Towards Inconsistency Detection During the Design Phase of Automation Systems Engineering Projects

PhD student: Olga Kovalenko

Christian Doppler Laboratory for Software Engineering Integration for Flexible Automation Systems

Challenges
- Complex, software-intensive and changeable environment
- Participants originate from different engineering disciplines
- Different backgrounds
- Dissimilar terminology and workflows
- Various engineering tools and formats for data representation, storage and exchange
- Project data is dispersed through a variety of heterogeneous data sources
- Relations and dependencies between design artifacts are not explicitly captured

Context and Motivation

- How to ensure consistency of heterogeneous design data across the whole project?
- Interdisciplinary Inconsistencies in Design Data

- Require analysis of heterogeneous data produced by different tools and stored in dissimilar data formats to identify them
- Usually their identification has to be done manually by project engineers, which is time and effort consuming and error-prone task
- If not identified on early stages can potentially lead to costly corrections during commission or even failures during operation

Solution: Knowledge-Based Approach

- Each tool ontology captures data format and terminology of concrete tool.
- Domain ontologies generalize differences between different tools used in given domain.
- Global project ontology contains only knowledge that is important to represent the interconnections between data from different disciplines and tools.

A set of mappings is determined between each tool ontology and corresponding domain ontology, as well as between each domain ontology and project ontology.

Research Contributions & Challenges

Contributions:

1. Representation of design knowledge in knowledge base, determination and explicit specification of interrelations between content of different design artefacts through mappings.
2. Providing a technique for effective querying of knowledge-base in order to check the consistency of project design data.
3. Identification of a set of checks that will be useful towards consistency checking and inconsistencies detection in a wide range of ASE projects.

Challenges:

1. Semantic heterogeneity.
2. Struggling with complexity: finding a compromise between completeness of knowledge and convenience of use.

Evaluation: Case Study Based on Data from Industry Partner

1. Background

- Signals are used as common concepts that link information across different engineering disciplines.
- Signals include process interfaces (e.g., wiring and piping), electrical signals (e.g., voltage levels), and software I/O variables.
- Main target is to integrate signals from different tools and to ensure their consistency across the engineering project.

2. Input Data

- Output signals from 2 engineering tools (stored in Excel spreadsheets).
- Data transformations (based on discussion with domain experts)

3. Possible checks

- “Integration test” - whether all sensors are properly wired and connected to appropriate software variables.
- Within one signal - e.g., identifying of missing hardware address.
- Within set of signals - e.g., checking whether all signals that belong to a specific device have the same value in "location" field.

Contact: Olga Kovalenko
E: kovalenko@ifs.tuwien.ac.at
http://cdl ifs.tuwien.ac.at

Institute of Software Technology and Interactive Systems (ISIS)
Vienna University of Technology