, f (w)), g(z, g(y, z))) ∨ ¬p(f (w), y) ∨ p(f (y), z) ∨ p(f (f (y)),w) ∨
p(g(f (y), u), f (f (w))) ∨ ¬p(g(u, u), g(w, f (f (y)))) ∨
p(f (a, f (y)), g(u, g(w, u))) ∨ ¬p(f (y),w) ∨ p(f (w), u).

Laura Kovacs and Andrei Voronkov AVATAR
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Long Clauses

Does
p(f (f (w)), y) ∨ p(g(f (w), z), f (f (y))) ∨ ¬p(g(z, z), g(y, f (f (w)))) ∨
p(f (a, f (w)), g(z, g(y, z))) ∨ ¬p(f (w), y) ∨ p(f (y), z) ∨ p(f (f (y)),w) ∨
p(g(f (y), u), f (f (w))) ∨ ¬p(g(u, u), g(w, f (f (y)))) ∨
p(f (a, f (y)), g(u, g(w, u))) ∨ ¬p(f (y),w) ∨ p(f (w), u)
subsume
p(g(f (y), u), f (f (g(x, y)))) ∨ p(f (f (g(x, y))), y) ∨ p(f (y), z) ∨
p(f (f (y)),w) ∨ p(g(f (g(x, y)), z), f (f (y))) ∨ p(f (g(x, y)), u) ∨
¬p(g(z, z), g(y, f (f (g(x, y))))) ∨ p(f (a, f (g(x, y))), g(z, g(y, z))) ∨
¬p(f (g(x, y)), y) ∨ p(f (y), z) ∨ p(f (f (y)), g(x, y)) ∨
¬p(g(u, u), g(g(x, y), f (f (y)))) ∨ p(f (a, f (y)), g(u, g(g(x, y), u))) ∨
¬p(f (y), g(x, y))
???

Laura Kovacs and Andrei Voronkov AVATAR



11

Basis for DPLL

Consider a propositional set of clauses S ∪ {C1 ∨ . . . ∨ Cn}.

S ∪ {C1 ∨ . . . ∨ Cn} is unsatisfiable if and only if each of the sets

S ∪ {C1}
· · ·
S ∪ {Cn}

is unsatisfiable too.

Cannot be used in first-order logic:

I {p(x) ∨ q(x),¬p(a),¬q(b)} is satisfiable
I Both {p(x),¬p(a),¬q(b)} and {q(x),¬p(a),¬q(b)} are

unsatisfiable.

Can be used when C1, . . . ,Cn have pairwise disjoint sets of variables.
Problem: rigid variables.

Laura Kovacs and Andrei Voronkov AVATAR
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Attempts to make a First-Order Analogue of
DPLL
Some of the recent work on first-order DPLL and instance-based calculi:

I Peter Baumgartner. FDPLL - A First Order
Davis-Putnam-Longeman-Loveland Procedure. CADE 2000

I Reinhold Letz, Gernot Stenz. Automated Theorem Proving Proof and
Model Generation with Disconnection Tableaux. LPAR 2001

I Peter Baumgartner, Cesare Tinelli. The Model Evolution Calculus.
CADE 2003

I Harald Ganzinger, Konstantin Korovin. New Directions in
Instantiation-Based Theorem Proving. LICS 2003

Splitting:
I Christoph Weidenbach. Combining Superposition, Sorts and Splitting.

Handbook of Automated Reasoning 2001
I Alexandre Riazanov, Andrei Voronkov. Splitting Without Backtracking.

IJCAI 2001
I Krystof Hoder, Andrei Voronkov. The 481 Ways to Split a Clause and

Deal with Propositional Variables. CADE 2013
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Components, Splitting

Let C1, . . . ,Cn be clauses with pairwise disjoint sets of variables,
n ≥ 2.

The clause D def
= C1 ∨ . . . ∨ Cn can be split into C1, . . . ,Cn.

A component is a non-empty clause which cannot be split.

Every non-empty clause has a unique splitting into components.

Previous implementations:

I Splitting with backtracking (hard to implement, moderate
improvement);

I Splitting without backtracking (rarely improves);

Laura Kovacs and Andrei Voronkov AVATAR
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Splitting With Backtracking

A ∨ B
A ∨ ¬B
¬A ∨ B
¬A ∨ ¬B

And so on . . .
I Too many steps (for this example);
I Backtracking is expensive
I Exploits too many branches . . .

I Similar to the original DPLL . . . yet without unit propagation
I Generally behaves well

Laura Kovacs and Andrei Voronkov AVATAR
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Superposition for Clauses with Assertions

The standard superposition calculus

, with assertions inherited from
premises.

l = r ∨ D1

| {C1}

s[l′] = t ∨ D2

| {C2}

(s[r] = t ∨ D1 ∨ D2)θ

| {C1,C2}

(Sup).
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AVATAR

A SAT solver, which treats a component as a propositional variable.

Initial clauses
p(a) q(b) ¬p(x) ∨ ¬q(y)

FO Frozen SAT

Splitter Current model
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2↔ (∀y)¬q(y)

Current model
¬1
2
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p(a) {}
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Splitter
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2↔ (∀y)¬q(y)
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AVATAR and Vampire

Notice the Vampire logo . . .
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Notice the Vampire logo . . .
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Problems

Implementing AVATAR heavily affects the saturation algorithm,
redundancy and indexing.

I Clause deletion and restoration via frozen clauses;
I Redundancy checking;
I Indexing with frozen clauses.

Laura Kovacs and Andrei Voronkov AVATAR
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First Results

I Test after the very first implementation (2011?) : we proved over
400 TPTP problems previously unsolved by any prover
(including Vampire), probably unmatched since the TPTP
appeared.

I About 5-10% increase on the number of problems solved by a
single strategy.

I All splitting options and a lot of hard-to-maintain code removed
from Vampire.
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Recent Result: a Semigroup Partition Problem

Problem ALG013-1 in TPTP.

Laura Kovacs and Andrei Voronkov AVATAR
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Thierry Coquand

I looked back at my notes. The goal was to analyze the proof that a
compact semigroup has a fixed point. (In the finite case, there is a
direct proof.) As shown by {1, 2, 3, } this is not valid in general. I
wanted an effective version in the case of a compact totally
disconnected semigroup. In this case, if we have x2 <> x for all x, we
get a finite partition A1, . . . ,An where Ai · Ai is disjoint from Ai. Can we
find such a partition in general? This is now a first-order statement
with no finite model. For n = 2, there is a simple direct proof that this
is not possible. For n = 3, I could not do it, so I asked Koen if he
could do it automatically (May 26 2003). He answered at once that
Gandalf was able to do it in 24 seconds on his machine. For n = 4,
one should try the more general statement

A1(x) ∧ A1(y) → A2(x · y) ∨ A3(x · y) ∨ A4(x · y)
A2(x) ∧ A2(y) → A1(x · y) ∨ A3(x · y) ∨ A4(x · y)
A3(x) ∧ A3(y) → A1(x · y) ∨ A2(x · y) ∨ A4(x · y)
A4(x) ∧ A4(y) → A1(x · y) ∨ A2(x · y) ∨ A3(x · y)

Laura Kovacs and Andrei Voronkov AVATAR
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The Semigroup Partition Proof
Inferences just before the very last one. . .
727706. c2(f(a3,f(a4,a4))) | c2(f(a3,f(a4,a4))) {5688} (26:13) [forward demodulation 561922,1]
727707. c2(f(a3,f(a4,a4))) {5688} (26:7) [duplicate literal removal 727706]
727720. d2(f(a3,f(a4,f(a4,f(a3,a4))))) | c2(f(a3,f(a4,a4))) {218, 5401} (25:18) [subsumption resolution
220373,6400]
728355. c2(f(a4,f(f(a3,a4),X8))) | c2(f(a3,f(a4,a4))) | d1(X8) {218, 5689} (26:18) [subsumption resolution
659376,6400]
728356. c2(f(a4,f(a3,f(a4,X8)))) | c2(f(a3,f(a4,a4))) | d1(X8) {218, 5689} (26:18) [forward demodulation
728355,1]
728408. c2(f(a3,f(a4,a3))) | c2(f(a3,f(a4,a4))) {5400} (25:13) [forward demodulation 220226,1]
728409. $false {53, 1350, 3434} (16:3) [subsumption resolution 233789,37927]
729294. d1(X3) | c1(f(a4,f(a4,X3))) | c1(a1) {622} (24:11) [resolution 18631,2325]
729349. d1(X3) | c1(f(a4,f(a4,X3))) {622} (24:9) [subsumption resolution 729294,9]
731025. c2(f(a4,f(f(a4,f(a1,a4)),a4))) {452, 2452} (18:12) [resolution 91317,12597]
731082. c2(f(a4,f(a4,f(f(a1,a4),a4)))) {452, 2452} (18:12) [forward demodulation 731025,1]
731083. c2(f(a4,f(a4,f(a1,f(a4,a4))))) {452, 2452} (18:12) [forward demodulation 731082,1]
731199. d2(f(a1,f(a1,a4))) | d2(f(a1,a3)) {1785, 7903} (26:12) [subsumption resolution 566737,52555]
731200. d2(f(a1,f(a1,a4))) {124, 1785, 7903} (26:9) [subsumption resolution 731199,5387]
731903. c2(f(a1,f(f(a1,a4),a4))) {452, 890} (26:10) [resolution 26604,12597]
731953. c2(f(a1,f(a1,f(a4,a4)))) {452, 890} (26:10) [forward demodulation 731903,1]
737309. c1(f(a1,f(a1,f(a4,f(a4,a3))))) {602, 1908} (22:12) [resolution 54000,18255]
740261. c2(f(a3,f(a4,a4))) | c2(f(a4,f(a1,a3))) {54, 4050} (26:14) [resolution 142021,118608]
745106. c2(f(a4,a3)) | c1(f(a4,a3)) | c2(f(a4,f(a4,a3))) {225, 7196} (20:16) [resolution 271392,6524]
753227. d1(X16) | c2(f(a1,f(a4,f(a4,a1)))) | c2(f(X16,a4)) {4692} (23:15) [resolution 183284,751]
753228. c2(f(a1,f(a4,f(a4,a1)))) | c2(f(a3,a4)) {4692} (23:13) [resolution 183284,752]
753294. d1(X16) | c2(f(X16,a4)) {760, 4692} (23:8) [subsumption resolution 753227,22552]
753295. c2(f(a3,a4)) {760, 4692} (23:6) [subsumption resolution 753228,22552]
753296. $false {218, 760, 4692} (23:3) [subsumption resolution 753295,6400]
765660. c2(f(a4,f(a3,f(a4,a3)))) {11638} (26:9) [resolution 579126,11]
767337. d2(X8) | c2(f(a1,f(a1,a4))) | c2(f(X8,f(a3,a4))) {11816} (27:15) [resolution 584412,704]
767451. d2(X8) | c2(f(X8,f(a3,a4))) {788, 11816} (27:10) [subsumption resolution 767337,23570]
768354. c2(f(a4,a3)) | c2(f(a4,f(a4,a3))) {225, 407, 7196} (20:13) [subsumption resolution 745106,11562]
768440. d2(f(a3,a4)) | d2(f(a4,f(a1,a1))) {4001, 4841} (19:12) [subsumption resolution 542877,195650]
768697. d1(f(a3,f(a4,f(a4,a3)))) | c1(f(a3,f(a4,f(a4,a3)))) {641, 5931} (29:18) [subsumption resolution
538829,19301]
770228. c2(f(a3,X0)) | c1(X0) | c2(X0) {1532, 1584} (25:10) [subsumption resolution 514531,41129]
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The Semigroup Partition Proof: The Last
Inference
772037. $false (0:0) [sat splitting refutation 322381,31135,511244,367817,65868,63149,61353,504668,123636,
23654,12834,23764,23766,118106,368552,99546,57496,65344,112646,133363,348639,153716,159265,98761,148710,
117176,519910,23731,584403,222823,593104,602542,270943,89534,155137,271783,133365,217863,177563,275097,368343,
425800,56830,64804,48880,577969,51824,133731,31734,281734,215549,210668,86895,219130,272445,471989,13224,
13137,14021,130752,321528,25940,230433,222045,222047,333490,323646,93106,9121,8372,121024,41038,351210,121706
,14032,48137,321427,272414,252891,367310,376394,38296,242860,125476,8106,54274,46574,26508,26509,378812,
231931,145002,51767,155658,71410,61253,65550,38287,68966,186165,119297,275530,47130,13256,99061,377570,103157,
133512,145397,335155,71145,320662,13131,18548,43984,18553,18552,141544,422592,227742,228357,142003,128063,
261294,262929,205815,349868,297981,451367,368371,191531,117314,63467,8605,452105,212948,278524,278532,41115,
450612,91346,54231,271154,54703,89897,87716,263017,6985,4280,58180,93680,62053,348469,119325,272181,107664,
23884,276808,320405,12298,12978,307233,277194,295329,65473,120055,102179,251668,104651,98133,61666,9386,
155151,225024,41501,5892,12641,53354,12977,90193,227337,40651,40872,58984,4946,61706,61893,42129,144604,155675,
12629,4475,118222,81240,91342,35421,12299,268689,31312,153612,71488,61738,24073,24142,247185,274573,137070,
57326,97119,12297,121972,78670,91178,137033,151266,20739,28612,37348,66071,94792,56734,134945,131024,233382,
71360,97126,268759,27961,40257,65847,40337,9309,61704,61680,61762,102095,126350,54,63544,226841,8920,168486,
76928,108583,238002,230182,90198,23334,124219,98293,14968,127202,71399,188782,221358,71940,186731,230066,56755,
93838,55145,127233,123609,71276,125637,45264,87418,90053,47033,275375,252142,18007,135833,168893,272078,275285,
71252,168347,270488,103021,87495,191677,191907,13090,167008,153719,221431,227326,38402,131360,190932,230465,
229496,61233,229797,68263,177040,271352,92865,131026,140144,47409,34984,31501,15002,221767,272280,40840,273184,
55560,279060,117316,63024,5269,91981,250636,226354,41731,234676,211896,164050,63549,97392,61609,122835,25373,
12699,12623,159674,223735,61932,165981,122469,9684,9681,9797,197830,276359,46972,48077,61726,164068,92834,
15958,233995,57977,104285,122918,274604,273904,31890,42262,46325,159989,73495,62342,46880,122944,6733,159153,
144882,8339,76159,164731,137845,113144,143938,161625,18423,177528,98289,10088,217489,122906,15567,10107,42886,
160185,20223,12521,90906,273895,142208,185942,125124,10961,44614,35897,59194,91588,43850,276786,223037,123211,
272222,147003,34269,104286,132413,20257,125518,19506,228225,230424,242308,241709,217398,20008,55748,134028,
31830,16861,8319,159151,131038,89781,159832,107207,130530,6990,130165,69100,177530,270866,122539,68597,255716,
262757,39263,186769,161159,161093,205902,50575,224565,66561,63022,225639,22752,230821,166254,91669,22693,17790,
43215,25091,180284,158830,127021,192963,275708,70772,41362,42845,197339,264347,138632,51069,37059,119536,
125128,5835,11554,7852,5876,166738,65487,124890,61669,158191,122544,155480,38871,159081,160489,17710,814,
225182,118374,98579,73576,143628,47539,93472,87224,94234,13216,48078,133198,50041,223813,187244,42211,15505,
20232,6794,16127,6833,52818,129493,117506,90661,90270,92228,244173,206502,206376,224913,91594,223035,79242,
79094,83689,133283,274259,269413,31445,266431,214517,37613,269919,251936,43181,139405,65022,91236,188654,
187243,71769,186748,9794,248064,58864,142787,55712,145004,119535,86598,90268,86634,118300,7572,7552,...

This is less than 1/20th of the inference
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Future

There is more to AVATAR:

I Giles Reger, Martin Suda, Andrei Voronkov. Playing with
AVATAR. CADE 2015

I Giles Reger, Dmitry Tishkovsky, Andrei Voronkov. Cooperating
Proof Attempts. CADE 2015

I SMT solver instead of SAT solver (VampireZ3)
I Arbitrary theory reasoning with quantifiers

Laura Kovacs and Andrei Voronkov AVATAR
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Interpolation
Theorem
Let R,B be closed formulas and let R ` B.

Then there exists a formula I such that
1. R ` I and I ` B;
2. every symbol of I occurs both in R and B;

Any formula I with this property is called an interpolant of R and B.
Essentially, an interpolant is a formula that is

1. intermediate in power between R and B;
2. Uses only common symbols of R and B.

Interpolation has many uses in verification.

When we deal with refutations rather than proofs and have an
unsatisfiable set {R,B}, it is convenient to use reverse interpolants of
R and B, that is, a formula I such that

1. R ` I and {I,B} is unsatisfiable;
2. every symbol of I occurs both in R and B;
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Interpolation Through Colors

I There are three colors: red, blue and grey.

I Each symbol (function or predicate) is colored in exactly one of
these colors.

I We have two formulas: R and B.
I Each symbol in R is either red or grey.
I Each symbol in B is either blue or grey.
I We know that ` R → B.
I Our goal is to find a grey formula I such that:

1. ` R → I;
2. ` I → B.
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Interpolation with Theories
I Theory T : any set of closed green formulas.
I C1, . . . ,Cn `T C denotes that the formula C1 ∧ . . . ∧ C1 → C

holds in all models of T .
I Interpreted symbols: symbols occurring in T .
I Uninterpreted symbols: all other symbols.

Theorem
Let R,B be formulas and let R `T B.

Then there exists a formula I such that
1. R `T I and I ` B;
2. every uninterpreted symbol of I occurs both in R and B;
3. every interpreted symbol of I occurs in B.

Likewise, there exists a formula I such that
1. R ` I and I `T B;
2. every uninterpreted symbol of I occurs both in R and B;
3. every interpreted symbol of I occurs in R.
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Local Derivations

A derivation is called local (well-colored) if each inference in it

C1 · · · Cn

C

either has no blue symbols or has no red symbols.
That is, one cannot mix blue and red in the same inference.



Local Derivations: Example

I R := ∀x(x = a)

I B := c = b
I Interpolant: ∀x∀y(x = y) (note: universally quantified!)



Local Derivations: Example

I R := ∀x(x = a)

I B := c = b
I Interpolant: ∀x∀y(x = y) (note: universally quantified!)

Non-local proof Local Proof

x =a
c=a

x =a
b=a

c=b c 6=b
⊥

x =a y =a
x = y c 6=b

y 6=b
⊥



Local Derivations: Example

I R := ∀x(x = a)

I B := c = b
I Interpolant: ∀x∀y(x = y) (note: universally quantified!)

Non-local proof

Local Proof

x =a
c=a

x =a
b=a

c=b c 6=b
⊥

x =a y =a
x = y c 6=b

y 6=b
⊥



Local Derivations: Example

I R := ∀x(x = a)

I B := c = b
I Interpolant: ∀x∀y(x = y) (note: universally quantified!)

Non-local proof Local Proof

x =a
c=a

x =a
b=a

c=b c 6=b
⊥

x =a y =a
x = y c 6=b

y 6=b
⊥



Shape of a local derivation



Symbol Eliminating Inference

I At least one of the premises is not grey.
I The conclusion is grey.

x = a y = a
x = y c 6= b

y 6= b
⊥



Extracting Interpolants from Local Proofs

G is in the digest:

- comes from a red block

- followed by a blue or grey block

or

- comes from a blue block

- followed by a red

G1
G2

G3

G4

Digest

Interpolant: boolean combination of {G1, . . . ,G4}
[McMillan05, KV09]
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Extracting Interpolants from Local Proofs

Theorem
Let Π be a local refutation. Then one can extract from Π in linear time
a reverse interpolant I of R and B. This interpolant is ground if all
formulas in Π are ground.

This reverse interpolant is a boolean
combination of conclusions of symbol-eliminating inferences of Π.
What is remarkable in this theorem:

I No restriction on the calculus (only soundness required) – can be
used with theories.

I Can generate interpolants in theories where no good
interpolation algorithms exist.
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Interpolation: Examples in Vampire

Our running example:

Local proof and interpolant: vampire interpol1.p

Non-local proof: vampire interpol2.p



Interpolation: Examples in Vampire

fof(fA,axiom, q(f(a)) & ˜q(f(b)) ).
fof(fB,conjecture, ?[V]: V != c).

Non-local proof: vampire interpol4.p



Interpolation: Examples in Vampire

% request to generate an interpolant
vampire(option,show_interpolant,on).
% symbol coloring
vampire(symbol,predicate,q,1,left).
vampire(symbol,function,f,1,left).
vampire(symbol,function,a,0,left).
vampire(symbol,function,b,0,left).
vampire(symbol,function,c,0,right).
% formula R
vampire(left_formula).

fof(fA,axiom, q(f(a)) & ˜q(f(b)) ).
vampire(end_formula).
% formula B
vampire(right_formula).

fof(fB,conjecture, ?[V]: V != c).
vampire(end_formula).

Local proof and interpolant: vampire interpol3.p
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Localizing Proofs

Task: eliminate non-local inferences

Idea: quantify away colored symbols
↓

Idea: colored symbols replaced by logical variables.

Cons: Comes at the cost of using extra quantifiers.

But we can minimise the number of quantifiers in the interpolant.

Given R(a) ` B where a is an uninterpreted constant not occurring in B.

Then, R(a) ` (∃x)R(x) and (∃x)R(x) ` B.

R1(a)

R2(a) B
A

R1(a)

(∃x)R2(x) B
A
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Minimizing Interpolants

Our Interest: Small Interpolants

I in size;
I in weight;
I in the number of quantifiers;
I . . .

Given ` R → B, find a grey formula I:

� ` R → I;

� ` I → B;

� I is small.
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Hercule Poirot:

It is the little GREY CELLS, mon ami, on which one must rely.

Mon Dieu, mon ami, but use your little GREY CELLS!
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Minimizing Interpolant

R3

R1 G1

G3

B1 G2

G4

G5

G6

R4

G7

⊥

Digest:

Reverse interpolant:
Note that the interpolant has changed from G4 → G7 to ¬G6.

I There is no obvious logical relation between G4 → G7 and ¬G6,
for example none of these formulas implies the other one;

I These formulas may even have no common atoms or no
common symbols.
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different slicing off transformations is 2n.
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Minimizing Interpolant
Solution:

I encode all sequences of transformations as an instance of SAT
I solutions encode all slicing off transformations

R
G1

B
G2

G3

G3, and at most one of G1,G2 can be sliced off.

¬sliced(G1)→ grey(G1)

sliced(G1)→ red(G1)

¬sliced(G3)→ grey(G3)

sliced(G3)→ (grey(G3)↔ grey(G1) ∧ grey(G2))

sliced(G3)→ (red(G3)↔ red(G1) ∨ red(G2))

sliced(G3)→ (blue(G3)↔ blue(G1) ∨ blue(G2))

digest(G1)→ ¬sliced(G1)

· · ·
digest(G3)↔ (rc(G3) ∧ rf(G3)) ∨ (bc(G3) ∧ bf(G3))

rc(G3)↔ (¬sliced(G3) ∧ (red(G1) ∨ red(G2))

· · ·
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Minimizing Interpolant
Solution:

I encode all sequences of transformations as an instance of SAT;

I solutions encode all slicing off transformations;

I compute small interpolants: smallest digest of grey formulas;

min{Gi1 ,...,Gin}

(∑
Gi

digest(Gi )
)

min{Gi1 ,...,Gin}

(∑
Gi

quantifier number(Gi) digest(Gi )
)

I use a pseudo-boolean optimisation tool or an SMT solver to
minimise interpolants;

I minimising interpolants is an NP-complete problem.
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Experiments with Small Interpolants

I Implemented in Vampire;

I We used Yices for solving pseudo-boolean constraints;

I Experimental results:

I 9632 first-order examples from the TPTP library:

for example, for 2000 problems the size of the interpolants became
20-49 times smaller;

I 4347 SMT examples:

I we used Z3 for proving SMT examples;
I Z3 proofs were localised in Vampire;
I small interpolants were generated for 2123 SMT examples.
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Quantifier Complexity of Interpolants

Local Proofs Do Not Always Exist

I R: (∀x)p(r , x)

I B: (∀y)¬p(y ,b)

I Reverse interpolant I of R and B: (∃y)(∀x)p(y , x).

I Note: R and B contain no quantifier alternations, yet I contains
quantifier alternations. One can prove that every interpolant of
this formula must have at least one quantifier alternation.

I There is no local refutation of R,B in the resolution/superposition
calculus.

I There is a non-local one:

p(r , x) ¬p(y ,b)

⊥
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Quantifier Complexity of Interpolants

Theorem There is no lower bound on the number of quantifier
alternations in interpolants of universal sentences.

That is, for every positive integer n there exist universal sentences
R,B such that {R,B} is unsatisfiable and every reverse interpolant of
R and B has at least n quantifier alternations.



Quantifier Complexity of Interpolants

Example

Take the formula A: ∀x1∃y1∀x1∃y2 . . . p(x1, y1, x2, y2, . . .) and let R be
obtained by skolemizing A and B be obtained by skolemizing ¬A:

R = ∀x1∀x2 . . . p(x1, r1(x1), x2, r2(x1, x2), . . .)

B = ∀y1∀y2 . . .¬p(b1, y1,b2(y1), y2, . . .)

I = ∀x1∃y1∀x2∃y2 . . . p(x1, y1, x2, y2, . . .)

There is no reverse interpolant with a smaller number of quantifier
alternations.

The resolution refutation consists of a single step deriving the empty
clause from R and B.
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Quantifier Complexity of Interpolants

Bad News for Local Proof Systems
Let S be an inference system with the following property: for every
red formula R and blue formula B, if {R,B} is unsatisfiable, then
there is a local refutation of R,B in S.

Then the number of quantifier alternations in refutations of universal
formulas of S is not bound by any positive integer.



Quantifier Complexity of Interpolants

I There is no bound on the number of quantifier alternations in
reverse interpolants of universal formulas.

I Any complete local proof system for first-order predicate logic
must have inferences dealing with formulas of an arbitrary
quantifier complexity, even if the input formulas have no
quantifier alternations.

I There is no simple modification of the superposition calculus for
logic with/without equality in which every unsatisfiable formula
has a local refutation.
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