

Formal Modeling of Semantic Based Cooperative Ubicomp Services

Mohamed Hilia, Abdelghani Chibani, Yacine Amirat and Karim Djouani

LISSI Laboratory Paris-Est Créteil University, France

 $p(x) :: P \Longrightarrow Q$

 $p(x) :: P \Longrightarrow Q$

Q: Effects

Problem Statement

- Semantic service composition to build complex applications that run in multi domain environments
- The cooperation between heterogeneous service-oriented ubiquitous computing domains
- How to proof the *composability* of complex services composition schemas

Approach Overview

- Semantic formalization of multi domain service composition based on Constructive Description Logic (BCDL0):
 - Cooperation ontology
 - E-Contract (Services enactments)
- Functional and non-functional view-based modeling of services
- Implementation of the formal proof of "Service composition soundness" by using Isabelle/HOL theorem proving tool
- Hybrid composition approach that preserves the autonomy and confidentiality of the local domains.

Multi Domain Semantic Services Composition Framework

Composition Methodology

- Semantic Description of the cooperation
- **Consistency Checking**
- Local Process Views Creation
- BCDL0 specification of views composition
- Encoding & Soundness proof in Isabelle-HOL
- Grounding: Mapping Views to Concrete Services, Services choreography, WS-Management and SPML standards

Why BCDL0?

- BCDLO has been used by Bozzato et al [1] to formalize information services composition using three composition operators
- BCDLO, is a subsystem of the constructive description logic BCDL that is used to make constructive interpretation of ALC formulas.

 $C, D := A \mid \neg C \mid C \sqcup D \mid C \sqcap D \mid \exists R. C \mid \forall R. C$ Where $C, D \in NC$ and $R \in NR$. The generated formulas are as follows:

> $K := \bot \mid t : C \mid A \sqsubseteq C \mid$ $(s, t): R \text{ where } s,t \in NI \cup Var$

• BCDLO: Semantics: BCDLO is based on the notion of information term [1]. Intuitively, an information term for a closed formula K is a structured object that provides a justification for the validity of K in a classical model. The information term is defined by induction on K:

> $IT_{\mathcal{N}}(K)$ $= \{tt\}, \text{ iff K is a closed formula}$ $IT_{\mathcal{N}}(c:C_1 \sqcap C_2) = \{(\alpha,\beta) | \alpha \in IT_{\mathcal{N}}(c:C_1) \text{ and } \beta \in IT_{\mathcal{N}}(c:C_2) \}$ $IT_{\mathcal{N}}(c: C_1 \sqcup C_2) = \{(k, \alpha) | k \in 1, 2 \text{ and } \alpha \in IT_{\mathcal{N}}(c: C_k)\}$ $IT_{\mathcal{N}}(c:\exists R.C) = \{(d,\alpha)|d \in \mathcal{N} \text{ and } \alpha \in IT_{\mathcal{N}}(d:C)\}$ $IT_{\mathcal{N}}(c: \forall R.C) = \{ \phi: \mathcal{N} \to \bigcup_{d \in \mathcal{N}} IT_{\mathcal{N}}(d:C) | \phi(d) \in IT_{\mathcal{N}}(d:C) \}$ $IT_{\mathcal{N}}(A \sqsubseteq C) = \{ \phi: \mathcal{N} \to \bigcup_{d \in \mathcal{N}} IT_{\mathcal{N}}(d:C) | \phi(d) \in IT_{\mathcal{N}}(d:C) \}$

Multi-domain Cooperation Ontology (sample)

 $Add \sqsubseteq ProvisioningMessage$ $AutomaticTask \sqsubseteq \neg ManualTask$ $Lookup \sqsubseteq ProvisioningMessage$ $ManualTask \sqsubseteq \neg AutomaticTask$ $ProvisioningAction \sqsubseteq Action$ $ProvisioningTask \sqsubseteq \exists executedBy Domain$ $Search \ \Box \ ProvisioningMessage$ $\exists \ executedBy \ Thing \ \Box \ Task$ $\exists \ hasProvisioningMessage\ Thing\ \Box\ ProvisioningAction$ $\top \ \Box \ \forall \ hasPerformer \ Role$ $\top \sqsubseteq \forall hasProvisioningMessage ProvisioningMessage$

Composition Rules Formalization in BCDL0

 $\top \ \Box \ \forall \ hasState \ TaskState$

Consistency Checking and Soundness Proof

Multi domain healthcare services composition

Outcomes and ongoing works

- Extension of BCDL0 composition rules with synchronization and simple merge rules.
- Composition Views that handle services provisioning issues.
- Ongoing Work: (i) Implementation of ubicomp healthcare scenario involving smart home and hospital (ii) Prove automation in Isabelle /HOL

References

[1] L. Bozzato and M. Ferrari. "A note on semantic web services specification and composition in constructive description logics". Journal of Syntax And Semantics, 2010.

[2] M. Hilia, A. Chibani, K. Djouani, and Y. Amirat. "Semantic Service Composition Framework for Multidomain Ubiquitous Computing Applications". In prooceeding Of the International Conference on Service Oriented Computing, 2012

Contact

Mohamed Hilia, mohamed.hilia@gmail.com