Multi-directional interest propagation in ontology based UM

Goal

The goal is to address the **cold-start** and the **sparsity** problem in recommender systems, by allowing interest propagation from a small number of initial concepts to other related domain concepts.

Multi-directional Propagation

We propose a multi-directional propagation process taking into account:

- 1. ontological structure of the domain
- 2. type and the amount of feedbacks
- 3. context-dependance, that allows to change the propagation according to various contexts for specific applications;
- 4. ontology modification support, i.e. the possibility to add or remove a node in the ontology.

Properties

The propagation algorithm is built to allow:

- 1. The possibility of isolating every node contribute
- 2. A balanced propagation ratio from every node
- 3. The possibility of modifying the ontology without loosing information

Evaluation

-0.4

-0.2

For this test we collected a total of 7854 ratings and calculated Spearman's rank correlation ρ coefficient for 231 pairs of lists (list obtained from half of the user's ratings vs list generated on the basis of the other half).

Downward propagation and Upward propagation: We compare this new approach which our older approach that propagates only vertically. In both cases the multi-directional approach works much better.

After 34 user feedbacks: We were able to generate the lists with $\rho \ge 0.5$ in 61% of the cases and $\rho \ge 0.7$ in 34% of the cases . We had no cases with a moderate or severe inverse correlation with the user preference and just 3.5% of cases with negative ρ .

Upward Propagation % of cases vertical 20% of cases multi-16% directional 12% 8% 4% 0.2 0.6 -0.6 -0.4 -0.2 0.4 0.8

Integration with properties propagation [2]

- Semantic Relationships correction
- Short/Long term interests

Future Developments

Downward Propagation

0.2

0

References:

[1] Cena, F., Likavec, S., Osborne, F.: Propagating user interests in ontology-based user model. In AI*IA 2011, Palermo, Italy, (2011).

[2] Cena, F., Likavec, S., Osborne, F.: Property-based interest propagation in ontology-based user model. In UMAP 2012, Monreal, Canada, (2012).

[3] Cena, F., Likavec, S., Osborne, F.: Anisotropic propagation of user interests in ontology-based user models. Submitted to Information Sciences.

0.6

0.8

0.4